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Abstract: This research introduces the Stochastic Extended
Isogeometric Analysis (XIGA) method to investigate frac-
ture behavior of isotropic and orthotropic materials under
mechanical, thermal, and thermomechanical loads. Employing
knot spans from Isogeometric Analysis (IGA) for domain dis-
cretization, the study utilizes identical basis functions for geo-
metry construction and solution discretization. Utilizing
Extended Finite Element Method (XFEM) enrichment func-
tions, accurate crack face displacement discontinuity and tip
singularity within the stress field are characterized.
Additionally, employing a second-order perturbation tech-
nique within XIGA framework, the research derives mean
and coefficient of variance values for mixed-mode Stress
Intensity Factors (SIF). Stochastic variations in material
elastic properties, crack length, and crack angle are consid-
ered in this computation. Credibility and robustness of the
study are confirmed through comparative analyses against
available literatures and Monte Carlo Simulations (MCS).
The observed exceptional agreement validates the precision
and reliability of the proposed stochastic XIGA method for
fracture analysis in orthotropic material systems under
thermomechanical loading conditions.
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1 Introduction

Orthotropic composite materials have gained widespread
recognition in various industries due to their remarkable
properties, including their high strength, adaptability in
design, favorable stiffness-to-weight ratios, and impressive
resistance to corrosion and fatigue. These materials have
found extensive applications across multiple sectors such as
aerospace, spacecraft, marine, automotive, civil engineering,
and the medical field. Despite their numerous advantages, the
intricate manufacturing procedures involved in creating
orthotropic composites often result in flaws like internal
and external cracks, voids, inclusions, and porosities. These
flaws significantly increase stress concentrations near their
location or close to crack tips, consequently reducing the
overall strength and fracture toughness of the structures.

Precisely calculating fracture parameters, particularly
Mixed Mode Stress Intensity Factors (MMSIFs), holds para-
mount importance in improving the resilience of cracked
structures against crack propagation. When structures experi-
ence different loadings, like in-plane or out-of-plane stresses
along with thermal stresses thereof, accurately evaluating
MMSIFs becomes crucial to guarantee dependable fracture
characteristics. This precise assessment is vital for ensuring
the reliability of fracture behavior in these structures.

XIGA seamlessly integrates CAD and analysis, making
it easier to handle complex geometries and interfaces
without the need for extensive meshing processes. The
use of NURBS (Non-Uniform Rational B-Splines) allows
for precise representation of complex shapes and smooth
surfaces. Traditional FEM requires body-fitted meshes that
conform to the geometry, which can be time-consuming and
challenging to generate for complex multi-material inter-
faces. XIGA, however, can handle non-conforming meshes,
reducing the meshing effort and improving the efficiency of
the modeling process. XIGA can naturally represent discon-
tinuities (such as cracks or material interfaces) by enriching
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the solution space with additional functions (like Heaviside
functions or crack tip enrichment functions). This capability
is particularly useful in multi-material problems where dis-
continuities are prevalent. NURBS basis function opted in
XIGA provides higher-order continuity, which enhances the
accuracy of representing gradients and discontinuities in
the physical response of the materials when compared to
traditional XFEM. XIGA can also directly use CAD models for
analysis without the need for intermediate meshing steps,
streamlining the workflow and reducing potential sources
of error.

In summary, XIGA stands out in handling intricate
geometries, capturing discontinuities, and managing large
spatial gradients. It enhances accuracy and convergence
while lowering computational costs, making it an excellent
choice for multi-material problems compared to tradi-
tional FEM, XFEM, or other methods.

In the journey from manufacturing through processing
to practical utilization, structures created from orthotropic
materials exhibit notable variability owing to different
factors. These encompass material properties, intricate geome-
tries, crack specifications, and external loads. This distinctive-
ness sets them apart from conventional isotropic materials
during manufacturing processes. The absence of comprehen-
sive control at each design phase leads to dispersion in system
properties. As these system parameters fluctuate randomly,
the resulting variability extends to MMSIFs (Mixed Mode
Stress Intensity Factors). Consequently, the statistical behavior
of MMSIFs may vary depending on their sensitivity to input
random variables and their distribution patterns.

Therefore, it becomes crucial to precisely quantify this
variability at various levels to align the statistical represen-
tation of MMSIFs closely with their actual values. This align-
ment is fundamental to ensuring that structures maintain
an appropriate safety margin and reliability. Such consid-
erations underscore the necessity for a more refined prob-
abilistic approach when analyzing these intricate cracked
orthotropic materials.

Probabilistic methodologies, such as Monte Carlo simu-
lations (MCS) rooted in statistics, and non-statistical pertur-
bation methods, have seen increased adoption for assessing
response statistics. Perturbation techniques, in particular,
are favored for examining structures influenced by system
randomness. While Monte Carlo simulations serve as an
ideal tool for validating proposed techniques, they often
entail higher computational expenses compared to pertur-
bation methods.

It’s fascinating how fracture mechanics faces chal-
lenges in practical scenarios due to intricate features like
arbitrary geometries, nonlinear material behavior, and com-
plex loadings. These factors often constrain the effectiveness
of traditional analytical methods [1-3]. Consequently, researchers
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are pivoting towards advanced numerical techniques,
including boundary element methods, finite element
methods, meshless approaches, and extended finite ele-
ment methods. These innovative methods offer more
comprehensive solutions to tackle these complexities
in fracture mechanics.

XFEM stands as a significant advancement in fracture
mechanics, enabling the representation of cracks without
alignment to element edges. This innovation includes incor-
porating enrichment functionalities, obtained by asymptotic
analytical solution, into conventional FE shape functions. By
doing so, these enriched functions possess the capability to
faithfully replicate crack face discontinuities & intricate
stress patterns near the tip of the crack. Notably, XFEM elim-
inates the requirement for singular elements or remeshing
during crack propagation, providing a more efficient and
accurate approach to analyzing crack behavior within struc-
tures [4-6].

In the realm of fracture analysis concerning composite
materials, specialized enrichment functions designed for
these applications have been introduced. These encompass
static orthotropic functions [7,8] dynamic orthotropic solu-
tions [9,10] and specific considerations for anisotropic
bi-material delamination [11]. These tailored enrichment
functions cater to the nuanced complexities observed in
composite materials, providing more precise and detailed
analyses for fracture behavior within these structures.

Hughes indeed presented Isogeometric Analysis (IGA) as
a substitute for the FEM, harnessing Non-Uniform Rational B-
spline (NURBS) technology, which is frequently employed in
computer graphics. In IGA, NURBS functions play a dual role:
not only do they precisely define the geometry, but they also
serve in approximating the solutions. This dual functionality
of NURBS in IGA is pivotal, as it allows for more seamless
integration between geometric design and analysis, offering
advantages in accuracy and efficiency in numerical simula-
tions and modeling [12].

IGA has showcased significant success across diverse
engineering domains. Its applications extend to areas like
shape optimization [13,14], shell analysis [15,16], analysis of
FGM, and the study of laminated composite plates [17,18]. The
inherent advantages of IGA, especially its seamless integra-
tion of geometric modeling using NURBS and numerical ana-
lysis, have proven particularly beneficial in these domains,
enabling more accurate and efficient simulations and ana-
lyses in complex engineering scenarios.

IGA scope is expanded to tackle issues related to frac-
tures using a method known as extended isogeometric
analysis (XIGA) [19,20]. This modification integrates XFEM
enrichment technique into IGA, enabling the representation
of irregularities in crack surfaces and the precise depiction of
stress concentrations around crack tips. To extend the scope,
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the XIGA method outlined in [19] has undergone further
development. This advancement involves the inclusion of
FGM composites and the consideration of thermomecha-
nical loadings in different materials. Multiple researchers
have delved into the study of cracked FGM through various
methods: experimental approaches [21] as well as numerical
and analytical techniques [22-27].

The exploration of stochastic fracture behavior in iso-
tropic and orthotropic plates under varied loading condi-
tions remains a relatively limited area of research globally.
Chopra et al. [28] contributed significantly by initiating the
formulation for single-edge notched panel with multiple
fractures probabilistic analysis. Their study employed the
finite element method within a framework of random load-
ings, examining symmetric and asymmetric fracture con-
figurations, and established connections between their
findings and empirical observations.

Investigation of the applicability of J-estimation models
in the probabilistic analysis of elastic-plastic behavior in
structures with cracks. Rahman offered numerical instances
demonstrating probabilistic analysis. These instances
accounted for uncertainties of loads, crack dimensions,
and material properties within two- and three-dimensional
cracked structures [29]. Furthermore, expansion to Rah-
man’s model is to evaluate the fracture behavior in ductile
cracked structures. Their approach combined conventional
FEM with reliability techniques like FORM, SORM, and
Monte Carlo simulations to assess the reliability and prob-
abilistic fracture response of diverse structures [30].

Experiments are performed to explore the probabilistic
characteristics of edge-delamination strength in thermosetting
polymer composites. Their experimental approach involved
the utilization of acoustic emission apparatus, as well as
optical and scanning electron microscopes, enabling the obser-
vation of edge-delamination inception, failure modes, and the
establishment of probabilistic models [31].

A stochastic micro-mechanical model is presented employing
a refined two-dimensional triangular spring network. These
models aimed at investigating fracture behavior within ran-
domly structured fiber-matrix composites. The focus was on
comprehending the influence of geometric variability on
crack propagation paths within these composite materials [32].

Introducing the scaled boundary finite element method
(SBFEM) for analyzing how uncertainties in crack geometry
influence the reliability of cracked structures. They per-
formed reliability evaluations employing Monte Carlo simu-
lations (MCS) [33].

A novel method known as the moment-modified poly-
nomial dimensional decomposition technique is utilized to
analyze 3-D FGM for stochastic multiscale fractures, allowing
for arbitrary boundary conditions [34]. Meanwhile, a swift
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reliability analysis technique was introduced for composite
grillages by integrating the Navier grillage method into the
finite element framework [35].

A stochastic multiscale approach aimed at examining
the impact of correlated input parameters on characteris-
tics of composites. Their technique involved hierarchical
multiscale modeling and sensitivity analysis techniques
[36]. Additionally, Lal et al. [37] as well as Lal and Palekar
[38] evaluated statistical properties associated with Mode I
SIF in single-edge notched laminated composite plates. They
utilized displacement correlation methods in conjunction
with second-order perturbation techniques (SOPT) and Monte
Carlo simulations (MCS) for their assessments.

XFEM is employed for analyzing the fracture behavior
of FGM under both thermomechanical and mechanical load-
ings [39,40]. Additionally, numerous researchers have
utilized numerical methods such as finite and boundary
elements to investigate the fracture of cracked solids under
thermal loading [41-44].

In addition to conventional Lagrange polynomial dis-
cretizations, some numerical examples are presented, which
demonstrate that the formulation based on IGA offers a
computationally accurate and efficient solution for challen-
ging interface debonding problems in both 2D and 3D [45].

This study applies a strong formulation finite element
method, along with its localized version and the isogeo-
metric approach, to classic examples like plane stress
plates with circular holes, U-shaped holes, and V-notches.
The numerical results closely match the reference results,
demonstrating the potential and accuracy of these methods
in capturing stress concentrations in fracture mechanics,
even with coarse mesh discretizations [46].

In this article, the level set method is combined with
the extended finite element method (XFEM) to forecast the
direction of fracture propagation in a specimen and to
calculate the stress intensity factor for cracked plates
under various loading scenarios [47].

In this study, the extended finite element method
(XFEM) is employed to model a semi-circular bending
test, focusing on the initiation and propagation of cracks
in rock. Special attention is given to the effects of notch size
and scale on the fracturing behavior of the specimen, par-
ticularly concerning peak load [48].

The current body of literature offers limited explora-
tion into the impact of thermomechanical loads on cracked
orthotropic materials. Few studies delve into stochastic
fracture analysis of orthotropic plates with use FEM &
XFEM. Moreover, there is a scarcity of research employing
XIGA to account for thermomechanical load effects.

In this article, we assess the Mixed-Mode Stress Intensity
Factor (SIF) in orthotropic plates containing through-
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thickness cracks subjected to thermomechanical loadings. In
this article, an assessment of Mixed-Mode SIF in orthotropic
plates with through-thickness cracks is done under thermo-
mechanical loadings. It aims to explore the mean and coeffi-
cient of variance of normalized MMSIFs while changing para-
meters such as crack length, temperature, and elastic
material properties. Employing the stochastic XIGA method
along with second-order perturbation techniques (SOPT)
and Monte Carlo simulations (MCS), this research aims to
evaluate the mean and COV properties of MMSIFs.

2 Formulation

2.1 Fracture analysis

The orthotropic structure with a crack is defined within
global cartesian coordinates (X, Y), aligning its elastic sym-
metry axes with local Cartesian axes (x1, y1). The crack tip
is represented using local polar coordinates (r, 8). as illu-
strated in Figure 1.

The body encounters various forces alongside dif-
ferent displacement and traction boundary conditions.
Expressing orthotropic stress—strain relationship by:

g; = CijEj. (1)

The relevant compliance coefficients of body are Cj;
(i, j = 1, 2, 6) in local Cartesian coordinates. The stress—
strain equation is given as [49]

Domain Q

Axes of
orthotropy

Crack tip

Figure 1: Cracked orthotropic body experiencing traction forces. This
area is enclosed by the contour r and contains arbitrary boundary con-
ditions within the designated area A.
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Further, in-plane elastostatic set of equations is given
as follows:
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The partial differential equation governing the fourth
order for an orthotropic body, derived from compatibility
and equilibrium considerations, can be stated as follows: [37,38]

C11y4 - 2C16H3 + (2C + ng)yz = 2Cu + C» = 0. @)

Complex or purely imaginary roots of Eq. (7) and are
derived as (g = fty, + iykyl) which always occur in conju-
gate pairs as y,, [; and y,, 1.

Complex variables and analytical functions (zx = x +
WY (k =1,2)) are employed to delineate the two-dimen-
sional displacement and stress fields surrounding the
crack tip [50] The pure mode I stress components given

by,
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and the corresponding displacements are given as
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Pure mode II stress and displacement are:
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In this scenario, Kj denotes the mode I stress intensity
factors (SIF), and Kj; denotes the mode II stress intensity
factors (SIF). “Re” indicates the real part of the statement,
while py and gy are further explained below.

Pr = Cut? + Crp = Ciglty, (20)
C

Qi = Cootly + =2 - Gy (21
My

2.2 XIGA formulation

To effectively address problems involving discontinuities
such as cracks, integrating concepts from XFEM with IGA
significantly enhances their capabilities. XFEM is adept at
handling static and dynamic discontinuities within struc-
tures, while IGA demonstrates precision and efficiency in
analyzing complex geometries. Merging these methodolo-
gies, known as XIGA, allows for defining the entire crack
independently of the mesh. XIGA essentially represents
IGA approximation enriched by the application of partition
of unity (PU), which is derived from the XFEM formulation.

To model singular fields and discontinuities, XIGA
improves the local isogeometric approximation by introdu-
cing extra degrees of freedom at certain points near crack
locations within the basic IGA model. Enrichment func-
tions are used to contribute to overall approximation. In
the XIGA method, crack-tip enrichment functions are uti-
lized for capturing singularity within the stress fields at the
crack tip, whereas Heaviside functions are employed for
the representation of the crack face (Figure 2).

The generalized expression for the displacement approx-
imation at the designated control point corresponding to ¢; is:

FEM

XFEM u= Nue N ¢ge

—_ 4

Enriched Function

IGA

XIGA u= Ru® R dq¢
NURBS
Basis
Function

—

Figure 2: Sketch depicting the arrangement of various methods.
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where u; signifies parameters related to the particular con-
trol point; ne, refers to the number of basis functions for
each element; R? denotes the rational B-spline basis func-
tions; n. denotes the number of basis functions entirely
intersected by the crack face; n; represents the number of
basis functions partially intersected by the crack tip; ny, is
the count of basis functions partially intersected by the hole;
and ny, indicates the number of basis functions partially
intersected by the inclusion.
Additional control points influence enriched degrees
of freedom as follows:
— a; accounts for the Heaviside function H(¢);
— b} influences degrees of freedom associated with asymp-
totic crack-tip enrichment functions §,;
- ¢ and d; contribute to control points associated with
specific functions, namely y(&) and () respectively,
characterizing material interfaces.

Blending functions like By, and B, are employed for the
Heaviside function and crack-tip function, respectively.
The Heaviside function H(¢) equals +1 when the para-
metric coordinate ¢ corresponds to a particular Gauss
point situated above the crack face. Conversely, when ¢
lies below the crack face, H(¢) equals -1.

Strain is comprised of two components in a thermo-
mechanical problem.

gt=gm+ gth (23)

Here, ¢! is the total strain, €™ is the mechanical strain,
e is the thermal strain, where & can be written as for
plane stress state,

th
£
1tlh ay
& ay
w [~ Jass AT, (24)
€33
th 0

285,
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Thermal expansion coefficient is denoted as aj,
and Poisson’s ratio is denoted by u;. According to the
generalized Hooke’s law, the mechanical part of strain,
€™ is shown below.

m
81;1 A Qi 3 Mg G5 g || O
) Az Ay (3 Gy Qs Q| 02
€33 _|M3 (3 Gz Q34 A3s Azg [[O33 (26)
2el | |Q4 G (3 Aus Qs Age || O3
26 Q15 Qg5 Azs Q45 As5 As6) 013
gel Qg (6 36 Qa6 As6 Aeg |[ 012
€12
The discretized form can be written as
Ku' =f. 27

The displacement vector u" encompasses standard as
well as additional degrees of freedom.

llh={ll a b1 bz b3 b4} (28)

The displacement u? represents the standard degrees
of freedom, while ‘@ and ‘ba’ (where a ranges from 1 to 4)
symbolize additional degrees of freedom utilized for the crack
face and fields surrounding the crack tip. The mechanical
force vector fand global stiffness matrix K are both assembled
from their respective element’s contributions.

ab ua ub
K" K;j° Kj

b
Kj=| K" K" K| 29
Kt Kj K
T
ﬁ - fiu fia fibl fibz fib3 fib4 ) (30)
Similarly, the discretize form of thermal is
QTh + fh =, (3D
where T! is the temperature vector
Th={u a b (32)

Thermal force vector f™ and thermal stiffness matrix
Q are formed using a different matrix of basis function
derivatives.
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f= fth-equivalent + fmech.

35)

= J—BTCEIh do + fmech .

2.2.1 Cracks modeling in extended isogeometric analysis

XIGA merges foundational principles of XFEM enrichments
into the framework of IGA. Fields pertaining to displace-
ment, associated with crack faces and crack tips, are incor-
porated into the conventional IGA approximation in XIGA.

X= XIGA + XXIGA = XIGA + Xtip + Xheaviside . (36)

Here, y can be displacement U or temperature T. The
yheaviside hart of enrichment is utilized for modeling strong
discontinuity at the crack face in displacement fields and
temperature fields which is given below:

Xheaviside - z N(XOHX)d;,

i€ng

@37

where ns denotes the collection of control points whose
enrichment is done using the Heaviside function. This
function, evaluated at a point located at the physical coor-
dinate X, is defined as:

+1ifX-X")e >0

. (38)
-1 otherwise.

HX) = [
The y part of the enrichment is used to reproduce the
complex analytical crack tip field

Y £ by |- (39)

kEF

X = 3 N(X)

€T,

In this context, T, constitutes the collection of control
points augmented by the set F of crack tip functions f,.
These functions, originating from the asymptotic solution,
possess individual uniqueness tailored to specific problem
sets. In the case of the isotropic body subjected to sta-
tionary mechanical loads, utilization involves the four dis-
tinctive functions given below.
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>

0
Jr COS[E]’

F(r,0) = (40)

JTsin(0)sin

>

9
2

JT sin(B)cos[g]

The polar coordinates r and 6 are measured from the
crack tip. Furthermore, for orthotropic materials, a set of
four functions has been proposed.

ﬁCOS[f]m\/Tsin - V&®
With
g(0) = [(cos(®) + Cs@) + Bsn@Y, (42
0,(0) = tanﬂ[% . (43)

Roots of characteristic equation consist of both real
and complex parts

atut - 203 + Qay’ + A - 2au + a’ = 0, (44)
W= G+ b, )
Uy =G+ 1By, (46)

The following tip enrichment is used for the thermal
equation:

Fi(r, 0) = Jrsin z 47)

2.2.2 Control points enrichment selection

The approach adopted here is to select enriched control
points that mirror the level set method of XFEM, albeit
by small variation due to the distinctions between XIGA’s
control points and XFEM’s nodes. In XFEM, only nodes
linked to elements containing crack faces or tips undergo
enrichment. However, within the XIGA framework, numerous
control points, even those distant from the crack, can be
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enriched due to broader impact in the domain. The selection
criterion involves identifying control points whose respective
basis function holds non-zero values at either the crack tip or
the crack face. These selected points are enriched using tip
enrichment functions or Heaviside functions.

A crucial yet intricate distinction exists in the treat-
ment of control points. The selective utilization originates
from acknowledging that augmenting these control points
with the Heaviside function inaccurately extends the crack
front. By incorporating crack tip enrichments, it becomes
possible to precisely replicate the jump across the exact
face of the crack. Consequently, control points enriched
by these functions maintain the accuracy of the genuine
crack’s kinematic discontinuity. This capability is intrinsic
to crack tip asymptotic function +/7'sin(6/2) showcasing its
effectiveness in reproducing discontinuity at the crack
face, whether for isotropic or orthotropic material.

2.2.3 Stress intensity factor (SIF)

Here, we analyzed SIF using the interaction integral method.
When dealing with orthotropic problems, three formula-
tions have been proposed: constant constitutive, incompat-
ibility, and non-equilibrium. The non-equilibrium and
incompatibility methods tend to yield comparable outcomes,
whereas the constant-constitutive way often shows lesser
accuracy. In our study, we specifically utilized the incompat-
ibility formulation, which involves calculating the auxiliary
strain field.

£a™ = cja(O;™, (48)
1y tip yqaUX — 1 aux 4 ,aux (49)
Cia(X"P g™ = z(ui,j uii ).

Below incompatible relations are the result of the
discrepancy:

aux

i =0, and alj-‘“x = (e,

ij.j
aux 1 aux aux (50)
but 8ij * E(ui’j + u]-,i .
J-integral for a cracked body, where ““**” represents
the auxiliary fields, is shown below:
J= J(uni,1 - wéy)q;dA
4 (51)

+ J-(Oijui,l - wéy;);qdA,
A

where w is the strain energy density and &; is the Kronecker
delta.
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1
w= E(onel‘{‘ + Opegy + 20165). (52)
The article utilizes the interaction integral method,
employing the conservation of J integral as an actual and
auxiliary state to compute the MMSIF.

] =]act +]aux + M. (53)

In this context, J2 and J*** represent the conserva-
tion integrals for actual and auxiliary fields, respectively.
Comprising both mechanical and thermal terms in a thermo-
mechanical scenario, M refers to the interaction integral.

M:Mm+Mth’ (54)
with
oguit™ + ai}"-‘uxu,»,l

M™ = 1 aux aux,m qv}'
4|5 (G + i €k )8y (55)

+[toy(sjih - syaCO)oRTqdA,

A
M = [{o3effiqdA

A (56)

= [{od™Mia(AT) + AT 11iqda,
A

where J; is related to the thermal expansion coefficient a;

M1 = ayg;
Ay = ay; (57

A3 = a3 Ay = 0,

For the plane stress state, the equation remains applic-
able. However, specific modifications to the equation are
necessary for plane strain problems.

My = U3 + Qs

A = Uzyliz3 + Go3;
/le = 03

(58)

Az = ag3;

where y1; denotes Poison’s ratio.
The interaction integral M is linked to the SIF through
the following equation:

M = 261 K" K; + ¢p(K" Ky + K{™Kp) + 20K Ky, (59)

+
G = —@Im L) , (60)
2 Halhy
Gy = ~%2n 1 + @Im(‘u u,) (61)
2 Uiy 2 e
a
oo =~ My + 1), (62)
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The SIF K; and Kj; can be determined by solving two
simultaneous equations.

M = 21Ky + cpKn
(K™ =1and K™ = 0)

M; = oKy + 200Ky
(K™ = 0 and Kf™ = 1).

(63)

2.3 Stochastic response of MMSIF for
different input random variables

This article explores the stochastic behavior of MMSIFs
using the XIGA approach. It employs two probabilistic
methods, namely SOPT, which relies on perturbation tech-
niques, and direct MCS, a sampling-based method. SOPT,
employing Taylor series expansion, establishes connections
between certain features of random parameters and their
corresponding responses. But, this method’s applicability is
confined because of its dependency on lower-order polyno-
mials. The subsequent section provides a numerical formu-
lation outlining these methods.

2.3.1 Monte Carlo simulation (MCS)

The direct MCS method simulates numerical experiments
by generating numerous samples of random system proper-
ties, representing variability by using appropriate Gaussian
distribution in structural parameters. These samples produce
a random set of responses. The average of these random
samples determines the mean response value, while their
standard deviation (SD) indicates the variation, contingent
on convergence. Despite being computationally intensive
for solving structural issues involving discontinuities such
as cracks, adopting adaptive sampling techniques can effec-
tively address this challenge. The integral representing the
expected value transforms into an averaging operator is

N

- ELf00] = 1 Y00,

i=1

(64)

where [I; is the mean or expected value (E) of a function f
(0 of n-dimensional random variable vector x. The para-
meter N is known as a set of random samples. The N sam-
ples must be drawn from a distribution specified by ¢(x),
which can be either normal or lognormal.

Random function fix) variance can be

oF = Var[f(0] = [(f00) - u00dx. (o)
Q
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When the above integral is calculated in Monte Carlo
simulations using sampled data, the following summation
can be used in its place

= Var[f(x)] = Z(f(xo —u)t (66)

Difficulty with this method is creating random sample
points which mimic the distribution pattern of the inte-
grand. In this study, we’ve taken 3,000 samples (N =
3,000) to ensure convergence, addressing the complexity
of the fracture problem at hand.

2.3.2 Second-order perturbation technique (SOPT)

A response variable f(K;) of MMSIFs (Kj or Kpp) is defined
by

K = f(K;) where i =11], 67)

where K; represents functions of random variables b;,
which can be statistically dependent or independent, cor-
related or uncorrelated. These variables possess mean (i,
and standard deviation Op,

ifi =Ithen K| = K
if i = Il then Ky = K.

(68)
(69)

Using Taylor series expansion till second-order K; is
expanded around mean values of random variables u;,,
Up,-.., Up, allowing the determination of mean values of
MMSIFs K Ky

n
oK;
K= Kl Hyy s )+ 206~ 1) abl
. & (70)
1 Z Z (X ) azKi
2 : el l’lb] k — l‘lbk ablbk'
The first-order mean of Kj or Ky is defined as:
E(K{) = KUy, Upy 5 Hp,)- (71)

The first-order variance of mean K of SIFs K; or K,
written as Var(K), is given as [51]

Var(K’) = Z Z COV(b , br).
pttel ab !

(72)

where Cov (b}, by is the covariance of b; and by, and n is the
total number of random variables.

Matrix of random variable covariance can be given
as [38]

cov(b;, by) = [C] [C7], (73)
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o cov(by, by) ... cov(by, b))

[c] = cov(by, by) o, - cov(ba B)|  (7)

cov(b;, b)) cov(b;, by) ... Ojy

2
1 Poib, = Phyy

[c]=|Poebr 1 Pruy, (75)
Pb, Poyb, - 1

Matrix of standard deviation is denoted by [C], and
correlation coefficient of the random variables is denoted
by [C'] where:

Oxp Oxp - Ox; = COV(D), D) XUy, lyp oo Uy)s (76)
cov(bj, by)
= ———. (77)
pX],Xk O-bjo.bk

The covariance between the random variables is repre-
sented by the covariance cov(b;, by). This covariance is 0 for
random variables that are statistically independent. The
degree of correlation between the random variables is indi-
cated by the correlation coefficient pbj, bk, which can be
taken to have any value.

Second-order mean {K"} in SOPT given by [51]

1
E(Kﬂ) = K(ubl) ‘ubz’ AN ‘ubn) + Evar{I(l/}' (78)

Second-order variance matrix of response var{k;"}

var{K;'} = var{K}. (79)

In various engineering scenarios, relying on the mean
of second-order and variance of first order is customary
since the unavailability of third- and fourth-order moments
for estimating second-order variance of b; [51] The coeffi-
cient of variance (COV) for Stress Intensity Factors (SIFs)
is computed by dividing the standard deviation by the
mean, with standard deviation derived from variance’s
square root.

The perturbation technique used in this analysis offers
computational efficiency, making it adaptable to a wide
range of probabilistic problems. However, its limitation
lies in its suitability for scenarios with lower variability
in random variables, particularly where randomness is
minimal compared to their mean values. To address this
limitation, Monte Carlo Simulation (MCS) emerges as an
optimal method for computing response statistics, espe-
cially in cases with significant uncertainties. Although com-
putationally intensive, particularly in fracture problems
with dense meshes, MCS remains preferable for handling
larger uncertainties [52].

DE GRUYTER

3 Results and discussion

This section introduces many of the classical numerical
examples implemented through a MATLAB-based code
for the extended isogeometric analysis algorithm along
with the stochastic responses. The significance of MMSIFs
in fracture analysis under mechanical and thermomecha-
nical loadings is emphasized by prior research studies.
First, the validation of the MATLAB code for the XIGA algo-
rithm is checked by calculating MMSIFs and comparing
them with the available works of literature. Afterward,
the study conducts numerical experiments in various sce-
narios to calculate the mean and coefficient of variance
of MMSIFs in orthotropic plates with centrally inclined cracks
subjected to thermomechanical loads. This analysis involves
considering random input variables like elastic properties,
crack angle, and crack length, temperature both indepen-
dently and in combination, as random variables.

3.1 Edge crack with various orientations of
orthotropic axis subjected to tensile
loading

We apply the proposed method to analyze an edge crack in
a rectangular plate. The plate has a height-to-width ratio of
2 and a crack length-to-width ratio of 0.45, as shown in
Figure 3(a). The material used is graphic epoxy with prop-
erties that are described below:

E, = 1148GPa, E, = 11.7GPa, G, = 9.66 GPa and
U1 = 0.21.

The mesh features a uniform distribution of nodes in
extended isogeometric analysis. NURBS basis functions
employed are (p = q = 3) cubic, as depicted in Figure 3(b),
with enriched nodes shown in Figure 3(c). The integral
domain for calculating SIF is illustrated. Our results are
compared with Aliabadi and Mohammadi. Figure 4 pre-
sents the SIF values for various a angles, obtained using
the proposed XIGA method, Aliabadi’s FEM, and Moham-
madi’s XFEM analyses.

The maximum difference in mode I SIF is observed at
a = 0° where a 4.3% error is observed, and for mode II, this
occurs when a = 20° where a 3.6% error is observed. The
results obtained by this method demonstrate that for both
modes, there is an increase in normalized SIF value from a =
0° to a = 45° and then are decreased from a = 45° to a = 90°.

The effect of crack length on K; and Ky was investi-
gated for a = 0° orientation which is shown in Table 1
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Figure 3: (a) The loading and geometry for a single edge crack with various orientations of orthotropic axis in rectangular plate, (b) NURBS mesh with

enriched nodes, and (c) integral domain to calculate SIF.
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Figure 4: Results of normalized SIFs for K; and Ki; of a single edge crack
in a rectangular plate with various orientations of the orthotropic axes, at
angles of a = 0° 30° 45° 60° 90° and (K; = Kj/o/ma and Ky = Ky/oJTa).

Table 1: Effect of crack length on values of SIF, Kj, and Ky

Crack length K; Ky

2.5 1.4672 -2.0000 x 107°
35 1.9525 -4.0000 x 107°
45 2.6012 -7.0000 x 10°°
5.5 3.4990 -6.0000 x 107°
6.5 47486 -4.0000 x 107°
7.5 6.0173 -1.0000 x 107°

below which shows an exponential increment in K; with an
increase in crack length, and minor variation was found in
Kj; values.

Further study was carried out for different loading on
the top edge of the plate (Tensile, Shear, Combined, and
Triangular), and values of Normalized SIF, Kj, and Ky; were
recorded for different orientation angles (a = 0° to @ = 90°),
which are presented in Table 2.

The crack length taken into consideration was a/w =
0.45 and h/w = 2 as depicted in Figure 3(a), and values of K;
opening mode are more in combined loading as compared
with only shear loading which is more than only tensile
loading for all orientation angles. Kj; shearing mode was
very low in tensile loading but in shear and combined
loading it was comparatively higher for all the orientation
angles. For a triangular tensile load, it was obvious that the
values of K7 and Ky would give lower values as the total
load was half that of the uniformly distributed load.

Results of normalized K; and Kj; for different orienta-
tion angles under tensile, shear, and combined loading are
depicted in Figures 5-7.

3.2 Isotropic plate with center crack under
thermomechanical loading

Here, we investigate a square plate with a center crack
through numerical simulations under thermomechanical
loading, employing the XIGA approach. The dimensions
considered are 2,000 mm x 2,000 mm, and the domain is
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Table 2: Values of normalized SIF under different loading conditions - tensile, shear, combined, and triangular are recorded for different orientation

angle

Alpha (orthotropic angle) TENSILE SHEAR COMBINED TRIANGULAR
K Ku K Ku K Kn K Ku

0 2.6012 0 6.4557 3.8599 9.0569 3.8598 1.7945 0

30 2.8256 0.3935 7.5976 5.2948 10.4231 5.6883 1.9894 0.3352

45 2.9946 0.4689 8.2649 5.3205 11.2595 5.7893 2.1355 0.4011

60 3.0765 0.3695 8.5767 4.9892 11.6533 5.3587 2.21M 0.3295

90 3.0267 -0.134 8.4802 2.7663 11.5069 2.6315 21735 -0.111

a5 Uniformly distributed tensile loading
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Figure 5: Normalized K; & Ky for different orientation angles under
tensile loading.

discretized using a 50 x 50 control net. We use a NURBS
basis function order of three for the simulations.

Uniformly distributed shear loading

T T T

Normalzed Kl & KiII
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The plate contains a preexisting center crack with a
length of 600 mm, as shown in Figure 8. The material prop-
erties considered are as follows:
¢ elastic modulus (E) = 200 GPa;

* Poisson ratio (v) = 0.3;
+ thermal expansion coefficient (a) = 11.7 x 1078 C™,

The scenario involves a square plate under tensile load
of 30 MPa applied at the top edge which is perpendicular to
the crack. Additionally, temperature boundary conditions
are applied: 0°C at the crack face and 10°C at the top edge of
the plate. The bottom edge of the plate is constrained, as
depicted in Figure 8.

For each step of crack extension, a crack increment of
100 mm is applied, extending proportionally from both the
left and right tips. The stress intensity factors are then calcu-
lated using the domain-based interaction integral approach.

Figure 9 illustrates the stresses in x-direction (u,) for
a/w = 0.4 subjected to thermomechanical loads, while
Figure 10 shows stresses in the y-direction. Additionally,

12 Uniformly distributed combined tensile and shear loading

Normalzed Kl & KII

0 10 20 30 40 50 60 70 80 90
Alpha (Degrees)

Figure 6: Normalized K; & Kj; for different orientation angles under shear
loading.

Figure 7: Normalized K; & Kj; for different orientation angles for com-
bined tensile and shear loading.
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Figure 8: Center cracked square plate under thermomechanical loading.

Figures 11 and 12 display the displacements along the x
direction and y direction. The variation of SIFs (K; and
Ky) with the extension of the right crack tip is shown in
Figure 13. The graph indicates that K is higher than Kj.
Consequently, under combined loading conditions, the
center crack in the plate exhibits opening mode behavior.

3.3 Orthotropic plate with center crack
under mechanical, thermal, and
thermomechanical uniaxial loading

We further analyze a center crack in a square plate under
thermomechanical loads, using the XIGA approach for an
orthotropic material. The square plate has initial dimensions
0f 2,000 mm x 2,000 mm, and the domain is discretized using
a control net of size 50 x 50.

Stress in x direction

Figure 9: Stresses along x-axis.

Effect of random variation in input parameter on cracked orthotropic plate
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Figure 10: Stresses along y-axis.
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Figure 11: Displacement along x-axis.

Displacement in y direction

Figure 12: Displacement along y-axis.
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Figure 13: SIFs (K; and Kj) variation of the plate subjected to thermo-
mechanical loads is presented (validation study).

The square plate contains a preexisting center crack
with a length of 600 mm, as depicted in Figure 14. This
crack is analyzed when subjected to thermomechanical
loading conditions using the XIGA method. The material
properties considered for the analysis are as follows:

* elastic modulus (E11) = 114.8 GPa;

* elastic modulus (E22) = 11.7 GPa;

* shear modulus (G12) = 9.66 GPa;

* Poisson ratio (v12) = 0.21;

thermal expansion coefficient (a11) = 11.7 x 1078 C;
thermal expansion coefficient (a22) =2 x 107 C™.,

Boundary conditions are as follows:
* temperature difference = 100°C;
tensile stress on top edge = 30 MPa.

Table 3 presents the normalized SIF, K; and Ky, for dif-
ferent crack lengths. The results show that Kj is consistently
higher than Ky. This indicates that the center crack in the
square plate primarily experiences opening mode under com-
bined loading conditions, even for orthotropic materials.
Furthermore, the analysis suggests that thermomechanical
loading is more critical than pure mechanical or pure thermal
loading. This is supported by the observation that as the crack
length increases, the SIF values increase for all loading types.

3.4 Orthotropic center crack under
mechanical, thermal, and
thermomechanical biaxial loading

Here, we analyze a center crack in a square plate under ther-
momechanical biaxial loading, utilizing the XIGA approach.
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Figure 14: Center-cracked orthotropic square plate under thermome-
chanical loading.

The material properties remain the same as in the previous
section, and the geometry and loading conditions are illu-
strated in Figure 15. The boundary conditions for this analysis
are as follows:

* Temperature difference = 100°C;

¢ Tensile stress on top edge = 30 MPa;

* Tensile stress on right edge = 60 MPa.

The normalized SIFs (K; and Kj) with the different
crack lengths is shown in Table 4. It is observed that the
value of K; (mode-I) is higher than that of Ky (mode-II).
Also, the K; (mode-I) SIF value is reduced when subjected
to biaxial tensile loading, and Kj; (mode-II) SIF value is
increased when both are compared with uniaxial tensile
loading. Apart from this behavior, the critical loading con-
dition remains the same with thermomechanical loading
which gives higher values of SIF Kj than pure thermal and
pure mechanical.

Table 3: SIF K; and Kj; for mechanical, thermal, and thermomechanical
loading for different crack length

Half Mechanical Thermal Thermomechanical
crack (uniaxial tension) (uniaxial tension)
length
KI KII KI KII KI KII
300 19.8675 -0.0460 1.2013 0.0 21.0688 -0.0460
400 21.5581 -0.0687 4.7554 0.0 26.3135 -0.0687
500 24.4024 -0.0881 4.5680 0.0 28.9705 -0.0881
27.7666  -0.1101 43658 0.0 32.1324 -0.1101
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Figure 15: Cracked orthotropic square plate under thermomechanical
biaxial tensile loads.

Table 4: Stress intensity factors K; and Ky, for mechanical, thermal, and
thermomechanical biaxial tensile loadings for different crack length

Effect of random variation in input parameter on cracked orthotropic plate

Half Mechanical Thermal Thermomechanical
crack (biaxial tension) (biaxial tension)
length

KI KII KI KII KI KII
300 14.0576 -0.0460 1.2013 0.0 15.2589 -0.0460
400 14.8412 -0.0687 4.7554 0.0 19.5966 -0.0687
500 17.8220 -0.0881 4.5680 0.0 22.3900 -0.0881
600 21.3245 -0.1101  4.3658 0.0 25.6903 -0.1101

Further study is carried out with shear loading instead
of tensile loading on the same geometry, and the same
material property is shown in Figure 16 with loading con-
ditions as:

Shear stress on top and right edges = 30 MPa and
60 MPa.
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Figure 16: Cracked orthotropic square plate under thermomechanical
biaxial shear loads.

- 15

Table 5: Stress intensity factors K; and Ky for mechanical, thermal, and
thermomechanical biaxial shear loading for different crack lengths

Mechanical Thermal Thermomechanical

Half (biaxial shear) (biaxial shear)
crack

length K: Ku K Kn K Ku

300 15.5137 18.3029 1.2013 0.0 16.7150 18.3029
400 16.1450  20.4201 4.7554 0.0 20.9004 20.4201
500 18.0810 22.1619  4.5680 0.0 22.6490 22.1619
600 20.4881 23.4087 4.3658 0.0 24.8539 23.4087

The normalized SIFs (K; and Kj) with the different
crack lengths are shown in Table 5. It is observed that
the value of Kj; (mode-II) is higher than K7 (mode-I). There-
fore, the center crack in the square plate induces shearing
mode (mode-II) under mechanical and thermomechanical
loading conditions for orthotropic properties. It is observed
that K (mode-I) SIF and K; (mode-I) SIF values are increased
when subjected to biaxial shear when compared with biaxial
tensile loading. Apart from this behavior, the critical loading
condition remains the same with thermomechanical loading
which gives higher values of SIF K than pure thermal and
pure mechanical (shear).

Now, the investigation is carried out with thermome-
chanical biaxial tensile, thermomechanical biaxial shear,
and thermomechanical biaxial combined tensile and shear
loading for half crack angles of 300, 400, 500, and 600 mm
depicted in Figure 17 along with the variation of load factor
K =1,2,and 4, and the results of mixed mode SIF are shown
in Table 6.

Figures 18 and 19 show K; and Kj, respectively, for
different load factors K. It is seen that for all the cases,
combined loading is dominant irrespective of load factor K.
For K; values: tensile load is dominant at load factor K = 1,
shear load is dominant at load factor K = 4, and it is almost
same at load factor K = 2. For Ky; values, the tensile load has
zero irrespective of the load factor; therefore, shear and com-
bined cases show the same value of Kj; for all load factors.

3.5 Stochastic response of orthotropic
center crack under mechanical, thermal,
and thermomechanical biaxial loading

Exploring the unpredictable behavior of orthotropic plates
containing cracks under mechanical, thermal, and thermo-
mechanical biaxial loading using XIGA provides valuable
insights into complex structural behavior. These investiga-
tions aid in the creation of more secure and dependable engi-
neering designs across diverse applications. Understanding the
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Figure 17: Center cracked orthotropic square plate subjected to thermomechanical biaxial tensile, biaxial shear and biaxial combined loading.

probabilistic responses of such structures helps enhance their
reliability and safety measures. The stochastic response was
observed using identical material properties previously dis-
cussed, employing a half crack length of 300 and different
load factors K =1, 2, and 4.

Table 7 presents a comparative analysis of the normal-
ized mean and COV of the MMSIF. These were derived

through both the SOPT and MCS. The primary objective
was to validate the accuracy of the stochastic XIGA
algorithm by comparing SOPT outcomes against MCS
results.

The findings reveal a high level of agreement between
the current SOPT outcomes and those from MCS, imple-
mented directly in MATLAB. Notably, the input random

Table 6: K; and Ki; for half crack length 300, 400, 500, and 600 with variation of load factor K = (1, 2 and 4) under thermomechanical biaxial tension,
thermomechanical biaxial shear, and thermomechanical biaxial tension and shear

Half crack Thermomechanical (biaxial tension) Thermomechanical (biaxial shear) Thermomechanical (biaxial

length = 300 tensile and shear)

Load factor Ky Ky K; Ky Ky Ky

1 18.1638 -0.0460 10.1230 6.9288 27.0856 6.8828

2 15.2589 -0.0460 16.7150 18.3029 30.7726 18.2569
9.4490 -0.0460 29.8989 41.051 38.1466 41.0051

Half crack Thermomechanical (biaxial tension) Thermomechanical (biaxial shear) Thermomechanical (biaxial

length = 400 tensile and shear)

Load factor K; Ku K; Ku Ky Ky

1 22.9550 -0.0687 14.2439 7.7033 32.4435 7.6346

2 19.5966 -0.0687 20.9004 20.4201 35.7416 20.3514
12.8797 -0.0687 34.2135 45,8537 42.3377 45,7849

Half crack Thermomechanical (biaxial tension) Thermomechanical (biaxial shear) Thermomechanical (biaxial

length = 500 tensile and shear)

Load factor KI KII KI Ku KI KII

1 25.6802 -0.0881 15.3253 8.3456 36.4375 8.2575

2 22.3900 -0.0881 22.6490 22.1619 40.4710 22.0738
15.8096 -0.0880 37.2963 49.7945 48.5378 49.7065

Half crack Thermomechanical (biaxial tension) Thermomechanical (biaxial shear) Thermomechanical (biaxial

length = 600 tensile and shear)

Load factor K Ky K Ku K Kn

1 28.9114 -0.1101 16.6390 8.8243 411845 8.7142

2 25.6903 -0.1101 24.8539 23.4087 46.1784 23.2986
19.2482 -0.1101 41.2838 52.5775 56.1662 52.4674
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Figure 18: Comparison of K; values for thermo mechanical loading with variation of load factor and type of mechanical loading.

parameter considered for variation was solely the crack
length, at 0.2 or 20%.

In Table 7, crack length is taken as the random input
parameter with COV = 0.2, mean values of K; decrease with
an increase in load factor for thermomechanical (Biaxial

Tension) but COV values increase with an increase in load
factor. Kj; can be neglected for biaxial tension as it is very close
to zero.

In thermomechanical biaxial shear loading mean values
are increasing for K; and COV values are decreasing with an

Thermo-mechanical biaxial loading
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Figure 19: Comparison of Kj; values for thermomechanical loading with variation of load factor and type of mechanical loading.
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Table 7: Variation of mean and COV for different values of load factor K when crack length is the only random input parameter under biaxial

thermomechanical (tensile, shear, and combined) loading

Half crack Stochastic SIF Thermomechanical (biaxial Thermomechanical (biaxial Thermomechanical (biaxial

length =300 method tension) shear) tensile and shear)

CcoVv =0.2

Load factor K Mean cov Mean cov Mean cov

1 SOPT K, 18.1638 0.0051 10.1230 0.0770 27.0856 0.0271
Ky —0.0460 -0.2261 6.9288 0.0431 6.8828 0.0419

2 K 15.2589 0.0119 16.7150 0.0275 30.7726 0.0372
Ky —0.0460 -0.2262 18.3029 0.0482 18.2569 0.0478

4 K 9.449 0.0381 29.899 0.0060 38.1466 0.0514
Ky —0.0460 -0.2262 41.051 0.0500 41.005 0.0498

1 MCS K 18.5326 0.0055 10.2135 0.0753 28.7499 0.0235
Ky —0.0510 -0.2273 6.9865 0.0459 6.9355 0.0433

2 K. 157593 0.0128 16.8365 0.0256 32.5932 0.0351
Ky —0.0510 -0.2277 18.4005 0.0497 18.3495 0.0459

4 K 9.6983 0.0389 29.9265 0.0059 39.6296 0.0525
Ky —0.0510 -0.2259 411253 0.0568 41.0743 0.0513

increase in load factor. Both mean and COV values increase
for K. In the case of thermomechanical (Biaxial Tensile and
Shear) loading both mean and COV values are increasing with
an increase in load factor for K; as well as Ki;.

In Table 8, the temperature difference is taken as the
input random variable at COV = 0.2 for different loadings,
and it is seen that maximum COV in Kj; values of thermo-
mechanical (Biaxial Tensile and Shear) loading case. Also,
these values are mostly close to 0.2 which is our input
random value for temperature difference. The COV for K;
is also close to 0.2 which infers that temperature variation
does not impact both Kj and Kj; values that much.

From Table 9, it is observed that COV values are
decreasing and mean values are increasing with increasing
crack length values for K. For biaxial tensile loading, Ky
values are negligible. COV values ranging from 0.3384 to
0.3973 are observed in shear and combined loading.

From Table 10, it is seen that COV values for K;j are
constantly between 0.3032 and 0.3973 for combined loading
and tensile loading but for shear loading, it is much more
than that (0.3894 and 0.6128).

For Ky, COV values are constant at 0.3940 for shear and
0.3973 for combined loading with an increase in tempera-
ture which shows there is no effect of temperature on Ky
values. Mean values decrease with an increase in tempera-
ture difference for K; and Ky in the case of tensile, shear,
and combined loading.

4 Concluding remarks

The concept of IGA aims to unify the representation of
computational domain for both geometry & field variables,

Table 8: Variation of mean and COV for different values of load factor K when temperature is the only random input parameter under biaxial

thermomechanical (tensile, shear, and combined) loading

Half crack SIF Thermomechanical (biaxial Thermomechanical (biaxial shear) Thermomechanical (biaxial tensile and
length = 300 tension) shear)
Ccov =0.2
Load factor K Mean cov Mean cov Mean cov
1 Ky 18.1638 0.1946 10.1230 0.1836 27.0856 0.1991
Ky —0.0460 -0.2083 6.9288 0.2083 6.8828 0.2083
2 Ky 15.2589 0.1919 16.7150 0.1934 30.7726 0.2002
Ky —0.0460 -0.2083 18.3029 0.2083 18.2569 0.2083
4 Ky 9.4490 0.1818 29.899 0.2000 38.1466 0.2018
Ki  —0.0460 -0.2083 41.051 0.2083 41.005 0.2083
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Table 9: Effect of crack length on the normalized mean and COV of K; and Ky under biaxial tensile, shear, and combined thermomechanical loading
(crack length, crack angle, Delta T, E1, F2, and nul are taken as input random parameters)

Crack angle = 90
Load factor = 1

Thermomechanical (biaxial

Thermomechanical (biaxial shear) Thermomechanical (biaxial

tension) tensile and shear)
Ccov =0.2
Delta T = 100 Mean cov Mean cov Mean cov
Crack length = 300 K 18.1638 0.4312 10.1230 0.6128 27.0856 0.3896
Ku -0.0460 -0.0849 6.9288 0.3940 6.8828 0.3973
Crack length = 400 K 22.9550 0.1938 14.2439 0.1648 32.4435 0.2357
Ku -0.0687 -0.0239 7.7033 3587 7.6346 0.3617
Crack length = 500 K 25.6802 0.1280 15.3253 0.1616 36.4375 0.1451
Kt -0.0881 -0.0814 8.3456 0.3339 8.2575 0.3384
Crack length = 600 K 28.9114 0.0962 16.6390 0.2620 41.1845 0.0696
Ku -0.1101 -0.1019 8.8243 0.3773 8.7142 0.3833

streamlining the integration of CAD and CAE industries.
Over the past few years, Extended Isogeometric Analysis
(XIGA) has demonstrated significant potential as a prospec-
tive alternative in the field of computational fracture
analysis.

The stochastic XIGA using SOPT and FOPT is applied
for the calculation of mean and COV of normalized MMSIF
of the orthotropic plate with a central crack under thermo-
mechanical loading and the results are in good agreement
with MCS results.

The variability in crack length and crack angle, as
random factors, significantly surpasses other variables in
impacting the safety and reliability of orthotropic plates
under thermomechanical loads. Thus, maintaining precise
control over these factors becomes crucial to ensure relia-
bility and structural integrity.

For an orthotropic plate with a center crack under
mechanical, thermal, and thermomechanical uniaxial
loadings, it is found that the SIF values increase with
the increase in half crack length, and the maximum K;

value is 32.13 at 600 half crack length when subjected to
thermomechanical uniaxial tensile load. The SIF value
under pure thermal loading is minimal as compared to
mechanical loading values.

In an orthotropic center crack under thermomecha-
nical biaxial loading, K; values decrease with an increasing
load factor under biaxial tensile load, while both K; and Ky
values increase under biaxial shear loading as the load
factor rises. This indicates that thermomechanical biaxial
shear loading requires careful monitoring at higher biaxial
load factors to ensure the safety and reliability of the
plates. Combined loading (thermomechanical biaxial ten-
sile and shear) results in maximum values at all crack
lengths, necessitating extra caution to ensure the plate’s
safety under such conditions.

The present work can also be expanded on the curved
cracks which can be modeled and predicted more accu-
rately using the XIGA methodology. Also, the inclusion of
machine learning algorithms to predict crack initiation
and propagation more accurately and efficiently is a

Table 10: Effect of temperature difference on the normalized mean and COV of K; and Kj; under biaxial tensile, shear, and combined thermo-
mechanical loading (crack length, crack angle, Delta T, E1, E2, and nu1 are taken as input random parameters)

Crack length = 300 Thermomechanical (biaxial

Thermomechanical (biaxial Thermomechanical (biaxial

Crack angle = 90 tension) shear) tensile and shear)
Load factor = 1
coV = 0.2 Mean cov Mean cov Mean cov
Delta T = 25 K 69.0516 0.3024 36.8883 0.3894 104.7386 0.3032
Ki -0.1842 -0.0849 27.7154 0.3940 27.5312 0.3973
Delta T = 50 Ky 35.1264 0.3468 19.0448 0.4685 52.9700 0.3327
Ky -0.0921 -0.0849 13.8577 0.3940 13.7656 0.3973
Delta T=75 K 23.8180 0.3897 13.0969 0.5429 35.7137 0.3614
Ki -0.0614 -0.0849 9.2385 0.3940 9.1771 0.3973
Delta T =100 K 18.1638 0.4312 10.1230 0.6128 27.0856 0.3896
Ky —-0.0460 -0.0849 6.9288 0.3940 6.8828 0.3973
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potential advancement. Enhanced material models incor-
porating non-linear behavior and multi-physics interactions
would improve the simulation of real-world conditions.
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