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Abstract: The primary focus of this study is to analyze the
nonlinear vibration patterns and parametric excitation of
embedded Euler-Bernoulli nanobeams subjected to thermo-
magneto-mechanical loads. The Euler-Bernoulli nanobeam is
developed with external parametric excitation. By utilizing
nonlocal continuum theory and nonlinear von Karman
beam theory, the governing equation of motion is derived.
Subsequently, the homotopy perturbation technique is
employed to determine the vibration frequencies. Finally,
the modulation equation of Euler-Bernoulli nanobeams is
derived for simply supported boundary conditions. The
impacts of magnetic potential, temperature, damping coeffi-
cient, Winkler coefficient, and nonlocal parameters are
tested numerically on nonlinear frequency-amplitude and
parametric excitation—amplitude responses. Results demon-
strate that physical variables significantly influence both
nonlinear frequency behavior and parametric excitation.
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1 Introduction

The captivating electromechanical properties of carbon
nanostructures, such as carbon nanotubes and nanobeams,
have drawn significant interest from researchers and scho-
lars in the fields of advanced materials and engineering
design. These nanostructures have found applications in var-
ious electromechanical devices, including light translucency
[1,2], vibratory systems [3-5], gas atom diagnosis [6], storage
units [7], and composite materials [8]. However, despite the
recognized importance of small-scale effects on the character-
istics and properties of nanostructures, classical plate theory
is insufficient for assessing size effects in these structures [9].
To address this limitation, nonlocal elasticity theory, intro-
duced by Eringen [10], has been widely adopted to examine
size effects in nanostructures. The implementation of non-
local elasticity theory has led to numerous theoretical inves-
tigations and significant advancements [11-17]. Much of the
current research on micro/nanobeams focuses on their non-
linear properties. Nonlinear or high-amplitude vibration of
beams — whether nano or micro — subjected to significant
displacements occupies a crucial position in the engineering
literature. For instance, Simsek [18,19] explored the nonlinear
vibration of nanobeams using nonlocal elasticity and strain
gradient theories, highlighting the impact of small-scale
effects on the nonlinear frequency response. Nazemnezhad
and Hosseini-Hashemi [20] examined the nonlinear vibration
behavior of functionally graded (FG) nanobeams under dif-
ferent boundary conditions, emphasizing the influence of the
gradient index on nonlinear vibration characteristics. Addi-
tionally, Nourbakhsh et al [21] employed the von Karman
theory to analyze the effect of nonlinearity on the nonlinear
frequency response of microbeams. Further contributions
include Oskouie et al. [22], who presented the nonlinear fre-
quency response of viscoelastic Euler-Bernoulli nanobeams,
emphasizing the impact of viscoelastic properties on
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nonlinear vibration characteristics. Ghadiri et al. [23] utilized
the multiple time scales method to study the nonlinear forced
vibration of nanobeams experiencing a moving concentrated
load supported by a viscoelastic foundation. He [24] investi-
gated a coupling method that utilizes homotopy perturbation
techniques (HPTs) for analyzing nonlinear problems. Barati
[25] delved into nonlocal-strain gradient-forced vibration ana-
lysis of metal foam nanoplates, examining both uniform and
graded porosities. Additional studies have explored various
aspects of nanostructures. For example, Kovacik et al [26]
discussed the Poisson’s ratio of closed-cell aluminum foams,
while Pourjabari et al. [27] explored the influence of porosity
on free and forced vibration characteristics of graphene pla-
telet reinforcement composite nanostructures. Chen et al. [28]
contributed by discussing the free and forced vibrations of
shear deformable FG porous beams, while Mirjavadi et al
[29] analyzed the nonlinear free and forced vibrations of
graphene nanoplatelet-reinforced microbeams, considering
geometrical imperfections. He [30] provided a new interpre-
tation of the HPT. Meanwhile, Eltaher et al. [31] examined the
coupling effects of nonlocal and surface energy on the vibra-
tion analysis of nanobeams. Reddy [32] discussed nonlocal
theories related to the bending, buckling, and vibration of
beams, and Aydogdu [33] investigated a comprehensive non-
local beam theory to analyze these behaviors in nanobeams.
Researchers have also recognized the importance of para-
metric excitation in electromechanical systems, particularly
in energy harvesting systems [34-36], where a Duffing
oscillator simulates the performance of energy harvesters.
Parametric excitation has also been used to study nonlinear
vibration and stability in various structures [37]. Darabi and
Ganesan [37] and Wang [38] analyzed the effect of van der
Waals interaction on the instability of double-walled nano-
beams under parametric excitation. Similarly, Krylov et al
[39] explored pull-in instability in microdevices under para-
metric excitation using Mathieu and Hill's equations. Yan
et al. [40] provided insights into the behavior of Timoshenko
beams subjected to parametric and external excitations.
Moreover, Eringen [41,42] examined the theory of nonlocal
polar elastic continua and related differential equations.
Further studies by Reddy [43,44] have contributed to con-
tinuum mechanics and nonlocal nonlinear formulations for
beam and plate bending, while Emam [45,46] explored static
and dynamic analysis of post-buckling in geometrically
imperfect composite beams. Murmu et al. [47] investigated
the influence of in-plane magnetic fields on transverse
vibration of graphene sheets, and Kitipornchai et al. [48]
modeled vibration characteristics of multilayered graphene
sheets. Additionally, researchers like Nayfeh and Mook [49],
Nazemnezhad and Hosseini-Hashemi [20], and Azrar et al
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[50,51] have contributed to the understanding of nonlinear
oscillations and dynamic responses in beams. Characteristics
and behaviors of various nanobeam configurations under dif-
ferent environmental and boundary conditions were investi-
gated in previous studies [52-57].

Hence, a literature review suggests that the impacts of
nonlinear vibration and parametric excitation of magneto-
thermo elastic embedded nanobeams have not been exten-
sively investigated in existing studies. This research
conducts a thorough examination of the nonlinear vibration
behaviors and parametric excitation effects on embedded
Euler-Bernoulli nanobeams under thermo-magneto-mechan-
ical loads, along with external parametric excitation. To
begin, a succinct model of the nanobeam is developed, fol-
lowed by the application of an external axial force to induce
parametric excitation. Subsequently, employing the nonlocal
continuum theory and nonlinear von Karman beam theory,
the governing nonlinear differential equation of motion is
derived. The HPT is then employed to solve this equation.
Finally, the modulation equation and the dynamic instability
of the Euler-Bernoulli nanobeam are derived, leading to an
examination of both trivial and nontrivial steady-state
solutions. Results demonstrate that the magnetic potential,
temperature, damping coefficient, Winkler coefficient, and
nonlocal parameters have a significant impact on both non-
linear frequency behavior and parametric excitation.

2 Modeling of porous metal
nanobeam

The metal’s material traits are contingent upon the distri-
bution of voids or pores. These voids can be distributed
uniformly or in non-uniform patterns. In cases of non-uni-
form distribution, it can be further categorized as sym-
metric (non-uniform 1) or asymmetric (non-uniform 2).
Subsequently, the forthcoming section will introduce the
expressions for the material properties, specifically the
elastic modulus (E) and mass density (p), pertaining to
metal foam [25].

E = Ex1 - eY), p = p,o/A - Y) (Uniform), 21)

2
1 112 2
WhEI‘EY—e—O—e—UE\ﬂ—eO—;*‘l .

The above equation defines Y as a function of the
coefficient e, which relates to the pore amount in the metal
foam. This variable Y is used in the expression for E and p
for uniformly distributed voids in metal foam.



DE GRUYTER

E(z) = E2[1 - eocos[%]], p(2)
2.2)
(Non—uniform 1),

nz

E(z) = E2[1 - eocos[% + Z]]

p(z) = ,02[1 - emcos[% + % (Non-uniform 2), (2.3)

where z is the spatial coordinate and h is the characteristic
thickness. In the above definitions, the index 2 refers to a
material property at its highest value. Also, there are two
coefficients e; and e, elated to pore amount and mass dis-
tribution as

E, G,

eg=1-—=1-—,ep,=1-1- ¢,
El G1

where E; and G, are the elastic modulus and shear mod-
ulus of the metal without voids. E; and G, are the highest
values of the elastic modulus and shear modulus in the
presence of voids.

2.4)

3 Formulating the problem

Figure 1 illustrates the schematic of a porous nanobeam
embedded in a visco-Pasternak foundation, subjected to an
axial force along the x-axis with a height h and length L.
The axial force is represented as a function undergoing
harmonic excitation with frequency (Q). Moreover, the ver-
tical displacement of the nanobeam is indicated by w along
the z-axis.

(@) l L [h

Axial Force Axial Force
— P—

@ (i)

Figure 1: (a) Geometry of the beam. (b) Porosity distribution. (i) Uniform
porosity. (i) Non-uniform porosity.
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3.1 Governing equations

In accordance with Eringen’s nonlocal elasticity theory
[9,10,41,42], the stress experienced at a reference point X is
postulated to be contingent upon the strain field throughout
the body at each point X'. The nonlocal stress tensor o at
point X is formulated as follows:

o= IK(|X’ - X|, 1)o"(X)dX". 31
14
Here g’ denotes the classical stress tensor and K(| X’ - X])
represents the Kernel function, which signifies the nonlocal mod-
ulus. Eringen [10,42] illustrates that it is feasible to express the
integral constitutive relation in an equivalent differential form as:

(1 - (ega)?V%o = o, (3.2)

92

where 7?2 = ot %Zz represents the Laplacian operator,
and (epa) introduces the nonlocal parameter, where ¢, is
a material-specific constant and a is the internal character-
istic length. The determination of the value of e, typically
involves experimental methods or matching the dispersion
relation of plane waves with those of atomic lattice dynamics.
Subsequently, the nonlocal constitutive relation for the
Euler-Bernoulli nanobeam can be expressed as:

9’0

F% (3.3)

Oxx — (eOa)Z = ngx;
where g, and &, denote the normal stress and strain,
respectively, while E represents Young’s modulus. Following
the Euler-Bernoulli beam model, the axial force and the

resultant bending moment can be formulated as

N, M} = o1, 2)dA, (3.4)
A

where z represents the transverse coordinate in the deflec-

tion direction, and A denotes the area of the cross-section of

the nanobeam. Utilizing the classical beam theory as out-

lined by Reddy [43,44], the displacements can be expressed

as follows:

ow
ux,t) —z——,u; = 0, uz(x, z, t)

(x, z, t) = 3% 35)

w(x, t).

In Eq. (3.5), u and w represent the axial and transverse
displacements of the nanobeam along x and z directions,
respectively. Now, considering the nonlinear von Karman
strain, we can express it as:

£ =g+ zk, (3.6)

where ¢ is the strain vector, and &, and k are the nonlinear
strain vector and the change in the curvature vector,
respectively, defined as follows:
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azw
k= o —. 3.7

ow)?
ax

aug 1
— + —
ox 2

& =

In this context, u, represents the initial axial displace-
ment in the strain expression, which captures the axial
deformation before accounting for the additional effects due to
transverse displacements and curvature. From Egs. (3.3)-(3.7) the
axial load and the bending moment are as follows:

(1 - (ega)®V3)N = EAgy(1 - (epn)*VHM = EIk, (3.8)

where [ = Izsz represents the moment of inertia.
A

Therefore, the equation of motion can be expressed as [45,46]:

o'w o (.. 0w , 0% 63 ow
Bt ™ oy Na_x] (@a)5 ax]
62 62 Zf (3’9)
+ pA atzl - (eoa)2 =f- (eoa)2

The axial normal force N can be determined as fol-

lows:
L P 2
j[—w] dx. (310)
0 ox

In Eq. (3.10), My, T, and N, represent a uniaxial mag-
netic field, thermal load caused by temperature change,
and in-plane load caused by initial stress, respectively.
Additionally, the term of FcosQt is also the axial force
capable of inducing parametric excitation, we can define
the parameters of the axial normal force as follows:

EA
N =M, + T, + N, + FcosQt — oL

= 2 1, 3.1

PR = aEAT , Ny = &ay.

Here H, and n represent the in-plane uniaxial mag-
netic field and the magnetic field permeability, respec-
tively. Specifically, M, explains the Lorentz force along
the x-axis [47]. Ty, a, A, and T denote the coefficient of
thermal expansion, the cross-sectional area, the difference
between the temperature, and its initial reference tempera-
ture, respectively. Moreover, ¢ and gy are the compression
ratio and the initial stress, respectively. In this study, it is
assumed that £ =1 and initial stress is along the x-axis
direction. Additionally, in Eq. (3.9), f is defined as follows:

3
f=Kow + cis, (3.12)

at
where ky, and cq represent the linear coefficient of Winkler
and damper modulus parameter, respectively. The Winkler-
type foundation can be characterized based on the model
from the study of Kitipornchai et al. [48]. Finally, to obtain
the equation of motion, we substitute Egs. (3.10)-(3.12) into
Eq. (3.9) as follows:
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o _
ox4

L 2
_(%Ua_w
2L Oax
L
ow

EA
+ Kyw Ty + N, + FcosQt — Z-{[ ox

‘MX + T, + Ny + FcosQt

2 " Mgt

2 |(313)

2 4

Al —— 0w - (8 a)Z—W
TP T Y a2 |

To facilitate a good comparison between results, indirect
parameters can be articulated as follows:

w e KWL4
X=X w=2,y=2 g ,
o= VE T EI
12 N2 MI2 /L4
TX = XI )]VX = EI yM = E)‘,(I ,» Ca= G (3 14)
AL
a=9/P

El

By incorporating these indirect parameters and sub-
stituting them into Eq. (3.9), the governing equation of
nanobeam can be derived as follows:

0'wy - 1M, + T, + N, + FcosQt
ax*
EA aWO aZWO 6W0
[ U ax2 "y K
+ @y )2 0IM, + T, + N, + FeosQt (3.15)
EA aW() 9
K,
[ - OXZ
63W0 62W0 64W0
— ()2 _ ()2
W ey ox [ o~ M apax?
4 HPT

HPT offers an analytical approximate solution for pro-
blems that exhibit continuity within the solution
domain. This technique involves considering a differen-
tial equation.

Ly + Ny = f(x), xeQ. (CN))
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Under the boundary condition, B

y,%]=0, x€eT.

Here L is the linear operator, N is the nonlinear operator, B
is the boundary operator, I represents the boundary of the
domain Q, and (x) is the known analytic function. HPT
defines a homotopy as v(x, p) = Q@ x [0,1] — R that satis-
fies the following inequalities:

H(v,p) = (1 - p)ILOV) - L(y,)]
+plL(v) + N(v) - f()] = 0,

4.2)

or

H(v,p) = L(v) = L(y,) + PL(Y,) + PIN(V) = f(0)]
=0,

(4.3)

where xeQ and pe [0, 1], and y, is an initial approximation
that satisfies the boundary condition. Now from Egs. (4.2)
to (4.3) one can obtain

H(v, 0) = L(v) - L(y,) = 0,

H(v,1) = L(v) + N(v) - f(x) = 0. (4.4)

In topology, L(v) - L(y,) and L(v) + N(v) - f(x) are
homotopic functions, indicating that there exists a continuous
deformation between them through the homotopy parameter p.

Consider the power series solution of (4.2)-(4.3) as
follows:

U = U + puy + pPuy + pAus + . (4.5)
Hence, the approximate solution of (4.2) can be obtained

y=limv=v+uy +v+uv+..

linm (4.6)

4.1 Implementation of boundary conditions
in HPT

Simply Supported-Simply Supported (S-S)

d? d*
Wy = d)V;O =$=Oatx=0,
dw, d*w
wy = dxzo = dx40 =0at x=1. 4.7

So after using the above boundary conditions in the
nth order approximate solution the system of homoge-
neous equation can be written as

M@M)[ABCD]F =0. 4.8

For a nontrivial solution, determinant of coefficient
matrix must be zero. The determinant of coefficient matrix
yields a characteristic equation in terms of A. Positive real
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roots of this equation are the normalized free vibration
frequencies for the case considered.

4.2 HPT formulation for present problem

Consider the nondimensional differential Eq. (3.15), this
equation can be reformulated as

64W0 _ N 62W0 + 1 aZW()
X%  y:N-10X2 yNN-1 ot @)
__ Y dtwp  owy o
pIN -1at20x2 Yot T
The homotopy can be applied as [35]
*wy N w1 9w
axt Plyw-1ax? T yN-1 o
, . (4.10)
0 0
S s - Kywo)

YN - 1 at%0X? ot

where p is the homotopy parameter, p € [0, 1]. It is obvious

that when p = 0, the equation becomes homogeneous, i.e.,
otw

Ba 4.1

=0.

The initial approximation Wj is obtained by solving

the homogeneous Eq. (4.11), hence
wy = Ax* + Bx3 + Cx2 + D. 4.12)

The basic assumption of the HPT is that the solution of

Eq. (4.10) can be written as a power series in p
Waprprox = Wo + pWy + 2wy + ... (4.13)

By substituting the value of Waprprox from Eq. (4.13) in
Eq. (4.10)

64
W[WO + pwy + prwy + ...]
N & ,
=D WW[WO +pwy+ pwy + L]
1 o ,
mﬁ[wo +pwr+ prwy + ]
P (4.14)

VN — 1 9%0X? [WO * Pyt P,

+ ..

Wo + pwy + pPwy + ...]- ky[wo

|

Now comparing the coefficients of p in Eq. (4.14), the
recurrence relation can be obtained as

_ed
4ot

+ pwy + pPw,y + ..
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64Wi _ N aZWi_l 1 62Wi_1
ox* |)’N-1 ox?  yIN-1 o wis)
B Y 9twig e oW1 Ko .
y2N - 10t%0x2 % at R ¢

where i > 1 and initial guess wy is given in Eq. (4.12). The
solution to Eq. (4.9) can be approximated as per the study
of He [24].

Wp = Ll_l:[ll Waprrox = Wo + Wy + Wy + ... (4.16)
The convergence of the series in Eq. (4.16) is proved in
previous studies [24,30].

5 Numerical results

In this section, numerical results are examined based on
the application of both thermo-magneto-mechanical loading
and external parametric excitation. The focus lies in under-
standing the impact of parametric excitation through the
examination of instability regions and bifurcation points.
To aid comprehension, key parameters are defined across
various regions of the graph. This helps to elucidate the
concepts and enhance clarity. The system’s material proper-
ties, including those of the nanobeam and elastic matrix,
consist of the following parameters: Temperature T = 300 K,
Poisson’s ratio of the beam material v = 0.3, Winkler coeffi-
cient ky, = 0.5GPa, and a viscoelastic damping coefficient
cq = 3 x 1077 Pa s. Additionally, the nanobeam diameter d =
3nm and the small-scale parameter are considered to be
smaller than 2 nm according to the study of Reddy [32]. One
can explore its dependence on several factors, including the
scaling parameter, porosity pattern, and nonlocal effects. To
do this, a set of material constants are taken in Table 1.
First, to verify the accuracy of the formulation, Table 2
is presented. The numerical results of the present study
reported in the table are compared with other available
research studies and literature [20,50] so that, they are
partly similar and close to our research. Table 2 shows
the nonlinear frequency ratio (wy, wy) for amplitude-to-

Table 1: Beam dimensions and their material properties [26]

Parameter Value (unit) Description

a 0.5m Length of the beam
b 0.05m Width of the beam

h 0.05m Height of the beam
E 1,100 GPa Young’s modulus

p 13 g/cm® Mass density
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Table 2: Frequency ratio (wyr, wy) at different maximum amplitude-to-
radius (wmax/T) ratios of isotropic beam with simply supported
boundary conditions

Amplitude Ref. [20] Ref. [50] Present work
ratio

1 1.0937 1.0892 1.0758

2 1.3750 1.3178 1.3690

3 1.8438 1.6257 1.8401

radius (wmax/r) ratio of isotropic beam with simply sup-
ported boundary conditions. The nonlinear frequency ratio
is tabled for different amplitude ratios [1-3]. The results
presented in the study of Nazemnezhad and Hosseini-
Hashemi [20] are consistent with the numerical results
of the present work as a similar analytical approach
was used in both.

Figure 2 illustrates that the relationship between the
nonlinear frequency and the amplitude of the parametric
excitation varies depending on the nondimensional damping
coefficient cy. When ¢, is low, indicating less damping in the
system, higher oscillation amplitudes are achievable. Conse-
quently, the nonlinear frequency tends to be higher in such
cases. This implies that the nonlinear frequency increases
together with a rise in the parametric excitation amplitude,
producing a more intense nonlinear response. In summary,
lower values of ¢4 cause the nonlinear frequency to decrease
as the amplitude increases, whereas lower values of the non-
dimensional damping coefficient cause the nonlinear fre-
quency to increase with increasing amplitude of parametric
stimulation. Figure 3 displays the relationship between the
force amplitude and the nonlinear frequency amplitude con-
cerning the nondimensional Winkler coefficient k. The

2.5 ~
2 Cd=0.5
S Cd=1.0
315 .- Cd=15
2 A
=9 /1
E 1 - A
< Ji
/1
A X4
0.5 - ,/I /'|./
al’ e ’ ‘\\\
0 === - : f o~ .“_-.-:-.-l_--.-
0.8 1 1.2

Nonlinear Frequency

Figure 2: The effect of nonlinear frequency on the amplitude of para-
metric excitation for different values of damping coefficient (¢q).
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1.6 -
----- k,=0.5
1.4 - i
o 12 i kW:10
T 1 - = ky=15 A
= 4]
= 0.8 -+ ’l 1‘
g06 - AL
<04 - /',‘/\
Pid s
0.2 - usel s '\:\a_
0 e 8 —I- : e =-.-=-.;
0.8 0.9 1 1.1 1.2

Nonlinear Frequency

Figure 3: The effect of nonlinear frequency on the amplitude of para-
metric excitation for different values of Winkler coefficient (k).

graph illustrates that as the Winkler coefficient increases and
the force amplitude decreases. However, it is noteworthy that
the Winkler coefficient does not influence the occurrence of
bifurcation points. In other words, while changes in k,, affect
the force amplitude; they do not impact the system’s bifurca-
tion behavior. Figure 4 shows how, for a range of uniaxial
magnetic field values, the nonlinear frequency varies with
the magnitude of parametric excitation. The force nonlinear
frequency of a system subjected to a uniaxial magnetic field
denotes the frequency at which the system’s response turns
nonlinear as a result of the magnetic field’s effect. The sys-
tem’s response to the magnetic field may exhibit nonlinear
behavior as the amplitude of parametric stimulation
increases, resulting in changes in the nonlinear frequency.
Figure 5 illustrates the nonlocal parameter’s effect on
the nonlinear frequency-response curves. It is clear from the
graph that increasing the nonlocal parameter reduces
the hardening behavior while enhancing the bending
stiffness. The relationship between the parametric excita-
tion amplitude and the force amplitude of the nonlinear

2.5 -
=+ = Hx=0.5
2 Hx=10
v | 2= Hx=1.5 I”
g 1.5 - ,l'
:: ,, l'
E‘ 1 - ,/' l’
< ,I I‘ 4
05 n ,’ . A\
’,a .7 ] \\\
0 :'.".":'."_I- - : ~. .I‘.‘:-.-:TI
0.8 09 1 1.1 1.2

Nonlinear Frequency

Figure 4: The effect of nonlinear frequency on the amplitude of para-
metric excitation for different values of uniaxial magnetic field (Hy).
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1.6 -
1.4 A
1.2 -

0.8 - ’

0.6 - ’

04 - 5

. I. \
'

td ~
02 7 mes™=

Amplitude

0.9 1 11 1.2
Nonlinear Frequency

Figure 5: The effect of nonlinear frequency on the amplitude of para-
metric excitation for different values of nonlocal parameter (y).

frequency is shown for different temperatures in Figure 6.
Additionally, it is observed that an increase in the tempera-
ture gradient results in a higher amplitude at the lower limit
point bifurcation. Conversely, elevating the initial imperfec-
tion amplitude leads to greater response amplitude at the
higher limit point bifurcation. Figure 7 illustrates the impact
of varying the parameter excitation on the amplitude con-
cerning the Winkler coefficient k. Notably, as the para-
meter excitation declines in the amplitude of the Winkler
coefficient and damps at some point (0.1-0.15). Nevertheless,
amplitude 1 shows a growing trend while the parametric
excitation keeps increasing. Moreover, it is worth noting
that the smallest amplitudes occur at a parametric excita-
tion level of k,, = 1.5. In Figure 8, the amplitude for a system
under parametric excitation depends on both the force
amplitude k and the nondimensional damping coefficient
¢q. Lower damping generally leads to larger amplitudes
near resonance, while higher damping suppresses oscilla-
tions and keeps the amplitude relatively low. Critical
damping minimizes the amplitude of the system’s response.

0.8 -
0.7 - ,
o 06 - it
S 05 - 9 T=100
£ 04 - T IR T=200
5 0.3 - ,’-’ll — . = T=300
02 - 2
0(1) —‘_'_.q_‘_‘_.,—/" '\\\“.’-—-.
0.8 1 1.2

Nonlinear Frequency

Figure 6: The effect of nonlinear frequency on the amplitude of para-
metric excitation for different values of temperature (7).
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0.7 N T==7 7 ===k, =10
.\ ./
0.65 - - - - = k,=15
0.6 T T T T )
0 0.05 0.1 0.15 0.2 0.25
k

Figure 7: The effect of parametric excitation on the amplitude of para-
metric excitation for different values of Winkler coefficient (k).

1.2 -
I €d=0.5 Y
N
W _ i
2 08\ ca=10
"N - = Cd=15 -/
E 061 N p
g N PR
< 04 .\ ‘\\ ’r' "
N \"~~_ _—’/ e
02 « -
- .
0 ‘ — ‘ ‘
0 0.05 0.1 0.15 0.2 0.25
N

Figure 8: The effect of parametric excitation on the amplitude of para-
metric excitation for different values of damping coefficient (cq).

In Figure 9, the effect of changing the parametric excitation
on the amplitude is demonstrated concerning the uniaxial
magnetic field H;. Initially, the parameter excitation
declines in the amplitude and damps at some point
(0.1-0.15). However, as the parametric excitation continues
to increase, the amplitude exhibits a rising trend.
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Figure 9: The effect of parametric excitation on the amplitude of para-
metric excitation for different values of uniaxial magnetic field (Hy).
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Figure 10: The effect of parametric excitation on the amplitude of
parametric excitation for different values of temperature (7).

Additionally, it is noteworthy that the smallest amplitudes
are observed at a parametric excitation level of H, = 0.5. The
relationship between the parametric excitation and ampli-
tude for various temperature levels is depicted in Figure 10.
It is found that a gradual decrease in temperature starting
around 1.0 and damping at some point (0.1-0.15). On the
other hand, the amplitude shows a rising trend while the
parametric excitation keeps increasing. Additionally, it is
noteworthy that the smallest amplitudes are observed at a
parametric excitation level of T = 300. In Figure 11, the
relationship between parametric excitation and amplitude
is illustrated across various values of the nondimensional
nonlocal parameter y. As the y value gradually decreases,
starting from approximately 1.0 and tapering off between 0.1
and 0.15, a resonant behavior is evident. This resonance is
attributed to the combined effects of parametric excitation
and amplitude on the system. Figures 12 and 13 show the stress
contours of the magneto-thermo-elastic nanobeam for dif-
ferent porosity distributions. We can find that the stress
change zone is restricted in a finite area and the stress does
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Figure 11: The effect of parametric excitation on the amplitude of
parametric excitation for different values of nondimensional nonlocal
parameter ().
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Figure 12: The contour plot of the stress distribution for uniform porosity
with € = 0.

not change out of this area. The blue color in these figures
refers to a stress variation of zero in this region. We can
observe that the region with changes in stress becomes larger
with lower nonlocal values.

6 Conclusions

The aim of this research is to examine the dynamic para-
metric excitation and nonlinear vibration behavior of
Euler-Bernoulli porous nanobeams under thermo-mag-
neto-mechanical loading. Initially, a concise model of the
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Figure 13: The contour plot of the stress distribution for Nonuniform
porosity with ey = 0.5.
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Euler-Bernoulli nanobeam is developed and subjected to
parametric external excitation. Utilizing the nonlocal con-
tinuum theory and nonlinear von Karman beam theory,
the governing nonlinear differential equation of motion
is derived. The partial differential equation is then con-
verted into an ordinary differential equation using the
HPT. Next, the Euler-Bernoulli nanobeam modulation
equation is found. Special attention is given to the influ-
ence of parametric excitation, and bifurcation points are
scrutinized to delineate instability regions. Notably, it is
observed that the damping coefficient, along with parametric
excitation, significantly affects the system stability and fre-
quency responsiveness. Thermo-magneto-mechanical loads
are found to induce either growth or decay in the amplitude.

The following is a list of the study’s other main results:

¢ The influence of parametric excitation induced by an

external axial force on system stability is substantial.

The damping coefficient significantly influences system

stability, while factors such as the nonlocal parameter

and Winkler coefficient are of less importance.

» Amplitude response is observed to vary as a function of
the excitation frequency. For initial amplitudes of signif-
icant magnitude, the response decays until reaching a
steady-state solution.

* An increase in force amplitude leads to a notable separa-
tion between stable and unstable curves, creating a gap
between them.
Nano-size beam having nonuniform pores 2 results in
greater vibration frequency.
Results demonstrate that physical variables significantly
influence both nonlinear frequency behavior and para-
metric excitation. The numerical results serve as reference
points for conducting further analyses of nanobeams, which
serve as fundamental components in nano-electromecha-
nical systems.

Funding information: The authors state no funding involved.

Author contributions: All authors have accepted responsi-
bility for the entire content of this manuscript and con-
sented to its submission to the journal, reviewed all the
results, and approved the final version of the manuscript.
RS and LA conceived of the presented idea, developed the
theory, and performed the computations. LV verified the
analytical methods. RD and FT supervised the finding of
this entire work. All authors discussed the results and con-
tributed to the final manuscript.

Conflict of interest: Authors F.T. and R.D., who are the co-
authors of this article, are current Editorial Board



10

Lakshmanan Anitha et al.

members of Curved and Layered Structures. This fact did
not affect the peer-review process, and it was handled
entirely by other editors of the journal. The authors
declare no other conflict of interest.

References

[

[2

B3]

[4]

]

(6]

7]

(8l

[9]

(0]

]

2]

[13]

[14]

(3]

Eda G, Fanchini G, Chhowalla M. Large-area ultrathin films of
reduced graphene oxide as a transparent and flexible electronic
material. Nat Nanotechnol. 2008;3(5):270-4. doi: 10.1038/nnano.
2008.83.

Li D, Muller MB, Gilje S, Kaner RB, Wallace GG. Processable aqu-
eous dispersions of graphene nanosheets. Nat Nanotechnol.
2008;3(2):101-5. doi: 10.1038/nnano.2007.451.

Potekin R, Kim S, McFarland DM, Bergman LA, Cho H, Vakakis AF. A
micromechanical mass sensing method based on amplitude
tracking within an ultra-wide broadband resonance. Nonlinear
Dyn. 2018;92:287-304. doi: 10.1007/511071-018-4055-y.

Mahmoud MA. Validity and accuracy of resonance shift prediction
formulas for microcantilevers: a review and comparative study. Crit
Rev Solid State Mater Sci. 2016;41(5):386-429. doi: 10.1080/
10408436.2016.1142858.

Ji'Y, Choe M, Cho B, Song S, Yoon J, Ko HC, et al. Organic nonvolatile
memory devices with charge trapping multilayer graphene film.
Nanotechnology. 2012;23(10):105202. doi: 10.1088/0957-4484/23/
10/105202.

Arash B, Wang Q. Detection of gas atoms with carbon nanotubes.
Sci Rep. 2013;3(1):1782. doi: 10.1038/srep01782.

Bunch JS, Van Der Zande AM, Verbridge SS, Frank IW,
Tanenbaum DM, Parpia JM, et al. Electromechanical resonators
from graphene sheets. Science. 2007;315(5811):490-3. doi: 10.1126/
science.1136836.

Kuilla T, Bhadra S, Yao D, Kim NH, Bose S, Lee JH. Recent advances
in graphene based polymer composites. Prog Polym Sci.
2010;35(11):1350-75. doi: 10.1016/j.progpolymsci.2010.07.005.
Eringen AC, Edelen D. On nonlocal elasticity. Int | Eng Sci.
1972;10(3):233-48.

Eringen AC. Theories of nonlocal plasticity. Int J Eng Sci.
1983;21(7):741-51. doi: 10.1016/0020-7225(83)90058-7.

Ghadiri M, Shafiei N, Akbarshahi A. Influence of thermal and sur-
face effects on vibration behavior of nonlocal rotating Timoshenko
nanobeam. Appl Phys A. 2016;122:1-9. doi: 10.1007/500339-016-
0196-3.

Sudak LJ. Column buckling of multiwalled carbon nanotubes using
nonlocal continuum mechanics. | Appl Phys. 2003;94(11):7281-7.
doi: 10.1063/1.1625437.

Zhang YQ, Liu GR, Wang JS. Small-scale effects on buckling of
multiwalled carbon nanotubes under axial compression. Phys Rev
B. 2004;70(20):205430. doi: 10.1103/PhysRevB.70.205430.

Barretta R, Feo L, Luciano R, de Sciarra FM. Variational formulations
for functionally graded nonlocal Bernoulli-Euler nanobeams.
Compos Struct. 2015;129:80-9. doi: 10.1016/j.compstruct.2015.
03.033.

Ghadiri M, Safi M. Nonlinear vibration analysis of functionally
graded nanobeam using homotopy perturbation method. Adv Appl
Math Mech. 2017;9(1):144-56. doi: 10.4208/aamm.2015.m899.

(6]

(7

(18]

)

[20]

[21]

[22]

[23]

[24]

[25]

[26]

[27]

[28]

[29]

[30]

31

[32]

DE GRUYTER

Ehyaei ), Akbarshahi A, Shafiei N. Influence of porosity and axial
preload on vibration behavior of rotating FG nanobeam. Adv Nano
Res. 2017;5(2):141. doi: 10.12989/anr.2017.5.2.141.

Ebrahimi F, Hosseini SH. Thermal effects on nonlinear vibration
behavior of viscoelastic nanosize plates. ] Therm Stresses.
2016;39(5):606-25. doi: 10.1080/01495739.2016.1160684.

Simsek M. Large amplitude free vibration of nanobeams with
various boundary conditions based on the nonlocal elasticity
theory. Compos Part B: Eng. 2014;56:621-8. doi: 10.1016/j.
compositesb.2013.08.082.

Simsek M. Nonlinear free vibration of a functionally graded
nanobeam using nonlocal strain gradient theory and a novel
Hamiltonian approach. Int J Eng Sci. 2016;105:12-27. doi: 10.1016/].
ijengsci.2016.04.013.

Nazemnezhad R, Hosseini-Hashemi S. Nonlocal nonlinear free
vibration of functionally graded nanobeams. Compos Struct.
2014;110:192-9. doi: 10.1016/j.compstruct.2013.12.006.
Nourbakhsh H, Mohammadzadeh R, Rafiee M, Rafiee R. Nonlinear
effects on resonance behaviour of beams in micro scale. Appl Mech
Mater. 2012;110:4178-86. doi: 10.4028/www.scientific.net/AMM.
110-116.4178.

Oskouie MF, Ansari R, Sadeghi F. Nonlinear vibration analysis of
fractional viscoelastic Euler-Bernoulli nanobeams based on the
surface stress theory. Acta Mech Solida Sin. 2017;30(4):416-24.
doi: 10.1016/j.camss.2017.07.003.

Ghadiri M, Rajabpour A, Akbarshahi A. Non-linear forced vibration
analysis of nanobeams subjected to moving concentrated load
resting on a viscoelastic foundation considering thermal and sur-
face effects. Appl Math Model. 2017;50:676-94. doi: 10.1016/j.apm.
2017.06.019.

He JH. A coupling method of a homotopy technique and a per-
turbation technique for non-linear problems. Int J Non-Linear
Mech. 2000;35(1):37-43. doi: 10.1016/50020-7462(98)00085-7.
Barati MR. Nonlocal-strain gradient forced vibration analysis of
metal foam nanoplates with uniform and graded porosities. Adv
Nano Res. 2017;5(4):393. doi: 10.12989/anr.2017.5.4.393.

Kovacik J, Marsavina L, Linul E. Poisson’s ratio of closed-cell alu-
minium foams. Materials. 2018;11(10):1904. doi: 10.3390/
ma11101904.

Pourjabari A, Hajilak ZE, Mohammadi A, Habibi M, Safarpour H.
Effect of porosity on free and forced vibration characteristics of the
GPL reinforcement composite nanostructures. Comput Math Appl.
2019;77(10):2608-26. doi: 10.1016/j.camwa.2018.12.041.

Chen D, Yang J, Kitipornchai S. Free and forced vibrations of shear
deformable functionally graded porous beams. Int ] Mech Sci.
2016;108:14-22. doi: 10.1016/j.ijmecsci.2016.01.025.

Mirjavadi SS, Afshari BM, Barati MR, Hamouda AM. Nonlinear free
and forced vibrations of graphene nanoplatelet reinforced
microbeams with geometrical imperfection. Microsyst Technol.
2019;25:3137-50. doi: 10.1007/5s00542-018-4277-4.

He JH. Addendum: new interpretation of homotopy perturbation
method. Int ] Mod Phys B. 2006;20(18):2561-8. doi: 10.1142/
$0217979206034819.

Eltaher MA, Mahmoud FF, Assie AE, Meletis E. Coupling effects of
nonlocal and surface energy on vibration analysis of nanobeams.
Appl Math Comput. 2013;224:760-74. doi: 10.1016/j.amc.2013.
09.002.

Reddy J. Nonlocal theories for bending, buckling and vibration of
beams. Int ] Eng Sci. 2007;45(2-8):288-307. doi: 10.1016/j.ijengsci.
2007.04.004.


https://doi.org/10.1038/nnano.2008.83
https://doi.org/10.1038/nnano.2008.83
https://doi.org/10.1038/nnano.2007.451
https://doi.org/10.1007/s11071-018-4055-y
https://doi.org/10.1080/10408436.2016.1142858
https://doi.org/10.1080/10408436.2016.1142858
https://doi.org/10.1088/0957-4484/23/10/105202
https://doi.org/10.1088/0957-4484/23/10/105202
https://doi.org/10.1038/srep01782
https://doi.org/10.1126/science.1136836
https://doi.org/10.1126/science.1136836
https://doi.org/10.1016/j.progpolymsci.2010.07.005
https://doi.org/10.1016/0020-7225(83)90058-7
https://doi.org/10.1007/s00339-016-0196-3
https://doi.org/10.1007/s00339-016-0196-3
https://doi.org/10.1063/1.1625437
https://doi.org/10.1103/PhysRevB.70.205430
https://doi.org/10.1016/j.compstruct.2015.03.033
https://doi.org/10.1016/j.compstruct.2015.03.033
https://doi.org/10.4208/aamm.2015.m899
https://doi.org/10.12989/anr.2017.5.2.141
https://doi.org/10.1080/01495739.2016.1160684
https://doi.org/10.1016/j.compositesb.2013.08.082
https://doi.org/10.1016/j.compositesb.2013.08.082
https://doi.org/10.1016/j.ijengsci.2016.04.013
https://doi.org/10.1016/j.ijengsci.2016.04.013
https://doi.org/10.1016/j.compstruct.2013.12.006
https://doi.org/10.4028/www.scientific.net/AMM.110-116.4178
https://doi.org/10.4028/www.scientific.net/AMM.110-116.4178
https://doi.org/10.1016/j.camss.2017.07.003
https://doi.org/10.1016/j.apm.2017.06.019
https://doi.org/10.1016/j.apm.2017.06.019
https://doi.org/10.1016/S0020-7462(98)00085-7
https://doi.org/10.12989/anr.2017.5.4.393
https://doi.org/10.3390/ma11101904
https://doi.org/10.3390/ma11101904
https://doi.org/10.1016/j.camwa.2018.12.041
https://doi.org/10.1016/j.ijmecsci.2016.01.025
https://doi.org/10.1007/s00542-018-4277-4
https://doi.org/10.1142/S0217979206034819
https://doi.org/10.1142/S0217979206034819
https://doi.org/10.1016/j.amc.2013.09.002
https://doi.org/10.1016/j.amc.2013.09.002
https://doi.org/10.1016/j.ijengsci.2007.04.004
https://doi.org/10.1016/j.ijengsci.2007.04.004

DE GRUYTER

[33]

[34]

[35]

[36]

[37]

[38]

[39]

[40]

[41]

[42]

[43]

[44]

[45]

[46]

Aydogdu M. A general nonlocal beam theory: its application to
nanobeam bending, buckling and vibration. Phys E: Low-Dimension
Syst Nanostruct. 2009;41(9):1651-5. doi: 10.1016/j.physe.2009.05.014.
Alevras P, Theodossiades S, Rahnejat H. Broadband energy har-
vesting from parametric vibrations of a class of nonlinear Mathieu
systems. Appl Phys Lett. 2017;110(23):233901. doi: 10.1063/1.4984059.
Amer YA, El-Sayed AT, Kotb AA. Nonlinear vibration and of the
Duffing oscillator to parametric excitation with time delay feed-
back. Nonlinear Dyn. 2016;85:2497-505. doi: 10.1007/511071-016-
2840-z.

Bobryk RV, Yurchenko D. On enhancement of vibration-based
energy harvesting by a random parametric excitation. ] Sound Vib.
2016;366:407-17. doi: 10.1016/j.jsv.2015.11.033.

Darabi M, Ganesan R. Non-linear vibration and dynamic instability
of internally-thickness-tapered composite plates under parametric
excitation. Compos Struct. 2017;176:82-104. doi: 10.1016/j.
compstruct.2017.04.059.

Wang YZ. Nonlinear internal resonance of double-walled nano-
beams under parametric excitation by nonlocal continuum theory.
Appl Math Model. 2017;48:621-34. doi: 10.1016/j.apm.2017.04.018.
Krylov S, Harari I, Cohen Y. Stabilization of electrostatically actuated
microstructures using parametric excitation. ] Micromech
Microeng. 2005;15(6):1188. doi: 10.1088/0960-1317/15/6/009.

Yan Q, Ding H, Chen L. Nonlinear dynamics of axially moving vis-
coelastic Timoshenko beam under parametric and external exci-
tations. Appl Math Mech. 2015;36(8):971-84. doi: 10.1007/510483-
015-1966-7.

Eringen AC. Nonlocal polar elastic continua. Int ] Eng Sci.
1972;10(1):1-6. doi: 10.1016/0020-7225(72)90070-5.

Eringen AC. On differential equations of nonlocal elasticity and
solutions of screw dislocation and surface waves. ] Appl Phys.
1983;54(9):4703-10. doi: 10.1063/1.332803.

Reddy JN. An introduction to continuum mechanics. United
Kingdom: Cambridge University Press; 2013.

Reddy J. Nonlocal nonlinear formulations for bending of classical
and shear deformation theories of beams and plates. Int J Eng Sci.
2010;48(11):1507-18. doi: 10.1016/j.ijengsci.2010.09.020.

Emam SA. A static and dynamic analysis of the postbuckling of
geometrically imperfect composite beams. Compos Struct.
2009;90(2):247-53. doi: 10.1016/j.compstruct.2009.03.020.

Emam SA, Nayfeh AH. Postbuckling and free vibrations of compo-
site beams. Compos Struct. 2009;88(4):636-42. doi: 10.1016/j.
compstruct.2008.06.006.

Nonlinear poro thermal vibration and parametric excitation

(471

[48]

[49]

[50]

[51]

[52]

[53]

[54]

[53]

[56]

[57]

-—_ 1"

Murmu T, McCarthy MA, Adhikari S. In-plane magnetic field
affected transverse vibration of embedded single-layer graphene
sheets using equivalent nonlocal elasticity approach. Compos
Struct. 2013;96:57-63. doi: 10.1016/j.compstruct.2012.09.005.
Kitipornchai S, He XQ, Liew KM. Continuum model for the vibration
of multilayered graphene sheets. Phys Rev B. 2005;72(7):075443.
doi: 10.1103/PhysRevB.72.075443.

Nayfeh AH, Mook DT. Nonlinear oscillations. USA: John Wiley &
Sons; 2008.

Azrar L, Benamar R, White RG. Semi-analytical approach to the non-
linear dynamic response problem of S-S and C-C beams at large
vibration amplitudes part I: general theory and application to the
single mode approach to free and forced vibration analysis.

) Sound Vib. 1999;224(2):183-207. doi: 10.1006/jsvi.1998.1893.
Azrar L, Benamar R, White RG. A semi-analytical approach to the
non-linear dynamic response problem of beams at large vibration
amplitudes, part ii: multimode approach to the steady state forced
periodic response. ] Sound Vib. 2002;255(1):141. doi: 10.1006/jsvi.
2000.3595.

Ebrahimi F, Kokaba M, Shaghaghi G, Selvamani R. Dynamic char-
acteristics of hygro-magneto-thermo-electrical nanobeam with
non-ideal boundary conditions. Adv Nano Res. 2020;8(2):169-82.
doi: 10.12989/anr.2020.8.2.169.

Selvamani R, Loganathan R, Dimitri R, Tornabene F. Nonlocal state-
space strain gradient wave propagation of magneto thermo
piezoelectric functionally graded nanobeam. Curved Layer Struct.
2023;10(1):20220192. doi: 10.1515/cls-2022-0192.

Selvamani R, Rexy J, Ebrahimi F. Two phase local/non local waves in
a magneto thermo electrical composite nano beam reinforced with
graphene oxide powder. Waves Random Complex Media.
2021;34(5):1-26. doi: 10.1080/17455030.2021.1985745.

Anitha L, Rajalakshmi L, Selvamani R, Ebrahimi F. Forced nonlinear
vibrations in a smart magneto-viscoelastic multiscale composite
nanobeam in a humid thermal environment. Eng Trans.
2023;71(4):617-44. doi: 10.24423/EngTrans.3114.20231121.
Selvamani R, Rexy J, Ebrahami F. Vibration in an electrically affected
hygro-magneto-thermo-flexo electric nanobeam embedded in
winkler-pasternak foundation. Mech Adv Compos Struct.
2021;8(2):401-14. doi: 10.22075/macs.2021.22068.1311.

Selvamani R, Rubine L, Rexy ], Ebrahimi F. Dispersion analysis of
electrically actuated hygro-magneto-thermo-flexo electric nano-
beam embedded on silica aerogel foundation. Mater Phys Mech.
2022;50(1):1-19. doi: 10.18149/MPM.5012022_1.


https://doi.org/10.1016/j.physe.2009.05.014
https://doi.org/10.1063/1.4984059
https://doi.org/10.1007/s11071-016-2840-z
https://doi.org/10.1007/s11071-016-2840-z
https://doi.org/10.1016/j.jsv.2015.11.033
https://doi.org/10.1016/j.compstruct.2017.04.059
https://doi.org/10.1016/j.compstruct.2017.04.059
https://doi.org/10.1016/j.apm.2017.04.018
https://doi.org/10.1088/0960-1317/15/6/009
https://doi.org/10.1007/s10483-015-1966-7
https://doi.org/10.1007/s10483-015-1966-7
https://doi.org/10.1016/0020-7225(72)90070-5
https://doi.org/10.1063/1.332803
https://doi.org/10.1016/j.ijengsci.2010.09.020
https://doi.org/10.1016/j.compstruct.2009.03.020
https://doi.org/10.1016/j.compstruct.2008.06.006
https://doi.org/10.1016/j.compstruct.2008.06.006
https://doi.org/10.1016/j.compstruct.2012.09.005
https://doi.org/10.1103/PhysRevB.72.075443
https://doi.org/10.1006/jsvi.1998.1893
https://doi.org/10.1006/jsvi.2000.3595
https://doi.org/10.1006/jsvi.2000.3595
https://doi.org/10.12989/anr.2020.8.2.169
https://doi.org/10.1515/cls-2022-0192
https://doi.org/10.1080/17455030.2021.1985745
https://doi.org/10.24423/EngTrans.3114.20231121
https://doi.org/10.22075/macs.2021.22068.1311
https://doi.org/10.18149/MPM.5012022_1

	1 Introduction
	2 Modeling of porous metal nanobeam
	3 Formulating the problem
	3.1 Governing equations

	4 HPT
	4.1 Implementation of boundary conditions in HPT
	4.2 HPT formulation for present problem

	5 Numerical results
	6 Conclusions
	References


<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (None)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (ISO Coated)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Error
  /CompatibilityLevel 1.3
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJobTicket false
  /DefaultRenderingIntent /Perceptual
  /DetectBlends true
  /DetectCurves 0.1000
  /ColorConversionStrategy /sRGB
  /DoThumbnails true
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 524288
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness true
  /PreserveHalftoneInfo false
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts false
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 150
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 300
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages true
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /ColorImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 150
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 300
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /GrayImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 600
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName (http://www.color.org?)
  /PDFXTrapped /False

  /CreateJDFFile false
  /SyntheticBoldness 1.000000
  /Description <<
    /POL (Versita Adobe Distiller Settings for Adobe Acrobat v6)
    /ENU (Versita Adobe Distiller Settings for Adobe Acrobat v6)
  >>
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [2834.646 2834.646]
>> setpagedevice


