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Abstract: The present study develops a new finite element
(FE) formulation for the lateral torsional buckling (LTB)
analyses of steel beams exteriorly bonded with orthotropic
fiber-reinforced polymer (FRP) layers. The formulation
considers shear deformations, partial material interaction,
local and global warping deformations, and orthotropic
FRP properties. The buckling responses of multispan FRP-
bonded steel beams predicted by the present solutions are
excellently validated against experiment and numerical
solutions. As observed, the FRP strengthening is highly
effective for the LTB resistance of steel beams. However,
the LTB responses are strongly dependent on the ortho-
tropic properties and strengthening lengths of FRP layers.
The effects of shear deformations, span ratios, and loading
conditions on the LTB responses are also quantified in the
present study.

Keywords: lateral torsional buckling, finite element formu-
lation, shear deformations, FRP strengthening, partial inter-
action, local and global warpings, orthotropic FRP layers,
multispan beams

1 Introduction

Strengthening steel beams by using fiber-reinforced polymer
(FRP) layers has been increasingly studied in order to upgrade
their load capacities (e.g., [1–6]). The advantage of this

strengthening method is that the FRP layers are lightweight
compared to bolded or welded steel plates, and FRP installa-
tion is relatively easy and quick. Most studies for the FRP
strengthening method focused on using carbon fiber-rein-
forced polymer (CFRP) sheets that possess elasticity moduli
higher than those of steel (e.g., [1–4]). Recently, glass FRP layers
have been widely researched for the strengthening of steel
structures because they are lower in cost than CFRP sheets,
and they can be made by stacking GFRP laminae to form
relatively thick layers [5–9].When bonded to thin steel flanges,
such thick FRP layers can considerably contribute to increase
the system bending, shear, and twisting stiffnesses and thus
they can strengthen the flanges to resist against buckling
issues (e.g., [5–9]). In an experimental study conducted by El
Damatty and Abushagur [5] for the LTB analysis of steel beams
strengthened with FRP layers bonded to the top and bottom
beam flanges, an increase of about 80% for the capacity of the
FRP-strengthened steel beams was reported. The effectiveness
of FRP strengthening was also observed in other studies (e.g.,
[6,7,9–16]).

FRP layers, however, have orthotropic behaviors because
they are often created by stacking thin FRP laminae with
different fiber stacking angles [9,17,18]. The flexural, shear,
and torsional stiffnesses of FRP layers and FRP-bonded sys-
tems strongly depend on not only the longitudinal, trans-
verse, and vertical dimensions of the FRP layers but also their
number of laminae, fiber orientation angles, and stacking
sequences [19]. Thus, the evaluation of the mechanical prop-
erties of such FRP-strengthened steel beams is relatively
complicated. Also, an FRP layer bonded to a steel surface
by a thin epoxy layer may generate a partial interaction
between the steel and the FRP layer because the epoxy elas-
ticity modulus is considerably lower than those of the steel
and the FRP layer [6,14,15,19]. Besides, the effects of shear
deformations on the torsional responses of such composite
systems are considerable [20,21]. A theory neglecting the effects
may incorrectly predict the torsional buckling responses of the
FRP-strengthened steel beams (e.g. [20,21]). Finally, FRP layers
are bonded to a part of the steel spans, and those create a beam
having segments with different cross-sections (e.g., bare steel
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sections, FRP-bonded steel sections). The longitudinal lengths
of the FRP layers may also influence the system buckling
responses [22–24]. Such difficulties may challenge the design
of an FRP strengthening solution for the steel members. In fact,
the finite element (FE) analyses conducted in commercial soft-
ware may be an option for the design. However, they usually
involve complicated three-dimensional FE models and expen-
sive computation costs. In such a case, the development of
simpler solutions that can quickly and accurately predict the
responses of the FRP-strengthened steel beams will bring more
advantages to the design.

The LTB solutions have been widely developed for the
analysis of multilayer beams (e.g., [19,25–32]). Girhammar
and Pan [25] developed a closed form solution for the pre-
diction of the elastic LTB loads of two-layer beams. How-
ever, their study considered neither the partial interaction
between layers nor the shear deformations. Xu and Wu
[26] developed a shear deformable buckling theory for
the analysis of two-layer members, in which the partial
interaction between the two layers was considered. How-
ever, the theory was only applicable to rectangular cross-
sections. Challamel and Girhammar [27] and Schnabl and
Planinc [28] proposed non-shear deformable theories for
the LTB analyses of vertically layered beams. Kabir and
Seif [29] developed closed form solutions for the LTB loads
of steel beams bonded with FRP sheets. Again, their models
considered neither the partial interaction between steel and
FRP layer nor the effect of shear deformations. Grognec
et al. [30] developed a buckling solution for two-layer beams
accounting for the shear deformations and partial interac-
tion between layers. However, their models assumed iso-
tropic materials to develop the buckling solution. Phe
et al. [31] formulated an FE for the prediction of the LTB
loads of a steel beam strengthened with a single FRP
layer. However, the FRP was again treated as an isotropic
material in their study. As a result, their model could
not capture the orthotropic properties of FRP materials.
Zaghian and Mohareb [32] developed a non-shear deform-
able finite shell element for the prediction of the elastic
LTB of steel plates strengthened with isotropic FRP layers.
However, the element was limited to the members with
rectangular cross-sections. Recently, Phe [19] proposed a
non-shear theory and developed a series of closed form
solutions for the LTB loads of a group of the FRP-strength-
ened steel beams. Although his model captured the partial
interaction between steel and FRP, shear deformations in
steel beamwere neglected and their solutions were restricted
in application for single span steel beams strengthened with
FRP layers. Thus, the solutions of Phe [19] were unable to
predict the buckling loads of the FRP-strengthened contin-
uous steel beams.

In this context, the present study fills in the short-
coming gap by developing an FE formulation for the pre-
diction of the LTB analysis of single/continuous steel beams
strengthened with orthotropic FRP layers. Specifically, the
FE formulation can capture the effects of the shear defor-
mations in both steel and FRP layers, which can remedy
available solutions of previous studies [19,26–29,32]. Also,
they considered the warping effects to be significant in beams
with wide flange cross-sections, and they were not captured by
previous studies [26,30,32]. The partial interactions between the
steel beam and the FRP layers are included in the kinematic
model of the present theory and were not considered in pre-
vious studies [25,29]. Besides, the present study accounts for the
orthotropic properties of the FRP layers (e.g., the number of
orthotropic FRP laminae, fiber orientation angles, and stacking
sequences) and was not considered by Phe et al. [31]. The shear
deformable FE formulations of the present study are developed
for both bare and FRP-strengthened steel elements. Such ele-
ments can be applied to the prediction of the LTB of single/
continuous steel beams with various strengthening, boundary,
and loading conditions, but these were not solved by the solu-
tions of Phe [19]. Besides, the span interactions in continuous
beams will be naturally captured by the present solutions,
which were not considered in design guides of steel structures
(e.g., [33–35]), as also discussed in previous studies [36–38].
Based on the present solutions, the effects of the orthotropic
FRP properties, the FRP strengthening lengths, and the loading
conditions on the buckling responses of single/continuous steel
beams strengthened with FRP layers will be quantified.

This article is presented in a sequence. A definition of
the problem will be first stated in Section 2. An FE formula-
tion will be then developed in Section 3, in which Section
3.1 proposes governing displacement fields of the compo-
site system, Section 3.2 assumes the expressions of the
buckling displacement fields in terms of the governing dis-
placements, Sections 3.3 and 3.4 develop the buckling
strains and stresses of the system, Sections 3.5 and 3.6 pre-
sent the expressions of the total potential pre-buckling and
buckling energies and their variations, and Section 3.7 pre-
sents the development of the FE formulation. The validation
and result discussions of the buckling responses predicted
by the present solution are presented in Section 4, and key
conclusions are finally summarized in Section 5.

2 Statement of the problem

A wide flange steel element bonded with FRP layers 1 and 2
through Epoxy layers 1 and 2 and subjected to distributed
and point loads ( )q z y,

y q q
, ( )P z y,y p p

is considered (Figure 1a
and b). The cross-sectional dimensions of the wide flange
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section are hwtw, b, and tf . The thicknesses of FRP layers 1
and 2 are tg1

and tg2
, respectively. While those of Epoxy

layer 1 and Epoxy layer 2 are ta1
and ta2

, respectively. The
mechanical properties of steel, epoxy, and orthotropic FRP
materials are later defined in the formulation. A new FE
formulation for the prediction of the elastic lateral tor-
sional (LT) buckling of such a composite system is devel-
oped in the present study.

3 FE formulation

3.1 Governing displacement fields and
kinematic model assumptions

When the system is switched from the onset of buckling
(i.e., a static equilibrium state) into the buckled mode (i.e., a
buckling equilibrium state), as depicted in Figure 2, eight
governing displacements ( )U zb , ( )θ zyb , ( )U zb1

, ( )θ zy b1
, ( )U zb2

,
( )θ zy b2

, ( )θ zzb , and ( )ψ z
b

are proposed to describe the buck-
ling mode (Figure 3a–c), in which ( )U zb is the lateral dis-
placement at the centroid of the steel cross-section, ( )θ zyb is
the lateral bending slope of the steel beam, ( )U zb1

is the
lateral displacement at the centroid of FRP layer 1, ( )θ zy b1

is

the lateral bending slope of FRP layer 1, ( )U zb2
is the lateral

displacement at the centroid of FRP layer 2, ( )θ zy b2
is the

lateral bending slope of FRP layer 2, ( )θ zzb is the twisting
angle of all materials, and ( )ψ z

b
is the global warping defor-

mation of the steel section.
In the present theory, the following four kinematic

assumptions are made: (i) shear deformations caused by
transverse bending, lateral bending, and global warping
are captured, (ii) local warping deformations of solid rec-
tangular cross-sectional parts (e.g., the steel flanges, the
steel webs, and the FRP layers) are proportional to the
slope of the twisting angle ( )′θ zzb (Figure 2c), and (iii)
the partial interaction occurs at the epoxy layer, where
the epoxy displacements are linearly interpolated
from the steel and the FRP layer displacements.

Figure 1: Profile (a) and cross-section (b) of the present FE.

Figure 2: Governing displacement fields in the steel beams and FRP layers in the lateral-torsional buckling equilibrium state: (a) a part of cross-section
view, (b) global warping deformations in the steel section, and (c) local warping deformations in the solid rectangular cross-sectional parts.

Figure 3: Coordinate systems in (a) the steel cross-section and (b) epoxy
and FRP layers.
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3.2 Expression of buckling displacement
fields

Five global coordinate systems are selected for the five
materials, as presented in Figure 3, in which OXYZ is that
of the steel cross-section and O XYZi i with =i g1 is that of
FRP layer 1, with =i g2 is that of FRP layer 2, with =i a1 is
that of Epoxy layer 1, and with =i a2 is that of Epoxy layer
2. OriginsO andOi are the centroids of the cross-sections, X

is the lateral axis, Yi are the transverse axes, and Z is the
axial axis. Also, local coordinate systems Cs n zs s and C s n zi i i

are assigned to the sectional contour (Figure 3), where
origins C and Ci lie on the sectional contours, ss is the
curvilinear contour coordinate measured from the origins,
ns is the normal-to-tangent axis of the contour measured
from the contour, and z is the longitudinal axis.

Buckling displacement fields at a point with coordi-
nates ( )s n z, ,s s in the steel are denoted as us, vs, and
ws (Figure 3a). Based on a shear deformable theory
[20,39,40], they can be expressed in terms of the gov-
erning displacements as

( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

( ) ( ) ( ) [ ( ) ] ( )

( ) ( ) ( ) ( ) ( )

= − ′ −

+ ′ −

= + +
= −

w s n z n α s U z x s θ z

n q s θ z ω s ψ z

u s n z α s U z r s n θ z

v s n z α s U z q s θ z

, , sin

;

, , cos ;

, , sin .

s s s s s b s yb

s s zb s b

s s s s b s s zb

s s s s b s zb

(1)

Here, ( ) ( ) ( ) ( ) ( )= +q s x s α s y s α scos sins s s s and ( ) =r ss

( ) ( ) ( ) ( )−x s α s y s α ssin coss s s . ( )α ss is an angle between
the positive directions of the ss axis and X -axis (Figure 4a)
and it is taken positive in the clockwise direction from the

X-axis. ( ) ( )∫=ω s r s sds

s

s s
0

s is the sectorial coordinate of the
point being considered. The buckling displacement fields
at a point along the coordinates ( )s n z, ,g g1 1

in FRP layer 1

are denoted as ug1
, vg1

, wg1
and they can be assumed as

[20,39,40]

( ) ( ) ( ) ( ) ( )

( ) ( ) ( )

( ) ( ) ( )

= − + ′
= +
= −

w s n z x s θ z n x s θ z

u s n z U z n θ z

v s n z x s θ z

, , ;

, , ;

, , .

g g g g y b g g zb

g g g b g zb

g g g g zb

1 1 1 1 1 1 1

1 1 1 1 1

1 1 1 1

(2)

Also, the displacement fields at a point with coordi-
nates ( )s n z, ,g g2 2

in FRP layer 2 are u v w, ,g g g2 2 2
and can

be expressed as [20,39,40]

( ) ( ) ( ) ( ) ( )

( ) ( ) ( )

( ) ( ) ( )

= − + ′
= +
= −

w s n z x s θ z n x s θ z

u s n z U z n θ z

v s n z x s θ z

, , ;

, , ;

, , .

g g g g y b g g zb

g g g b g zb

g g g g zb

2 2 2 2 2 2 2

2 2 2 2 2

2 2 2 2

(3)

The buckling displacement fields at a point along coor-
dinates ( )s n z, ,a a1 1

in Epoxy layer 1 are denoted as ua1
, va1

,
wa1

. Based on Assumption (iii), they are linearly interpo-
lated from the displacements at the uppermost steel fiber
( )=i e n t. . , /2s f and those at the bottom of FRP layer 1
( )= −i e n t. . , /2g g1 1

, i.e.,

( )

( )
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From Eqs. (1) and (2), by setting =n t /2s f , = −n t /2g g1 1

and by substituting into Eq. (4), we have

Figure 4: Profile (a) and cross-section (b) of the FRP layer-bonded steel beam in Example 1.
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For Epoxy layer 2, the buckling displacement fields at a
point along coordinates ( )s n z, ,a a2 2

are denoted as ua2
, va2

,
wa2

. They are linearly interpolated from the displacements
at the lowermost steel fiber and those at the top of the FRP
layer 2, i.e.,
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From Eqs. (1) and (2), by setting = −n t /2s f , =n t /2g g2 2

and substituting into Eq. (6), we have
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3.3 Expression of buckling strain fields

The buckling normal and shear strains in the steel member
and the FRP layers are often obtained as
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where =i s denotes the steel member, =i g1 denotes FRP
layer 1, and =i g2 denotes FRP layer 2. The normal and
shear strains in the steel beam can be obtained by substi-
tuting Eq. (1) into Eq. (8) to yield the following expressions:
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− ′ ′

− ′ ″ ′

+ ′ ″

+ ′

− ″

+ ′

+ ′ ′ − ′ ′ ′

+ ′ ′ + ′ ′ ″

− ′ ′ ′

− ′ ″ + ′ ′

γ α s U z α s θ z

r s n q s θ z ω s ψ z

q s α s U z θ z

n q s α s U z θ z

n ω s α s U z ψ z

x s α s θ z θ z

n q s α s θ z θ z

ω s α s θ z ψ z

q s q s θ z θ z x s n q s θ z θ z

x s ω s θ z ψ z n q s q s θ z θ z

ω s n q s θ z ψ z

ω s n q s θ z ψ z ω s ω s ψ z ψ z

cos cos

2

sin

sin

sin

cos

cos

cos

.

s sz s b s yb

s s zb s b

s s b zb

s s s b zb

s s b b

s s yb yb

s s s yb zb

s s yb b

s s zb zb s s s yb zb

s s yb b s s s zb zb

s s s zb b

s s s zb b s s b b

,

1

2

1

2

(10)

The normal and shear strains in FRP layer 1 can be
obtained by substituting Eq. (2) into Eq. (8), i.e.,

= + = +ε ε n κ γ γ n κ, ,g g zz g g zz g sz g sz g g sz1 1,

⁎

1 1,

⁎

1, 1,

⁎

1 1,

⁎ (11)

where

( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( )

( ) ( ) ( )

( ) ( ) ( ) ( )

( ) ( ) ( )

= − ′ + ′ + ′

= ′ + ′ ′

= ′ − + ′

+ ′

= + ′ − ′ ′

− ′

′

′

ε x s θ z U z x s θ z

κ x s θ z U z θ z

γ U z θ z x s θ z θ z

x s θ z θ z

κ θ z x s θ z θ z

x s θ z θ z

1

2

1

2

;

;

;

2

.

g zz g y b b g zb

g zz g zb b zb

g sz b y b g y b y b

g zb zb

g sz zb g y b zb

g y b zb

1,

⁎

1 1 1

2
2

1

2

1,

⁎

1 1

1,

⁎

1 1 1 1 1

1

1,

⁎

1 1

1 1

(12)
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Also, the normal and shear strains in FRP layer 2 can
be obtained by substituting Eq. (3) into Eq. (8), i.e.,

= + = +ε ε n κ γ γ n κ, ,g g zz g g zz g sz g sz g g sz2 2,

⁎

2 2,

⁎

2, 2,

⁎

2 2,

⁎ (13)

where

( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( )

( ) ( ) ( )

( ) ( ) ( ) ( )

( ) ( ) ( )

= − ′ + ′ + ′

= ″ + ′ ′

= ′ − + ′

+ ′

= + ′ − ′ ′

− ″

ε x s θ z U z x s θ z

κ x s θ z U z θ z

γ U z θ z x s θ z θ z

x s θ z θ z

κ θ z x s θ z θ z

x s θ z θ z

1

2

1

2

,

,

,

2

.

g zz g y b b g b

g zz g zb b zb

g sz b y b g y b y b

g zb zb

g sz zb g y b zb

g y b zb

2,

⁎

2 2 2

2
2

2 2

2

2,

⁎

2 2

2,

⁎

2 2 2 2 2

2

2,

⁎

2 2

2 2

(14)

The deformations of epoxy layers are assumed to be
mostly contributed by shear strains. The following three
shear strains in the epoxy layers are obtained as

=
∂
∂

+
∂
∂

+
∂
∂

∂
∂

+
∂
∂

∂
∂

+
∂
∂

∂
∂

=
∂
∂

+
∂
∂

+
∂
∂

∂
∂

+
∂
∂

∂
∂

+
∂
∂

∂
∂

=
∂
∂

+
∂
∂

+
∂
∂

∂
∂

+
∂
∂

∂
∂

+
∂
∂

∂
∂

γ
v

z

w

n

v

z

v

n

w

z

w

n

u

z

u

n

γ
v

s

u

n

v

s

v

n

u

s

u

n

w

s

w

n

γ
u

z

w

s

u

z

u

s

w

z

w

s

v

z

v

s

;

;

;

i zn

i i

i

i i

i

i i

i

i i

i

i sn

i

i

i

i

i

i

i

i

i

i

i

i

i

i

i

i

i sz

i i

i

i i

i

i i

i

i i

i

,

,

,

(15)

in which subscript =i a1 denotes Epoxy layer 1 and =i a2

denotes Epoxy layer 2. The shear strains in Epoxy layer 1 can
be expressed in terms of governing displacement fields by sub-
stituting Eq. (5) into Eq. (15) and neglecting nonlinear terms, i.e.,

( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

( ) ( ) ( )

( ) ( )

( ) ( )

( )
( )

( )

⎟ ⎟

⎟ ⎟

⎟

⎜ ⎜

⎜ ⎜

⎜

= −

− ⎡
⎣⎢

+
+ ⎤

⎦⎥
′ +

= − + −
+ +

= ⎛
⎝

− ⎞
⎠

′ − ⎛
⎝

− ⎞
⎠

+ ⎛
⎝

+ ⎞
⎠

′ − ⎛
⎝

+ ⎞
⎠

+ ⎡
⎣⎢

+ −
−

+ + ⎤
⎦⎥

′

− ⎛
⎝

− ⎞
⎠

γ
t

x s θ z
t

x s θ z

t t

t
x s θ z

h

t
x s ψ z

γ
t

U z
t

U z
h t t

t
θ z

γ
n

t
U z

n

t
θ z

n

t
U z

n

t
θ z

h t t h t t n

t
θ z

h n

t
ψ z

1 1

2

1

2

;

1 1
2

2

;

1

2

1

2

1

2

1

2

2

4

2

2

2

1

2

.

a zn
a

a yb

a

a y b

f g

a

a zb

b

a

a b

a sn
a

b

a

b

a g

a

zb

a sz

a

a
b

a

a

yb

a

a
b

a

a

y b

f g f g a

a
zb

b a

a
b

1,

1

1

1

1 1

1

1

1

1

1

1,

1 1

1

1 1

1

1,

1

1

1

1

1

1

1

1

1

1

1 1 1

1

1

1

(16)

Also, the shear strains in Epoxy layer 2 can be expressed
in terms of governing displacement fields by substituting Eq.
(7) into Eq. (15) and neglecting nonlinear terms, i.e.,

( ) ( ) ( )

( )
( ) ( )

( ) ( )

( ) ( ) ( )

( ) ( )

( ) ( )

( )
( )

( )

⎜ ⎟ ⎜ ⎟

⎜ ⎟ ⎜ ⎟

⎜ ⎟

= − +

− ⎡
⎣⎢

+
+ ⎤

⎦⎥
′

+

= − − ⎡
⎣⎢

+
+ ⎤

⎦⎥

= ⎛
⎝

+ ⎞
⎠

′ − ⎛
⎝

+ ⎞
⎠

+ ⎛
⎝

− ⎞
⎠

′ − ⎛
⎝

− ⎞
⎠

− ⎡
⎣⎢

+ −
+

+ + ⎤
⎦⎥

′

+ ⎛
⎝

+ ⎞
⎠

γ
t

x s θ
t

x s θ z

t t

t
x s θ z

h

t
x s ψ z

γ
t

U z
t

U z
h t

t
θ z

γ
n

t
U z

n

t
θ z

n

t
U z

n

t
θ z

h t t h t t n

t
θ z

h n

t
ψ z

1 1

2

1

2

;

1 1

2

1 ;

1

2

1

2

1

2

1

2

2

4

2

2

2

1

2

.

a zn
a

a yb

a

a y b

f g

a

a zb

b

a

a b

a sn
a

b

a

b

g

a

zb

a sz

a

a
b

a

a

yb

a

a
b

a

a

y b

f g f g a

a
zb

b a

a
b

2,

2

2

2

2 2

2

2

2

2

2

2,

2 2

2

2

2

2,

2

2

2

2

2

2

2

2

2

2

2 2 2

2

2

2

(17)

3.4 Expression of buckling stresses and
stress resultants

Steel has an elastic modulus Es, a shear modulus Gs, and a
Poisson’s ratio μ. The steel stress–strain relations are thus
expressed as

= =σ E ε τ G γ, .s s s s sz s s sz,
,

(18)

FRP layers are assumed to be stacked by n FRP laminae
[19]. The FRP laminae are symmetrically balanced about
the middle height of the layer. FRP lamina k (where

=k n1, 2, …, ) has an axial elasticity modulus Ek z, , a lateral
elasticity modulus Ek s, , a shear modulusGk sz,

, and Poisson’s
ratio v ,k zs,

vk sz,
. Based on the theories of composite struc-

tures [19,40–43], the FRP strain–stress resultant relations
can be obtained as

= =

= =

N A ε N A γ

M D κ M D κ

, ,

, ,

gi zz gi gi zz gi xz gi gi xz

gi zz gi gi zz gi xz gi gi xz

,

⁎

,11 ,

⁎

,

⁎

,66
,

⁎

,

⁎

,11 ,

⁎

,

⁎

,66 ,

⁎

(19)

where Ngi zz,

⁎ , Ngi xz,

⁎ , Mgi zz,

⁎ , and Mgi xz,

⁎ (i = 1 or 2) are the
stress resultants in the FRP layer i. Plate stiffnesses Ā ,gi,11

A D D¯ , ¯ , ¯gi gi gi,66 ,11 ,66
in Eq. (19) are evaluated and presented in

Appendix 1. The shear stress–strain relationships in Epoxy
layers i ( )=i 1, 2 are assumed as

= = =τ G γ τ G γ τ G γ, , ,ai zn ai ai zn ai sn ai ai sn ai sz ai ai sz,
,

,
,

,
,

(20)

where Gai is the shear modulus of the epoxy material.
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3.5 Pre-buckling analysis

A pre-buckling analysis is necessary to obtain pre-buckling
internal forces that contribute to the geometric buckling
stiffnesses of the system. The total in-plane pre-buckling
potential energy πp of the system is contributed by a pre-
buckling internal strain energy of πpU and a pre-buckling
load potential energy of πpV . When the system is in a static
equilibrium state, the first variation of the energy δπp

vanishes [44], i.e.,

( )= + =δπ δ π π 0,p pU pV (21)

in which the pre-buckling internal strain energy πpU can be
obtained by the following expression:

∫∫ ∫∫

∫∫ ∫∫

∫ ∫ ∫∫

∫∫ ∫ ∫

=
⎡

⎣
⎢ +

+ +

+ +

+ +
⎤

⎦
⎥

π E ε A z G γ A z

A ε x z D κ x z

G γ A z A ε x z

D κ x z G γ A z

1

2

d d d d

¯ d d ¯ d d

d d ¯ d d

¯ d d d d ,

pU

L

A

s ps s

L

A

s ps sz s

L b

g pg zz

L b

g pg zz

L

A

a pa zn a

L b

g pg zz

L b

g pg zz

L

A

a pa zn a

0

2

0

,

2

0 0

1,11 1,

2

0 0

1,11 1,

2

0

1
1,

2

1

0 0

2,11 2,

2

0 0

2,11 2,

2

0

2
2,

2

2

s s

a

a

1

2

2

2

(22)

where the pre-buckling strains in Eq. (22) can be obtained
as [41]

( ) ( ) ( ) ( ) ( )

( ){ ( ) ( )}

( )

( )

( )

( )

( ) ( )

( )
( ) ( )

( ) ( )

( )
( ) ( )

= ′ + ″ − ′
= ′ −

= ′
= ″

= ′

= ″

= − +

−
+ +

′ −

= −

−
+ +

′ −

ε W z n α s V z y s θ z

γ α s V z θ z

ε W z

κ V z

ε W z

κ V z

γ
t

W z
t

W z

t t t

t
V z

h

t
θ z

γ
t

W z
t

W z

t t t

t
V z

h

t
θ z

cos ,

sin ,

,

,

,

,

1 1

2

2 2

,

1 1

2

2 2

.

ps p s s p s xp

ps sz p xp

pg zz p

pg zz p

pg zz

pre

p

pg zz

pre

p

pa nz
a

p

a

p

a f g

a
p

b

a

xp

pa nz
a

p

a

p

a f g

a
p

b

a

xp

,
1

1,

⁎

1

1,

⁎

2,

⁎

2

2,

⁎

1,

1 1

1

1 1

1 1

2,

2 2

2

2 2

2 2

(23)

Here, ( ) ( ) ( )W z W z W z, ,p p p1 2
are, respectively, the long-

itudinal governing displacement field of the cross-sectional
centroid of the steel beam, that of the cross-sectional cen-
troid of the FRP layer 1, and that of the cross-sectional
centroid of the FRP layer 2. Also, ( )V zp is the vertical

governing displacement field of the composite section,
while ( )θ zxp is the slope of the vertical displacement field
of the composite section [41]. In Eq. (21), πpV is the load
potential energy caused by in-plane pre-buckling loads and
has been defined in the study of Thanh and Phe [41]. From
Eq. (23), by substituting into Eq. (22), an expression of πpU

in terms of the pre-buckling governing displacement fields
can be obtained. Based on expressions of πpU , by substi-
tuting into Eq. (21) and taking the first variation of the total
potential energy πp, a system of equilibrium equations
and corresponding boundary conditions can be obtained.
By solving such a problem, solutions of the in-plane gov-
erning displacements and the pre-buckling internal forces
of the system can be obtained. This procedure was solved
by Thanh and Phe [41]. The present study takes the pre-
buckling stress resultants from that solution for the devel-
opment of the present buckling FE formulation. The
in-plane pre-buckling strains of the system can be
expressed in terms of the in-plane pre-buckling stress
resultant as follows:

( )
( ) ( )

( )

= + −

=

= =

= =

ε
N z

E A
n α s

M

I
y s

M

I

γ α s

Q

A

ε
N

bA
κ

M

bD

ε
N

bA
κ

M

bD

cos ,

sin ,

, ,

, ,

ps

p

s s

s s

s

s

s

x

x

ps sz

p

w

pg z

p

g

pg z

ss

g

pg z

p

g

pg z

ss

g

s

s

s

x

,
1

1, z

1

1,11

1, z

1,11

2, z

2

2,11

2, z

2,11

(24)

where ( ) ( ) ( ) ( ) ( )N z N z N Q z M z M z, , , , ,p p p p s x1 2 s s
are the stress

resultants associated with the governing displacement fields
( ) ( ) ( ) ( ) ( ) ( )′W z W z W z V z V z θ z, , , , ,p p p p p xp1 2

. The mechanical
properties of the steel are =I bt2 /12s fs

3 , = +I bt h t h/2 /12x f b w wx

2 3 ,
= + =A bt h t A h t2 ,s f w w w w w, while A D,gi gi,11 ,11

of the FRP
layers are defined in Appendix 1.

3.6 Buckling analysis

The total buckling potential energy of the system and
its variational computations are developed in this
section. When the system is in the buckling equilibrium
state, the variation of the second variation of the total
buckling potential energy π of the system should vanish
[44], i.e.,

( )
⎛
⎝

⎞
⎠ = ⎡

⎣ + ⎤
⎦ =δ δ π δ δ U δ V

1

2

1

2

0.

2 2 2 (25)

Here,U is the total buckling strain energy andV is the
total load potential loss. The strain energyU is obtained as
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( )

( )

∫∫ ∫∫ ∫∫ ∫∫ ∫∫

∫∫ ∫ ∫ ∫∫

∫∫ ∫∫ ∫∫
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+ + + + +
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L

A
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L

A
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L

A
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g sz g sz g
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A
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⁎
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⁎

1
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⁎

1,

⁎

1
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⁎
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⁎

1
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⁎
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⁎

1

0

1,
1,

1,
1,

1,
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⁎

2,

⁎

2
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2,

⁎

2,

⁎

1

0 0

2,

⁎
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⁎

2
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⁎
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⁎

2

0

2,
2,

2,
2,

2,
2, 2

s s

a

a
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1

1

2

2 2 2

2

(26)

From Eq. (26), by substituting stresses in Section 3.4 and
taking the second variation with respect to the strains, we have

[( ) ] [( ) ]

[( ) ] [( ) ] ( )

( ) ( ) ( ) ( )

[( ) ] [( ) ] ( )

( ) ( ) ( ) ( )

∫∫ ∫∫
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∫∫ ∫∫ ∫∫
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⎩
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1

2

1

2

d d d d
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s

L

A
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L

A
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a

L

A
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a

L

A
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a
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L

A

a a zn
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a

L

A
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a

L

A
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a

2

0

2 2

0

2 2

0 0

1,11 1,

2

1, z

2

1, z

0 0

1,11 1,

2

1, z

2

1, z

0 0

1,66
1,

2

0 0

1,66 1,

2

0

1
1,

2

1

0

1
1,

2

1

0

1
1

2

1

0 0

2,11 2,

2

2, z

2

2, z

0 0
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2

2, z

2

2, z

0 0

2,66
2,

2

0 0
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2

0

2
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0

2
2,

2

2

0

2
2,
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(27)

The second variation of the total load potential loss in
Eq. (25) causes loads ( )P z y,y P P

and ( )q z y,
y q q

and can be

obtained as

( ) [ ( )]

( ) [ ( )]∫

=
⎧
⎨
⎩
−

−
⎫
⎬
⎭

δ V P z y y δθ z

q z y y δθ z z

1

2

1

2

, . .

, . . d .

y P P P zb p

L

y q q q zb q

2 2

0

2

(28)

In Eq. (27), pre-buckling strains εps, γ
ps
, εpg z1, z

, κpg z1, z
,

εpg z2, z
, and κpg z2, z

have been defined in Eq. (24). Meanwhile,

the strains with superscript bL in Eq. (27) denote the first
variation of linear buckling strains, while those with super-
script bN denote the second variation of nonlinear buck-
ling strains.

3.6.1 First variation of linear buckling strains

The linear buckling strains in Eq. (27) can be obtained
by neglecting pre-buckling and high-order terms in
Eqs. (9)–(17) and taking the first variation. As a result, we
obtain
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(29)

3.6.2 Second variation of nonlinear buckling strains

The second variation of nonlinear buckling strains is eval-
uated by neglecting linear terms from Eqs. (9)–(17). Taking
the second variation and neglecting high-order terms,
we have

( ) [ ( ) ( )] ( ) ( ) { ( ) [ ( ) ] }( )

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )( ( ))

( ) ( ) ( )( ( )) ( )

= ′ + − ′ ′ + + + ′
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≈ ′ ′ ≈ ′ + ′ ≈ ′ ′
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2 ⁎ 2 2 2 2

2

,
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2 2 2

2
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2

2 2

2 2 2 2

2 2

(30)

3.6.3 Buckling energy expressions

From Eqs. (24), (27), (29), and (30), by substituting into Eq.
(25), the second variation of the strain energy is finally
obtained. By taking integrals over the sectional areas,
one obtains
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where the sectional properties in Eq. (31) are defined as
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(32)

while material properties Es,Gs,Ga1
, A A D D¯ , ¯ , ¯ , ¯g g g g1,11 1,66 1,11 1,66

,
Ga2

, A A D D¯ , ¯ , ¯ , ¯g g g g2,11 2,66 2,11 2,66
are given in Section 3.4.

3.7 Development of an FE formulation

An FE formulation is developed for the FRP-strengthened
steel beam, as defined in Figure 1a and b. An approxima-
tion of the governing displacement fields is assumed as

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )

〈 〉 { } { } { } { } { } { } { } { }=
×

× × × × × × × × × ×
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Δ Z Z Z Z Z Z Z Z ,

b yb zb b y b b y b b

T

T
θy ψ y yu θz θ 1 u θ 2 u

1 1 2 2

1 8

1 20
20 1 20 1 20 1 20 1 20 1 1 20 1 20 1 2 20 1

20 8

(33)

where { } ×Δ
20 1

is the element nodal displacement vector
that is expressed as

〈 〉 = ′ ′

′ ′
× U U θ θ θ ψ θ U θ U

U U θ θ θ ψ θ U θ U

Δ

,

T
b b yb zb zb b y b b y b b

b L b L yb L zb L zb L b L y b L b L y b L b L

1 20
,0 ,0 ,0 ,0 ,0 ,0

1 ,0 1 ,0 2 ,0 2 ,0

, , , , , ,
1 , 1 , 2 , 2 ,

(34)

in which the governing displacements with subscript 0

denote the nodal displacement at coordinate =Z 0 of the
element, while those with subscript L denote the nodal
displacement at coordinate of the element. The shape func-
tions in Eq. (33) are defined as
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(35)
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in which the following approximate functions of z coordi-
nates are given as

( ) ( ) ( )

( ) ( ) ( ) ( )

( ) ( ) ( )

( ) ( )

= − +
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2 3 2

4
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6

(36)

Based on the total pre-buckling potential energy as
developed in Section 3.5, an FE formulation can be devel-
oped to predict the static responses (i.e., stress resultants
and displacements) of the system. This work was com-
pleted by Thanh and Phe [41]. The pre-buckling stress
results can be obtained and expressed as
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in which the following nodal pre-buckling stress results are
defined as
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In Eq. (38), the nodal forces with subscript 0 denote
those at coordinate =z 0, while the nodal forces with sub-
script L denote those at =z L. Also, 〈 〉 ( ) ( )=× f z f zZP 1 2 5 6

,
where ( ) ( )f z f z,

5 6

are defined in Eq. (36). From Eqs. (33)
and (37), by substituting into Eq. (31) and applying the
condition of buckling equilibrium as presented in Eq.
(25), an FE formulation for the buckling problem (i.e., an
eigenvalue problem) can be obtained as

{[ ] [ ] }{ } { }+ =× × × ×λK K Δ 0 ,E G20 20 20 20 20 1 20 1
(39)

in which [ ] ×KE 20 20
is the elastic stiffness matrix and [ ] ×KG 20 20

is the geometric stiffness matrix of the element. They are
obtained as
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The FE formulation developed in Eq. (4) is applied for the
buckling analysis of the general case (i.e., a steel element
bonded with two GFRP laminates, as defined in Figure 1a
and b). By simplifying the general case, other FE formulations
can be developed for the buckling prediction of possible
strengthening scenarios (i.e., a bare steel beam not strength-
ened, a steel element bonded with a top GFRP laminate, and a
steel element bonded with a bottom GFRP laminate).

4 Validation and discussion of
results

Four examples are conducted to validate the FE formulation of
the present study. Examples 1 and 2 validate the buckling loads
and modes of single/continuous-span steel beams bonded with
FRP layers predicted by the present FE formulation against
those of the 3-dimensional FE analyses (3D FEA). Examples 3
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and 4 compare the buckling responses of continuous bare steel
beams as obtained from the present FE formulations against
those obtained from previous numerical results by Sahraei
et al. [36] and Barsoum and Gallagher [37], experiment-based
approximations by Zhao and Ding [38], typical design stan-
dards for steel structures [33–35] and the 3D FEA solutions.
Parametric studies in Examples 1 and 2 are also conducted to
investigate the strengthening effectiveness for the LTB resis-
tances in the FRP-bonded steel beams.

4.1 Example 1: Validation of the present
solutions for a single span steel beam
partially bonded with orthotropic FRP
layers and parametric studies

A single-span steel beam partially bonded with two FRP layers
is considered in the present example (Figure 4a and b).
The beam is vertically supported by a pin support at beam
end A and a movable support at beam end B (Figure 4a).
Also, lateral braces in the X-axis direction are applied to the
beam ends to restrain twisting angle and lateral displace-
ments at the end cross-sections. However, the slopes of the
twisting angle and lateral displacements are free at the
cross-sections. The beam is subjected to a midspan point
load P applied at the steel section centroid. The steel
cross-section is ×W 250 45 ( =h 266 mm, =b 148 mm,

=t 13 mmf , =t 7.6 mmw ) (Figure 4c). The thickness
of both FRP layers is taken as = =t t 20 mmg g1 2

,
while that of both epoxy bonding layers is given as

= =t t 1.0 mma a1 2
. The steel has a modulus of elasticity

of 200 GPa and a Poisson’s ratio of 0.3. The epoxy has a
modulus of elasticity of 3.18 GPa and a Poisson’s ratio of
0.25. The FRP layer is stacked by 16 orthotropic laminae
(GF600 material [20]). Each lamina has a longitudinal elas-
ticity modulus of =E 36.87 GPak z, , elastic moduli of =Ek s,

=E 10.64 GPak n, , shearing stiffnesses of = =G Gk sn k zn, ,

3.27 GPa, =G 3.93 GPak sz,
, and Poisson ratios of

= =μ μ 0.28,
k sn k zn, ,

=μ 0.33
k sz,

. The FRP laminae are sym-
metrically arranged by an order of ( )− − − −i i i i i i i i/ / / / / / / s

where i takes a value from 0 to 90°. Three strengthening
schemes are considered in the example. In the first scheme,
the steel beam is bonded with the FRP layers over the whole
span length (i.e., = =L a5.0 m, 0.0 mr ). In the second
and third schemes, parts of the steel span are bonded
with the FRP layers (i.e., = =L a4.0 m, 0.5 mr and

= =L a3.0 m, 1.0 mr ). The buckling responses of the
present study are based on the FE formulation developed
in Eq. (39). The results of the buckling solutions based on the
present solution are compared against those of the 3D FEA
solutions conducted in ABAQUS. The effect of stacking
angles and the length of FRP layers on the buckling solutions
are investigated in the present example.

4.1.1 3D FEA solution

The 3D FEA solution is conducted in ABAQUS. Such solu-
tions are based on three-dimensional FEs C3D8R in the
ABAQUS library. The element has a brick shape with 8
nodes; each node has 3 nodal displacements, and 11 inde-
pendent numbers of elements ni, =i 1, 2, ... , 11, are pro-
posed for the modelling (Figure 5). Here, n

1
, n

2
, n

3
, n

4
, n

5
, n

6
,

n
7
, and n

8
are, respectively, the number of elements along a

half of the clear flange width, the thickness of the bottom
FRP layer, the thickness of the bottom epoxy layer, the
flange thicknesses, the clear web height, the web thickness,
the thickness of the top epoxy layer, and the thickness of
the top FRP layer (Figure 5a), n

9
or n

11
is the number of

elements along each unstrengthened segments, while n
10
is

the number of elements along the strengthened segment
(Figure 5b and c).

The boundary conditions at the beam ends in the 3D
FEA solution are presented in Figure 6a and b, in which the
pin support at beam end A can be created by restraining

Figure 5: A 3D FEA mesh controlled by 11 independent element numbers across different edges of the model: (a) cross-section, (b) profile, and (c) the
first buckling mode.
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the longitudinal and vertical displacements at the node
coincident with the centroid of the steel cross-section
with coordinate =Z 0 (Figure 6a). The movable support
at the beam end B can be created by restraining the ver-
tical displacement at the node coincident with the centroid
of the steel cross-section with coordinate = +Z L a2r

(Figure 6b). The lateral braces can be created by
restraining the lateral displacements of the nodes lying
on the vertically symmetric axis of the steel cross-sections
at the beam ends (Figure 6). The twisting angle and lateral
displacement at the braces can be thus restrained, while
their slopes are free.

A mesh study is conducted to obtain the convergence
of the LTB loads based on the 3D FEA solutions. The mesh
study is presented for the structure with =L 4.0 m,r

=a 0.5 m and with FRP laminae symmetrically arranged
at ±45°. Four meshes with different number of elements
named as Meshes M1, M2, M3, and M4 are assumed and
presented in Table 1.

Table 2 presents the comparison of the LTB resistances
of the 3D FEA solutions based on the different meshes. As
observed, the buckling load of Mesh M1 is 345.4 kN, that of
Mesh M2 is 226.5 kN, that of Mesh M3 is 220.5 kN, and that of
Mesh 4 is 219.9 kN. When compared to the buckling load of
Mesh M4, that of Mesh M1 is 57.1% higher, that of Mesh M2
is 226.5% higher, and that of Mesh M3 is only 0.3% higher.
This indicates that the buckling loads based on Mesh M3

are converged. Therefore, the 3D FEA solutions will be
based on Mesh M3 for further investigations in the present
example. The time for a run of Mesh 3 is 2,280 s simulated
on a computer with Intel(R) and Core(TM) i7 processors
and a 16 GB RAM.

4.1.2 Present solution

A mesh convergence study based on the FE formulation
developed in Eq. (39) of the present study is also conducted.
The present FE formulation is established by using one-
dimensional elements and it does not relate to the mod-
eling of the cross-sectional dimensions, as must be done in
the 3D FEA solutions. To mesh the composite FRP-bonded
steel beams, it only requires three number of elements
n n n, ,

9 10 11
(as defined in Figure 5b). Four different

Figure 6: Boundary conditions at the left end A (a) and at the right end B (b) of the single steel beam.

Table 1: Assumed 3D FEA meshes conducted in ABAQUS modeling

Mesh n1 n2 n3 n4 n5 n6 n7 n8 n9 n10 n11

M1 4 4 2 2 20 2 2 4 10 40 10
M2 10 8 4 4 40 4 4 8 20 80 20
M3 10 16 4 4 40 4 4 16 40 160 40
M4 10 16 4 4 80 4 4 16 80 320 80

Table 2: Buckling loads (kN) based on different meshes in the 3D FEA
solution

Mesh 3D FEA solution % difference

M1 345.4 57.1
M2 226.5 3.0
M3 220.5 0.3
M4 219.9 0.0

Table 3: Assumed meshes in the present FE solution

Mesh n9 n10 n11

1 2 20 2
2 4 40 4
3 10 60 10
4 20 80 20
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Meshes 1–4 are assumed for the mesh study, as presented
in Table 3.

In the present FE formulation, the pin support at beam
end A can be created by setting the governing displacements

( )= =V z 0 0p , ( )= =W z 0 0p . Also, the movable support
at beam end B is created by setting the governing displace-
ment ( )= + =V z L a2 0p r . The lateral braces at the beam
ends can be created by setting the twisting angle and the
lateral displacements ( ) ( )= = = + =U z U z L a0 0, 2 0b b r ,

( ) ( )= = = + =θ z θ z L a0 0, 2 0zb zb r .
A comparison of the buckling resistances based on the

different meshes of the present FE solutions is presented in
Table 4. It is observed that the buckling loads are converted
in the solutions using Meshes 3 and 4. Therefore, the pre-
sent study uses Mesh 3 for further investigations in the
present example. The time for a run with Mesh 3 consumes
about 76 s conducted in the same computer as that simu-
lates the 3D FEA solution. It can be observed that the run-
ning time and effort for a buckling solution of the present
solution are much lower than those of the three-dimen-
sional FE analyses conducted in ABAQUS. It is noticed
that the present FE formulation has been developed as a
one-dimensional beam element.

4.1.3 Results and discussion

Figure 7 presents the comparisons of the LTB resistances of
the systems with different FRP fiber orientation angles for
three strengthening schemes (i.e., =L 5.0 mr , =L 4.0 mr ,
or =L 3.0 mr ) predicted by the 3D FEA and the present
solutions. For each scheme, the buckling loads obtained
from the present FE solution are in an excellent agreement
with those of the 3D FEA solution. For example, in the
scheme =L 5.0 mr and fiber angles of 0°, the buckling
load of the present solution is 225.9 kN, while that of the
3D FEA solution is 217.5 kN, corresponding to a difference
of 3.9%. In the scheme =L 4.0 mr and fiber angles of 0°,
the buckling load of the present solution is 203.6 kN, while
that of the 3D FEA solution is 195.7 kN, a difference of 4.0%.
For the scheme =L 3.0 mr and fiber angles of 0°, the buck-
ling load predicted by the present solution is 181.2 kN,
while that of the 3D FEA solution is 176.0 kN, a difference
of 3.0%. Excellent agreements of the buckling loads for the
systems with fiber angles from 15° to 90° are also observed
between the two solutions.

Based on the present solution in Figure 6, two impor-
tant effects of the FRP layers on the LTB resistances of the
steel beams strengthened with FRP are observed. First, the
systems with FRP lamina angles oriented at ±45° have the
maximum buckling loads, while those oriented at ±90°
have the smallest buckling loads. This can be explained
as follows: the FRP layers with fiber orientation arrange-
ments ±45° may maximize Q̄

66

, and the torsional and shear
stiffnesses (i.e., A b¯g1,66 1

and b D̄g1 1,66
, respectively) of the FRP

layer (Appendix 1). The observation and results of the pre-
sent study are consistent with several previous solutions
(e.g., [11–20]). Second, the strengthening length of FRP
layers also has a significant effect on the buckling loads
of the systems. For example, the system with fiber angles of
0°, the buckling load of the strengthening scheme

=L 5.0 mr is 225.9 kN, while that of scheme =L 3.0 mr

is 181.2, a difference of up to 19.8%. For the system with
fiber angles of ±45°, the buckling load of the strengthening
scheme =L 5.0 mr is 269.9 kN, while that of scheme

=L 3.0 mr is 186.5 kN, a difference of 30.9%. For each of
the fiber angles from 0° to 90°, the LTB resistances of the
system with different strengthening lengths =L 5.0 mr ,

=L 4.0 mr , =L 3.0 mr are highly different, as observed
in Figure 7. This indicates that the buckling resistance of
the FRP-strengthened steel beams significantly depends on
the strengthening length of the FRP layers.

Based on the present solution, the strengthening effec-
tiveness of using FRP layers can be quantified. The LTB
resistance of the bare beam (without strengthening) is

Table 4: Buckling loads based on different meshes in the present
solution

Load position Present study % difference

Mesh 1 306.1 36.4
Mesh 2 231.7 3.2
Mesh 3 225.3 0.4
Mesh 4 224.5 0.0

50

100

150

200

250

300

0 15 30 45 60 75 90

Bu
ck

lin
g 

lo
ad

 P
 (k

N)

GFRP fiber orienta�on angles (±± degree)

Lr = 5.0m, Present study
Lr = 4.0m, Present study
Lr = 3.0m, Present study
Lr = 5.0m, 3D FEA
Lr = 4.0m, 3D FEA
Lr = 3.0m, 3D FEA

Figure 7: Comparisons of the LTB resistance loads with different FRP
fiber orientation angles predicted by the 3D FEA and the present
solutions.
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136.9 kN (Table 5). For the FRP layers with fiber angles of
0°, the LTB resistance of the steel beams bonded with a
5.0 m-long FRP layer is 225.9 kN, corresponding to the
effectiveness of 39.4%, while the LTB resistance of the
steel beams bonded with a 3.0 m-long FRP layer is 181.2
kN, corresponding to the effectiveness of 24.5%. For
FRP layers with fiber angles of ±45°, the LTB resistance
of the steel beams strengthened with a 5.0 m-long FRP
layer is 269.9 kN, corresponding to the effectiveness
of 49.5%, while the LTB resistance of the steel beams
bonded with a 3.0m-long FRP layer is 186.5 kN, corre-
sponding to the effectiveness of 26.6%. In this example,
the FRP strengthening effectiveness is dependent on both
the strengthening length and the orthotropic properties of
the FRP layers.

4.1.4 Further validations of the present solution for the
buckling load predictions of the steel beams in four
other strengthening scenarios

Four other systems are considered: the first strengthening
scenario is for the steel beam bonded with two FRP layers,
the second and third scenarios are for that strengthened

with a top or bottom FRP layer and the last one is for a bare
beam. The length of FRP layers in the four strengthening
scenarios are taken as = = =L L a5.0 m, 0r , while the
FRP layers are stacked by 0° angles. The mechanical prop-
erties and thickness of the FRP layers are given in Example 1.
The buckling resistances of the present study are based on the
FE formulations presented in Eq. (39) with minimized non-
existing parameters. A 3D FEA solution is again adopted to
validate the present study.

In Table 5, the LTB resistance differences of the four
strengthening scenarios predicted by the 3D FEA and the
present solutions are only from 1.3 to 3.9%. This implies
that the buckling predictions of the present study are in
good agreement with those of the 3D FEA solutions. Based
on the present study, the effectiveness of FRP strength-
ening can be evaluated. By comparing to the LTB resistance
of the bare beam (i.e., 136.9 kN, based on the fourth sce-
nario), the LTB resistance of the beam bonded with two
FRP layers (i.e., 225.9 kN in the first strengthening scenario)
is 39.4% higher, that of the beam bonded with a top FRP
layer (i.e., 172.2 kN in the second strengthening scenario) is
25.8% higher, and that of the beam bonded with a bottom
FRP layer (that is, 192.4 kN in the third strengthening sce-
nario) is 40.5% higher.

Table 5: Comparisons of the LTB resistance predicted by the 3D FEA and the present solutions in four other strengthening schemes in Example 1

Other strengthening
scenarios

Description in figure FRP stacking
angles

Buckling load P (kN) % difference

Present
study

3D FEA
solution

(1) (2) (3) (4) (5) (4–5)/(5)

1st 0° 225.9 217.5 3.9

2nd 0° 172.2 167 3.1

3rd 0° 192.4 187 2.9

4th Not applicable 136.9 135.2 1.3
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4.2 Example 2: Validation of the present
solutions for LTB predictions of continuous
FRP-bonded steel beams under the effect
of different load height positions

A two-span steel beam of Zhao and Ding [38] is visited in
the present example, and is presented in Figure 8. The
beam has a vertical pin support at Point A and movable
supports at Points B and C. Lateral braces are applied to
Points A, B, and C to restrain the lateral displacement and
twisting angle at these cross-sections. The beam has a
cross-section with dimensions =h 300 mm, =b 200 mm,

=t 10 mmw , and =t 16 mmf . Span L
1
is taken as, 5.0 m

while the ratio L L/
2 1

is taken as 0.5. In the present example,
span L

1
is bonded with a GFRP laminate with a length of

=L 4.6 mr1
, while span L

2
is bonded with another GFRP

laminate with a length of =L 2.1 mr2
. Both of the FRP

layers are made by stacking 16 equally thick orthotropic
GF800 laminae [18] oriented at fiber angles of 0°. The laminae
have an axial, lateral, and transverse moduli of elasticity of

=E 45.95 GPak z, , = =E E 14.56 GPak s k n, ,
, shearing stiff-

nesses of = =G G 5.51 GPak sn k zn, ,
, =Gk sz,

5.51 GPa, and Pois-
son’s ratios of = =μ μ 0.3

k sn k zn, ,

, =μ 0.33
k sz,

. The steel has an
elasticity modulus of 200 GPa and a Poisson ratio of 0.3. Steel
has an elasticity modulus of 3.18 GPa and a Poisson ratio of
0.3. Loads P and ηP (where =η 1.0) are assumed to be
applied to the top flange centroid, steel section centroid, or
bottom flange centroids to account for the effect of load
height positions. The LTB resistances obtained by the present
FE solution are validated with the 3D FEA solutions.

4.2.1 Result discussion

Table 6 compares the LTB resistances as obtained from the
3D FEA and the present solutions for different load-high posi-
tions of P. When the load is applied at the top flange centroid,
the LTB resistance obtained by the present study is 474.2 kN,

while that of the 3D FEA solution is 471.3 kN, a difference of
0.6%. Also, the differences between the two solutions are only
0.3 and 0.5% when the loads are applied at the steel section
centroid and bottom flange centroid, respectively.

Figure 9 compares the LTB mode shapes (i.e.,U θ, ,b yb θ ,zb

ψ
b
,U b2

and θy b2
) as predicted by the 3D FEA and the present

solutions when loads P and ηP are applied at the steel section
centroid. The mode shapes predicted by the two solutions can
be observed to be in excellent agreement. This indicates that
the LTB responses of the 3D FEA solution can be exactly
captured by the present solution. In Figure 9, it can also be
observed that the slope ofUb, the magnitude of θyb, the slope
of θzb, the magnitude of ψ

b
at Support A are generally higher

than those at the middle support (i.e., Support B of Span L
1
).

This reflects that there is an interaction between the two
spans (i.e., spans L

1
and L

2
) at the middle support.

4.3 Example 3: Validation of the present
solution against the standard guide-
based solutions and non-shear
deformable theory-based FE solutions
for the buckling prediction of continuous
bare steel beams

The present typical design standards (e.g., AISC [33], CSA
[34], and AUS [35]) do not provide simplified equations for

Table 6: A comparison of the LTB resistances (kN) obtained from the 3D
FEA and the present solutions under the effect of load height positions

Load position Present
solution

3D FEA
solution

% difference

Top flange
centroid

474.2 471.3 0.6

Section centroid 816.7 814.2 0.3
Bottom flange
centroid

1379.0 1372.4 0.5

Figure 8: Profile (a) and cross-section (b) of the two-span continuous composite beam in Example 3.
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the elastic LTB loads of continuous beams. In order to
approximately evaluate the buckling load, engineers often
treat each unbraced segment as a separate span, then to
calculate the individual LTB resistance of each segment
separately, and to conservatively use the smallest critical
moment as the one governing the LTB resistance of the con-
tinuous beam. Such a treatment may ignore the span inter-
action in continuous beams, as suggested by Sahraei et al.
[36]. However, the solution of Sahraei et al. [36] followed a
non-shear FE formulation of Barsoum and Gallagher [37], i.e.,
the shear deformation effects were not captured in these
investigations. Thus, this example will validate the buckling
loads predicted by the present shear FE formulations devel-
oped in Eq. (40) against those of the standard guides [33–35]
and the non-shear FE formulation [36].

A two-span bare steel beam is considered, as presented
in Figure 10a and b. The length of the first span is L

1
while

that of the second span is L
2
. The beam has a vertical pin

and movable supports at Points A, B, and C. Lateral braces
are applied to the points to restrain the lateral displace-
ment and twisting angle of these cross-sections. The steel
cross-sectional dimensions are h, b, tf , and tw. The left span
is under a midspan load of P

1
while the right one is under

another load ηP
1
, where η is a real number.

Sahraei et al. [36] adopted the non-shear deformable
FE formulation developed by Barsoum and Gallagher [37]
for the buckling load predictions of the two-span beam in
Figure 10a and b, in which the beam has a cross-section of
W250 × 58 ( =h 252 mm, =b 203 mm, =t 8.0 mmw , and

=t 13.5 mmf ) and an elasticity modulus of 200 GPa.
Span lengths =L L

1 2
, where L

1
are 4.0, 6.0, or 8.0 m. The

load factor η is equal to 1.0 and both loads P
1
and ηP

1
are

applied to the centroids of the steel beam cross-sections.
Figure 10 presents the comparisons of the buckling
loads P

1
of different span lengths = =L L 4.0, 6.0, 8.0 m

1 2

as obtained from the present solution, Sahraei et al. [36], AISC
standard guide [33], Canadian standard CSA guide [34], Aus-
tralia standard guide [35], and the present 3D FEA. Among
the solutions, the buckling resistances of the 3D FEA solution
are considered as the reference solutions to compare against
the others. The buckling load of the beam with span

= =L L 4.0 m
1 2

predicted by the present FE solution is 895.7
kN, while that based on the 3D FEA solution is 885.5 kN, corre-
sponding to a difference of 1.2%. For spans = =L L 6.0 m

1 2

and = =L L 8.0 m
1 2

, the differences between the two solu-
tions are 0.2 and 0.6%, respectively (Figure 11). This indicates
that the buckling loads predicted by the present solution excel-
lently agree with those of the 3D FEA solution.

The LTB loads predicted by Sahraei et al. [36] are higher
than those based on the 3D FEA solutions (Figure 11). For span

= =L L 4.0 m
1 2

, the LTB load based on Sahraei et al. [36] is
937.4 kN, which is 5.9% higher than the 3D FEA buckling load.
For spans = =L L 6.0 m

1 2
and = =L L 8.0 m

1 2
, Sahraei

et al. [36] predicted the LTB loads, those are, respectively, 4.1
and 4.9% higher than the 3D FEA buckling loads. The over-
prediction of the solutions by Sahraei et al. [36] may originate
from the shear deformation neglection in their Barsoum and
Gallagher FE solutions [37]. In contrast, the present study con-
siders the contribution of shear deformations and thus better
agrees with the 3D FEA solution for the LTB prediction.

From AISC, CSA, and AUS standard guides [33–35], the
LTB loads of the two-span beam are evaluated and pre-
sented in Figure 11. For span = =L L 4.0 m

1 2
, the LTB

loads of AISC, CSA, and AUS guides are 877.9, 804.2, and
938.0 kN, respectively, and those are 0.9, 9.2, and 5.9%
different from the LTB loads of the 3D FEA. The differences
are, respectively, 2.3, 10.5, and 4.4% for span = =L L

1 2

6.0 m and 1.4, 9.7, and 5.3% for span = =L L 8.0 m
1 2

.
Among the solutions considered, the present FE solutions
most agree with the 3D FEA and the AISC solutions. Also,

Figure 10: Profile (a) and cross-section (b) of the two-span continuous steel beam in Example 3.
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Figure 11: Comparisons of the buckling resistances obtained from dif-
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the solutions based on CSA and AUS standards are consid-
erably different from the 3D FEA solutions.

4.4 Example 4: Validations of the present
solution against the experimental
solutions of Zhao and Ding [38] and the
3D FEA solutions for the buckling load of
the continuous beams

Zhao and Ding [38] reported experimental results on the
LTB of two-span steel beams (Figure 9a and b). They pro-
posed an approximation equation for the evaluation of the
elastic LTB solution of the continuous beams. A 3D FEA
solution in ABAQUS is conducted in the present example
to compare against both solutions. A two-span beam stu-
died in Zhao and Ding [38] (Figure 10a and b) is visited in
the present example, in which the beam has a cross-section
with dimensions =h 300 mm, =b 200 mm, =t 10 mmw ,
and =t 16 mmf . Loads P

1
and ηP

1
(where =η 1.0) are

applied on the top flange position. Span L
1
is 5.0 m while

ratios L L/
2 1

are taken as 0.5, 0.6, 0.7, 0.8, 0.9, or 1.0.
Table 7 compares the buckling loads P

1
for different

span ratios L L/
2 1

, as predicted by the solutions of Zhao
and Ding [38], the 3D FEA, and the present study. As
observed, the differences in the buckling loads between
the three solutions are from 0.3 to 3.4%. This indicates
that the present solution again agrees with the 3D FEA solu-
tion and the solution by Zhao and Ding [38]. Based on Table
7, it can also be observed that the buckling load of the con-
tinuous beam is smaller when the span ratio L L/

2 1
increases.

5 Conclusions

The present study successfully developed a beam-based FE
formulation for the LTB analyses of steel beams partially

bonded with orthotropic FRP layers. The effects of partial
interactions between different materials, local and global
warping deformations, and load height positions were also
captured in the solutions. To develop the FE formulation, a
shear deformable theory was first proposed to describe the
buckling equilibrium states of the system, in which the
buckling equilibrium state was described by eight out-of-
plane governing displacement fields. Strains and stresses
were then derived and the total buckling potential energy
of the system was expressed in terms of the governing
displacements. An FE formulation based on linear and
cubic shape functions was then developed. Such an element
had two nodes and each node had ten degrees of freedom.
Through the comparisons of the buckling responses of var-
ious single and continuous span systems obtained from the
present solution against previous experimental and numer-
ical results, design standard guides of steel structures and the
3D FEA solutions conducted in ABAQUS, key conclusions were
obtained as follows.

The buckling loads/modes of the single and continuous
beams predicted by the present solution excellently agree
with those of previous experimental/numerical studies, as
observed in Examples 1–4.

Based on Examples 1 and 2, it was also observed that the
steel beams strengthened with FRP lamina angles oriented at
±45° had the highest buckling loads, while those oriented at
±90° had the smallest buckling loads. Also, the strengthening
length of FRP layers had a significant effect on the buckling
loads of the FRP-strengthened steel beams. This was reported
in Example 1 in which the buckling loads of a 5 m span steel
beam bonded with 5 m long FRP layers were 19.8 to 30.9%
higher than those bonded with 3 m long FRP layers.

As observed in Examples 3 and 4, the effects of shear
deformations were captured in the 3D FEA and the present
solutions. The buckling loads of such solutions were
smaller than those predicted by non-shear deformable FE
solutions. Also, the present solution and the 3D FEA

Table 7: Comparisons of the buckling resistances obtained from different solutions for different span ratios

Solutions of buckling load P1 (kN)
Span
ratio
L2/L1

Present
solution

Zhao and
Ding [38]

3D FEA
solution

Comparison of the solutions against
the 3D FEA solution (%)

(1) (2) (3) (4) |2–4|/(4) |3–4|/(4)

0.5 444.8 443.4 439.6 1.2 0.9
0.6 438.1 435.4 432.5 1.3 0.7
0.7 431.8 429.4 426.8 1.2 0.6
0.8 423.5 419.4 418.2 1.3 0.3
0.9 408.9 395.5 403.6 1.3 2.0
1.0 379.6 359.5 372.1 2.0 3.4
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solution captured the effect of span interactions in contin-
uous beams and were not considered in several design
standards of steel structures.

The FRP strengthening effectiveness for the LTB loads
of the steel beams was from 24.5 to 49.5%, as observed in
Examples 1 and 2.
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Appendix 1 – Evaluation of GFRP
laminate stiffnesses

Plane stress-reduced stiffnesses of the kth GFRP lamina (as
defined in Figure 9) can be evaluated as
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Here, parameters E E G v v, , , ,k z k s k sz k zs k sz, , , , ,
are defined

in Section 3.4. The transformed lamina stiffnesses of a
lamina can be evaluated as
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where γ
k
is the fiber orientation angle of the kth lamina.

Then, the extensional and bending stiffnesses of a GFRP
laminate can be obtained through
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Based on Eqs. (A3), plate stiffnesses
A A D D¯ , ¯ , ¯ , ¯gi gi gi gi,11 ,66 ,11 ,66

developed in Eq. (19) can be eval-
uated as
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