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Abstract: Laminated composite materials play a crucial
role in various engineering applications due to their excep-
tional mechanical properties. This article explores the
analysis of reliability and the local sensitivity of failure
probability associated with laminated composite materials.
It delves into the impact of uncertainties on the performance
of thesematerials and presents an active learning-based relia-
bility methodology. This methodology combines Monte Carlo
simulation with a metamodel derived from the combination
of three metamodels: artificial neural networks, support
vector regression, and Kriging. The article illustrates this
methodology through two practical applications on laminated
composite plates and compares its performance with other
reliability methods. This approach offers valuable insights to
enhance the analysis of reliability, strengthen the design pro-
cess, and facilitate decision-making while fully considering
uncertainties related to material properties.

Keywords: composite material reliability, reliability sensi-
tivity, artificial neural network, support vector regression,
Kriging, Monte Carlo simulation, active learning

1 Introduction

Laminated composite plates find extensive applications
across various sectors, including aerospace, automotive,

marine engineering, civil engineering, and renewable energy,
due to their outstanding performance and lightweight prop-
erties. Their ability to reduce structural weight while pre-
serving strength in comparison to conventional metallic
materials is a key driver for their widespread use.
Moreover, laminated composites demonstrate superior resis-
tance to both fatigue and corrosion when compared to
metals, making them well-suited for enduring use in
demanding environments.

To investigate the behavior of composite materials,
various modeling theories are employed. Among these,
the classical Love–Kirchhoff theory, the oldest, neglects
the effects of transverse deformation to predict the beha-
vior of thin plates [1,2]. Subsequently, the first-order shear
deformation theory (FSDT) was developed [3], accounting
for variations in transverse shear throughout the plate
thickness. Furthermore, higher-order shear deformation
theories [4,5] were formulated, utilizing increased depen-
dence on the thickness coordinate to describe displace-
ment fields in n-planes. Moreover, research efforts have
been made to enhance the modeling of laminate behavior.
For instance, Tornabene et al. [6] devised an innovative
layer-wise approach employing the generalized differen-
tial quadrature (GDQ) method for dynamic analysis of
anisotropic shells. They demonstrated the accuracy of
their method through numerical examples, aligning
with classical 3D finite element predictions in terms of
frequencies and mode shapes. In addition, in another
study, Tornabene et al. also proposed [7] an equivalent
single-layer formulation for linear static analysis of shell
structures. They derived fundamental relations from the
stationary configuration of total potential energy and
addressed them numerically using GDQ. To illustrate
their method, they presented several examples demon-
strating its effectiveness. Furthermore, Brischetto [8] ana-
lyzed the effects of hygrothermal loading on the bending
behavior of multilayered composite plates. Using refined
two-dimensional models within the framework of Carrera’s
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unified formulation. Also, Civalek [9] proposed a method of
discrete singular convolution to obtain frequencies and
buckling loads of composite plates. By utilizing geometric
transformation, he then compared the obtained results
with those of other numerical methods. However, con-
ducting reliability and sensitivity analyses on these plates
under uncertain conditions can be exceptionally challen-
ging, especially when dealing with numerous high-dimensional
uncertainty variables. Ensuring the structural integrity and per-
formance of thesematerials necessitates ameticulous task relia-
bility and sensitivity assessment of laminated composite plates
within a high-dimensional uncertainty framework.

The reliability of composite materials fundamentally
relies on the use of a limit state function (LSF). This func-
tion plays a crucial role by establishing a relationship
between the state of the structure and the applied loads.
Reliability analysis is typically performed using two main
approaches: simulation methods and moment methods.
Moment methods are employed to estimate a reliability
index, often defined as the distance from the origin to
the most probable failure point (MPFP). This index is cal-
culated using algorithms such as the first-order reliability
method (FORM) or the second-order reliability method
(SORM) [10,11], which rely on linear and nonlinear approx-
imations based on Taylor series expansion of the LSF
around the MPFP to estimate the reliability index. While
these techniques are fast and efficient, they may lack pre-
cision for highly nonlinear problems. To overcome this
limitation, Monte Carlo simulations (MCS) have become
the preferred and widely used method in various fields
[12]. MCS involves generating random samples from prob-
ability distributions to model uncertain parameters, fol-
lowed by performing repeated simulations to estimate
the reliability of a system or process. Although this method
is highly effective, it can be costly when the probability of
failure is very low. To address this issue, several specia-
lized sampling techniques have been developed based on
MCS, such as importance sampling (IS) [13–17], subset
simulation [18,19], directional simulation [20,21], and line
sampling [22,23]. While these approaches require fewer
simulations than the MCS, they can still be computationally
intensive, especially for complex models that demand sig-
nificant evaluation time.

For this reason, since the 1990s, several simulation
techniques based on metamodels rather than the original
model have been developed to reduce the number of
necessary evaluations of the LSF. The goal of these techni-
ques is to create a substitute model Y(X) that provides an
explicit function to approximate the original performance
function. This substitute model is then used in place of the
original function in reliability methods. Among these

metamodels, there are response surface methods (RSMs)
[24–27], artificial neural networks (ANNs) [28–30], radial
basis functions [31–33], Kriging (also known as Gaussian
process) [34,35], support vector machine (SVM), and sup-
port vector regression (SVR) [36,37].

Over the past few decades, extensive research has
been conducted on the failure and sensitivity of composite
materials. For example, Huh [26] employed the stochastic
finite element method (SFEM) to assess the reliability of
angled plies, comparing results with other reliability methods
such as the β-method. The LSF used in this context was based on
the Tsai-Wu, Hoffman, and Tsai-Hill criteria. Similarly, Onkar
et al. [38] utilized SFEM for reliability analysis, employing the
Tsai-Wu and Hoffman criteria as failure criteria for orthotropic
plates with random material properties and random loads.
Furthermore, recent research on composite reliability has fre-
quently employed metamodels to reduce computational costs.
For instance, Lopes et al. [39] employed an ANN to replace the
LSF based on the Tsai-Wu failure criterion, demonstrating sig-
nificant computational efficiency. Dey et al. [40] focused on
quantifying thermal uncertainty in the frequency responses of
laminated composite plates, using a surrogatemodel called high-
dimensional model representation to propagate thermal, ply-
level, and material uncertainties in frequency responses. Chen
and Jia [41] investigated interlaminar stress analysis and LSF
approximationmethods for assessing the reliability of composite
structures, discussing the use of surrogatemethods such as SVM,
RSM, and ANN to approximate the true implicit LSF. Momeni
Badeleh et al. [42] have introduced an advancedmesh-free finite
volume approach, utilizing it to actively manage the vibrations
of a temperature-dependent piezoelectric laminated composite
plate based on the principles of first-order shear deformation.
The findings indicated a reduction in the reliability of the com-
posite plate with rising temperatures. Martinez et al. [43] con-
ducted a reliability analysis on a smart laminated composite
plate comprising a graphite/epoxy cross-ply substrate with a
piezoelectric fiber-reinforced composite actuator layer under
static electrical and mechanical loads. In their study, they devel-
oped a finite element (FE) model in COMSOL Multiphysics,
coupled with an ANN and integrated with MCS as well as first-
and second-order reliability methods (FORM/SORM). Haeri and
Fadaee [44] proposed an efficient and accurate reliability
analysis approach for laminated composites called AKM-
MCS, employing an advanced Kriging model to approximate
the mechanical structure and applying the Tsai-Wu criterion
to define LSF. This approach demonstrates high computa-
tional efficiency and accuracy. Mathew et al. [45] introduced
an innovative approach that combines ANN with the SORM
and IS to accurately estimate failure probabilities and sen-
sitivities of variable stiffness composite laminate plates
while considering multiple sources of uncertainty. The
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results demonstrate a high level of accuracy in reliability
estimates and sensitivity studies. Finally, Zhou et al. [46]
proposed an adaptive Kriging-based approach for the relia-
bility and sensitivity analysis of composite structures with
uncertainties, using Kriging to approximate the structural
response. This method is applied to composite beams, plates,
and random structures, yielding accurate results and effi-
cient reliability evaluation.

Furthermore, to ensure the reliability of composites, it
is essential to investigate the contributions of uncertain
variables to the behavior of the composite material. This
allows for a more precise adjustment of the parameters
that have the most significant impact on the probability of
failure, a process commonly achieved through the theory of
failure probability sensitivity analysis. There are two main
types of sensitivity analysis [47]: local reliability sensitivity
analysis and global reliability sensitivity analysis. Local
reliability sensitivity analysis focuses on quantifying the
local effects of distribution parameters of random input
variables on the failure probability [48]. Its objective is to
rank these distribution parameters based on their impact on
the failure probability. On the other hand, global reliability
sensitivity analysis assesses the contributions of uncertain-
ties present in the input variables to the failure probability
[49]. It ranks these sources of uncertainty based on their
impact on the failure probability.

This article introduces an approach to analyze the
reliability and local sensitivity of the failure probability
of composite materials using an LSF that incorporates
the criteria of maximum stress, Tsai-Hill, and Tsai-Wu.
The reliability methodology relies on an active learning
method that combines MCS with a metamodel resulting
from a weighted combination of three metamodels: ANN,
SVR, and Kriging. The weighting coefficients for these three
metamodels are determined through a heuristic method
(Goel et al.). This approach provides valuable insights into
the behavior and performance of laminated composites,
contributing to the enhancement of design and decision-
making processes while considering uncertainties related
to material properties. Two applications on flat composite
laminates were used to test this method and to demonstrate
its effectiveness.

2 Failure theory

Failure theories play a central role in assessing the robust-
ness of structures. In the context of composite materials,
this fundamental discipline aims to understand the mechan-
isms and conditions leading to the rupture or degradation of

these materials. It relies on the analysis of stresses, loads,
and the study of interactions within the composite structure,
while seeking to anticipate potential failure modes. Several
failure criteria have been developed to assess the strength of
composites in various loading scenarios. These criteria are
generally categorized into two main groups:
– Simple limit failure theories, such as the maximum

stress criterion,
– Interaction theories, such as the Tsai-Hill and Tsai-Wu

criteria.

2.1 Maximum stress criterion

The maximum stress criterion is one of the primary
failure criteria used to assess the strength of composite
materials. This criterion is based on the concept that
failure occurs when a material exceeds its maximum
stress-carrying capacity in one of its directions. In other
words, if any of the principal stresses applied to a com-
posite material exceeds its corresponding strength,
failure occurs.

To apply this criterion, the principal stresses computed
within the structure are compared with the material’s
maximum strengths in each direction. Failure happens
when one of the following inequalities is not satisfied:
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where σ1, σ2, and σ3 represent the principal components of
normal stresses, and σ4, σ5, and σ6 represent the principal
components of shear stress, while Xt, Yt, Zt, Xc, Yc, and Zc
correspond to the ultimate tensile and compressive strengths
of the lamina in the 1, 2, and 3 directions, and R, S, and T
denote the ultimate shear strengths of the lamina in the 2–3,
1–3, and 1–2 planes, respectively.

For a 2D in-plane stress state (σ3 = 0, σ4 = 0, σ5 = 0),
which is often the case for laminates, the maximum stress
failure criterion is expressed as follows:

− > > − > > >X σ X Y σ Y σ T, , .
c 1 t c 2 t 6

(2)

2.2 Tsai-Hill criterion

The Tsai-Hill failure criterion is based on the concept of
distortion energy [50]. It is an adaptation of the Von Mises
criterion, initially designed for isotropic materials, but it
has been specifically tailored for anisotropic materials
like composites. This failure criterion assesses the strength
of a composite material by considering the intricate
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interactions between stresses and strains that occur in an
anisotropic material.

The failure condition according to the Tsai-Hill cri-
terion is defined as follows:
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where the values of X, Y, and Z represent Xt, Yt, Zt or Xc, Yc,
and Zc depending on the sign of σ1, σ2, and σ3.

For a 2D in-plane stress state (σ3 = 0, σ4 = 0, σ5 = 0), the
Tsai-Hill failure criterion is expressed as follows:
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2.3 Tsai-Wu criterion

The Tsai-Wu criterion is a widely used failure model for
assessing the safety of composite materials. It is based on
Beltrami’s theory of failure by total strain energy [51].
According to this criterion, a lamina or composite material
is considered to fail if the following inequality is not
satisfied:
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For a 2D in-plane stress state (σ3 = 0, σ4 = 0, σ5 = 0), the
Tsai-Wu failure criterion is expressed as follows:
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3 Reliability and probability of
failure sensitivity theory

3.1 Failure probability

The failure probability of structures is defined through the
LSF G(x). This probability is defined as the percentage of
the region in which the LSF G(x) is less than zero. It is
calculated using the following integral:
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where f
x
represents the joint density of the input random

variables.
The failure probability can be expressed as follows:
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where E represents the expectation function with respect to f
x
,
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is the indicator function, which is defined as follows:
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The integral in Eq. (8) is complex to solve directly. For this
reason, the MCS is employed to estimate this integral. This
method involves generating a population, denoted as P, which
is then used to simulate the system N times. The number of
failure events is counted, and therefore, the probability of
failure can be estimated by the following expression:
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Furthermore, to obtain a reliable degree of precision for
this result, it is necessary to calculate the coefficient of varia-
tion (CoV) of Pˆf , defined by the following relationship:

=
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1
ˆ

ˆ

.

f

f

(11)

In most cases, a precision level of CoV < 0.05 is com-
monly employed, as indicated by researchers [52,53].

3.2 Local sensitivity of failure probability

The primary objective of local sensitivity analysis of failure
probability is to measure the local impacts of the distribu-
tion parameters of input random variables on the failure
probability. It has been employed in the context of
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probability by the researcher [48]. To achieve this, the
gradient of the failure probability with respect to these
variables is evaluated:

∫∂
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where θi represents the parameter of the probability dis-
tribution function of the ith random variable.

Furthermore, to ensure a fair comparison of the sen-
sitivities of all random variables in the studied system, it is
necessary to standardize these sensitivities with respect to
the probability of failure, making them dimensionless. A
normalization method proposed by Wu and Mohanty [54]
is expressed as follows:
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where σi represents the standard deviation of the prob-
ability distribution function of the ith random variable.

This sensitivity can be estimated using the MCS method:
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If the input variables are independent, the joint den-
sity can be decomposed into = ∏ =f f

x i

n

x1 i
. Thus, this sensi-

tivity can be expressed as follows:
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According to Wu [48], two types of sensitivity can be
defined, the first one being sensitivity of the probability of
failure with respect to the mean μ, and the second one with
respect to the standard deviation σ:
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4 Reliability and sensitivity analysis
method based on an ensemble of
metamodels

The proposed reliability and sensitivity approach is based
on an ensemble of metamodels, involving the creation of a

set of metamodels designed to simulate the LSF G(X). These
metamodels are subsequently utilized to assess the prob-
ability of failure and its sensitivity, replacing the LSF itself.
This approach is typically characterized by five key features:
1) The formulation of an LSF specifically adapted to com-

posite laminates based on failure criteria.
2) The construction of an average and robust metamodel,

which combines three distinct metamodels weighted by
coefficients.

3) The use of an active learning method through a pro-
posed learning function enables the intelligent selection
of samples to be added to the experimental plan.

4) The evaluation of a stopping criterion tailored to this approach
ensures proper convergence of results towards the exact

5) The estimation of the probability of failure and the local
sensitivity of the probability of failure using MCS, in con-
junction with the constructed average metamodel.

The key characteristics of this approach are presented below.

4.1 LSF incorporating failure criteria

In the context of reliability analysis theory, failure is always
described using an LSF, denoted as G(X). This function estab-
lishes a relationship between the limit state of the structure
and various factors, including applied loads, material proper-
ties, and other relevant parameters. In this research, to ensure
the reliability and safety of composites, and since none of the
failure criteria guarantee the most conservative results in all
conditions according to Martinez and Bishay [55], it is assumed
that failure occurs when one of the three failure criteria is
satisfied. To this end, an LSF based on the failure criteria pre-
sented in the previous section has been defined as follows:
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where X = {x1, x2,..., xn} represents the vector of input
random variables, which typically include loads and mate-
rial properties, and the failure occurs when the LSF has a
negative value, G(X) ≤ 0.

4.2 Construction of a metamodel combining
three metamodels

To construct a consolidated average metamodel from mul-
tiple metamodels, the commonly used method is the
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metamodel ensemble approach, which has been recently
incorporated into structural reliability analysis by
researchers [56,57]. This approach involves training mul-
tiple metamodels using the same sample points and then
combining them to obtain a more accurate prediction than
what each individual model could provide separately. The
combination of these metamodels is achieved by deter-
mining the weights associated with each of them.

In the literature, there are two primary strategies for
determining these weights. First, there is global weighting,
where the weights wi are constant for each metamodel ŷi.
This includes methods such as weight calculation based on
root-mean-square error (RMSE) [58], Bayesian model aver-
aging [59], or determining weights using an optimization
problem [42]. Second, there is local weighting, where the
weights depend on input values X. An example of this is
variance-based local weighting [60].

In this article, the method of weight calculation based on
RMSE [58] is employed. This method suggests the calculation
of the average metamodel using the following formula:
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where Ŷens(x) represents the global prediction of the EM at
given x, ŷi represents the output of the ith meta-model at
the specific point x, M stands for the total number of sur-
rogates employed in the EM, and wi corresponds to the
weight assigned to the ith meta-model.

Moreover, this approach enables the detection of regions
where substantial prediction errors may occur by computing
the variance V xYˆ

ens
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The weights are computed using a heuristic formulation
that employs a “leave-one-out” cross-validation strategy to
determine the RMSE. The weight calculation is as follows:
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where Y(k) represents the real response at a given point x(k),
Ŷ(k) represents the predicted response obtained from the
ith surrogate model trained using all points of the design of

experiments (DoEs) except the pair (x(k), y(k)), and NDoE is
the total number of DoE, and α and β are two parameters
that need to be defined. In this article, the same parameter
values as those used by Goel et al. [58] have been applied,
α = 0.05 and β = −1.

4.3 UEM learning function

The accuracy of determining the failure probability largely
depends on the precise classification of points near the
system’s state limit, where Y(x) = 0. To ensure this preci-
sion, Echard et al. [53] implemented the U-learning func-
tion, which was developed in the context of the AK-MCS
algorithm. This function identifies points that may poten-
tially cross the predicted separator of the metamodel
Ŷ(x) = 0 incorrectly.

In this article, an adaptation of this LSF has been intro-
duced. It involves the introduction of a minimum distance
between the studied point and the points already present
in the design of experiments. This adaptation aims to
achieve a balanced distribution of all samples in the space,
preventing excessive point concentration in a single area
and ensuring a uniform distribution. This learning func-
tion is defined as follows.

=
∣ ∣

U x
Y x

V x d x

ˆ

,

Y

EM

ens

ˆ
min

2

ens

( )
( )

( ) ( )
(25)

= −
∈

d x x xmin ,

x
dmin

DoE

2

d

( ) ‖ ‖ (26)

where Ŷens(x) represents the global prediction of the EM
at given x, V xYˆ

ens

( ) is the variance of the metamodel in x,
and d x

min
( ) is the minimal distance, calculated using the

Euclidean norm, between the point x and the nearest point
in the DoE.

4.4 Stopping criterion for the algorithm

The stopping criterion adopted in this method is based on
the evolution of the failure probability values over the last
five iterations and is proposed as follows:

=
⎛

⎝
⎜

− ⎞

⎠
⎟ < ≥

=

− − −

−ε

P P

P
ε imax , for 5,

k

f

i k

f

i k

f

i kmax

0,1,2,3,5

1

stop

(27)

where i represents the value of the last iteration and − −
Pf

i k 1

and −
Pf

i k represent the failure probabilities for iterations
(i−k−1) and (i−k), respectively.

6  Najib Zemed et al.



4.5 Calculation of failure probability and its
sensitivity

The UEM learning function is computed for all points in the
population. The point with the lowest value is then incor-
porated into the DoE. The best next point, denoted as X*, is
then determined by:

=
∈

X U x* argmin .

x S

EM
( ( )) (28)

At each iterative step, X* is identified and incorporated
into the DoE. Subsequently, metamodels are refined using
this new DoE, and the failure probability is calculated at
each iteration according to the following expression:

∑=
=

≤
P

I x

N

ˆ
.f

i

N
Y x i

1

ˆ
0

ens

( )( )

Then, the local sensitivity of the failure probability is
calculated according to the following expression:

∑=
∂
∂=

≤
S

σ

P

I x

N

f

f θ

ˆ
.θ

i

f i

N
Y x i x

x i
1

ˆ
0

i

i

i

ens

( )( ) (29)

5 Metamodels employed in the
proposed method

In this section, the theories of the metamodels used in the
ensemble metamodel method are presented, namely, ANN,
SVR, and Kriging.

5.1 ANN

ANNs, a subset of machine learning, form the cornerstone
of deep learning algorithms. They draw their name and
structure from the human brain, aiming to simulate how
the human brain processes information. These networks
consist of layers of nodes, including an input layer, one or
more hidden layers, and an output layer. Each node is
interconnected with others and is assigned an associated
weight (Wi), as depicted in Figure 1.

Each neuron transforms the input into an output using
an activation function, which has the role of introducing a

nonlinearity in the output of a neuron, and in this study,
we use the sigmoid function as activation function, which
is defined as follows:

=
+ −f x

e

1

1

.

x
( ) (30)

At the level of each neuron, a weighted set of inputs
from the previous layer is summed, and the activation
function is applied to this sum as follows:

∑= + =−
z w a b a zand f ,i

l

j ij

l

j

l

i

l

i

l

i

l1 ( ) (31)

where, wij

l represents the weight of the connection between
neuron j in layer l − 1 and neuron i in layer l, −

aj

l 1 is the
activation of neuron j in layer l − 1, and bi

l the bias term in
neuron i in layer l.

Considering that the sigmoid function is sensitive in
the interval [−1,1], we proceed to normalize all inputs and
outputs (targets) as described by Rafiq et al. [61]:

For inputs:

= ×
−
−

−S
X X

X X
2 1,

min

max min

(32)

where S is the normalized value of the variable X and Xmin

and Xmax are the minimum and maximum values of the
variables.

For targets:

= ×
−
−

−
T T

T T
out 2 1,

min

max min

(33)

where out is the normalized value of the targets T, and Tmin

and Tmax are the minimum and maximum values, respec-
tively, of the targets.

In this study, an ANN was employed, featuring three
hidden layers, each comprising 20 nodes. To determine the
problem’s weight values, the Levenberg-Marquardt (LM)
algorithm implemented in MATLAB was utilized to address
the nonlinear least squares problem.

5.2 SVR

SVR is an evolution of the SVM that expands its capabilities.
It introduces the concept of an ε-insensitive tube, as illu-
strated in Figure 2. Within this tube, deviations from the
target output are allowed without any penalties, while out-
side the tube, penalties are applied to deviations. SVR is
fundamentally a machine learning algorithm [36] that
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relies on a loss function Lε called e-insensitive function.
This function is designed to handle cases where we are
less concerned with small deviations within the ε tube
but want to penalize larger deviations outside it, making
SVR particularly useful for robust regression tasks. This
loss function Lε is defined as follows:

=
⎧
⎨
⎩ − −L y

y f x ε
max

0

.

ε( )
| ( )|

(34)

5.2.1 Linear case

In the linear case, f(x) is defined as follows:

= +Y x w x b, ,( ) 〈 〉 (35)

where .,.〈 〉 is the inner product operator, w ∈ n� is the
normal vector of the hyperplane defined by the regression
function, and b is the bias.

According to Vapnik [36,37], achieving a flat approxi-
mation linear function implies maximizing the margin,
and this objective can be accomplished by minimizing
the Euclidean norm of w, which means w 2‖ ‖ , then this
problem is formulated as a convex optimization problem:

⎧
⎨
⎩

− − ≤
− + + ≤

w

y b w x ε

y b w x ε

Min

1

2

S.t

,

, ,

i i

i i

2‖ ‖

〈 〉

〈 〉

(36)

where =i N1,…, : Number of training points.

This approximation assumes that all inputs exist inside
the ε-tube, but this is not always the case, so slack variables ξi,
ξi
* are introduced, and this optimization problem becomes:

∑

⎪

⎪

+ +

⎧
⎨
⎩

− − ≤ +
− + + ≤ +

≥

=
w C ξ ξ

y b w x ξ ε

y b w x ξ ε

ξ ξ

Min

1

2

* ²

S.t

,

, *

* and 0.

i

n

i i

i i i

i i i

i i

2

1

‖ ‖ ( )

〈 〉

〈 〉

(37)
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Input 1

Input 2

Input 3

Input n

Figure 1: ANNs architecture.

Figure 2: Curve of the SVR approximation function with the slack
variables.
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where the constant C > 0 plays a crucial role in determining
the balance between achieving a flat approximation (smallw)
and the tolerance level for deviations exceeding ε.

To solve the optimization problem with the linear con-
straints, the Lagrangian function is used:

∑

∑

∑

∑

= + +

− + − + +

− + + − −

− +

=

=

=

=

L
w

C ξ ξ

α ξ ε y b w x

α ξ ε y b w x

η ξ η ξ

Min

2

*

,

* * ,

* * ,

i

n

i i

i

n

i i i i

i

n

i i i i

i

n

i i i
i

2

1

2

1

1

1

∥ ∥
( )

( 〈 〉)

( 〈 〉)

( )

(38)

where α α η η, *, , *i i i i
are the Lagrange multipliers.

For optimality, according to the Lagrangian theory, it
is necessary for the partial derivatives of L with respect to
each variable to vanish.

∑∂
∂

= − − =
=

L

w
w α α x* 0,

i

n

i i i

1

{ }
( ) (39)

∑∂
∂

= − =
=

L

b
α α * 0,

i

n

i i

1

{ }
( ) (40)

∑∂
∂

= − − + =
=

L

ξ
α η C 0,

i i

n

i i

1

{ }
(41)

∑∂
∂

= − − + =
=

L

ξ
α η C

*

* * 0.

i i

n

i i

1

{ }
(42)

To solve the Lagrangian optimization in Eq. (38), it is
preferable to solve it in its dual formulation, by substi-
tuting Eq. (39) into Eq. (42) in Eq. (38), yields the dual for-
mulation, which depends only on αi:

∑

∑ ∑

∑⎪
⎪

= − − −

+ − − +

⎧
⎨
⎩

− =

∈

=

= =

=

L α α x x α α

y α α ε α α

α α

α α C

Max

1

2

* , *

* *

S.t

* 0

, * 0, .
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i i i j j j
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i i i

i

n

i i

i

n

i i

i i

, 1

1 1

1

( )〈 〉( )

( ) ( )

( )

[ ]

(43)

5.2.2 Nonlinear case

For the nonlinear case, a nonlinear projector Φ is used,
which has the objective of transforming the starting space
to a space of higher dimension than the starting one,

→Φ X: F. Also, the explicit equation of the projection

function Φ is not needed, thanks to the kernel trick which
allows us to use the kernel function K, defined as follows:

′ = ′K x x φ x φ x, , .( ) 〈 ( ) ( )〉 (44)

This function K represents the dot product between
two projections. In this context, the Lagrangian optimiza-
tion problem can be expressed as follows:

∑

∑ ∑

∑⎪
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= − − −

− + + −

⎧
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(45)

From Eq. (39), and considering the projection function
φ for the nonlinear case, the expression of the weight
vector is given as follows:

∑= −
=

w α α φ x* .

i

n

i i i

1

( ) ( ) (46)

To calculate the offset b, the Karush–Kuhn–Tucker
condition [62] are utilized, These conditions state that the
product between the constraints and the Lagrange multi-
pliers must equal zero at the optimal solution. This implies:

∑=
⎛

⎝
⎜ − − −

⎞

⎠
⎟

≠ ≠

=
b y α α K x x ε

α α C

* , if

0 and ,

i

j

n

j j j i

i i

1
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( ) ( )

(47)

∑=
⎛

⎝
⎜ − − +

⎞

⎠
⎟

≠ ≠

=
b y α α K x x ε

α α C

* , if

* 0 and * .

i

j

n

j j j i

i i

1
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( ) ( )

(48)

Then, the approximation function is written as:

∑= − +
=

Y x α α k x x bˆ * , .

i

n

i i i

1

( ) ( ) ( ) (49)

5.3 Kriging metamodel

The Kriging model, a nonlinear interpolation meta-model
developed for Geostatistics by Matheron [63], also known
as Gaussian process, is a statistical interpolation method
employed to predict or estimate unknown values within a
given space by utilizing observations made at various
points within that space. This approach is based on estab-
lishing a stochastic random field that simulates the
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behavior of the limit function. Subsequently, the technique
known as the best linear unbiased predictor (BLUP) is uti-
lized to optimally estimate the value of this model at a
specific point. The Kriging function is written as a realiza-
tion of a random function as described by [64].

= +G x F x β z x ,

T( ) ( ) ( ) (50)

where =F x f x f x,…,
p1

( ) [{ ( )} { ( )}]represents the basic func-
tions and =β β β,…,

p1

{ } is the vector of regression coeffi-
cients, and in this article, ordinary Kriging is chosen, which
means that F x( ) is a vector of ones and the product

=F x β βT( ) is a scalar.
Z(x) is a stationary Gaussian process that has an

unknown form, zero mean and the following covariance
functions between two points of space:

=x x R x xcov , σ , ,i j θ i j
2( ) ( ) (51)

where σ is the variance of the process and σ R x x,θ i j
2 ( ) is the

autocorrelation function between the points xi and xj.
In this type of Kriging, the Gaussian process is sta-

tionary, which means that the autocorrelation function R
depends only on the difference between the points and on
a set of hyperparameters ∈ +θ

n� , and this correlation
model can be formulated as follows:

∏= − −
=

R x x θ x x, exp ,θ i j

l

N

l i

l

j

l

1

2

0

( ) ( ( ) )
( ) ( ) (52)

where i, j = 1,., n, with n representing the number of
random variables, and N0 denoting the number of points
in the design of experiments.

The identification of the hyperparameters β σ, , and θ

can be determined using the maximum likelihood method
defined as follows:

=
∣ ∣

⎡
⎣− −

− ⎤
⎦

−L

πσ R θ
σ

Y β R θ Y

β

1

2

exp

1

2

1

1 ,

n

T

2

1

2

2

1

( ) ( )
( ) ( ) (

)

(53)

where =R θ R x x,θ i j( ) ( ) is the matrix of correlation
between each pair of points of the design of experiments,
and it is a symmetric correlation matrix and 1 is the vector
of size n and filled with 1.

Then, since maximizing this likelihood is equivalent to
minimizing its opposite natural logarithm, the first-order
optimality conditions for this likelihood logarithm is used
to determine the two estimations of the parameters β
and σ2.

⎧
⎨
⎩

∇ − =
∇ − =

L β σ θ

L β σ θ

log , , 0

log , , 0.

β

σ

2

2

2

( )

( )
(54)

These two equations lead to:

= − − −β F R θ F F R θ Fˆ
,

T T1 1 1( ( ) ) ( ) (55)

= − −− −σ
n

Y β R θ Y βˆ

1

1 1 .

2 1 1( ) ( ) ( ) (56)

However, the two parameters in Eqs. (55) and (56)
depend on the correlation parameter θ, so it is first neces-
sary to obtain it using maximum likelihood estimation:

= −θ L β σ θˆ
arg min log , , .θ

2( ) (57)

By expanding the optimization problem of the Eq. (57)
and eliminating the constant terms, the likelihood function
is reduced to:

= ⎛
⎝

⎞
⎠θ R θˆ

arg min det σ̂ .θ
n

1

2( ( )) (58)

After the determination of the parameter θ, the best
linear unbiased predictor (BLUP) is used to determineG xˆ( )

the estimation of the response G(x) and to determine σ x
Gˆ
2( )

the variance of G xˆ( ) at the point x.

= + −−G x β r x R θ Y βˆ
1 ,

T 1( ) ( ) ( ) ( ) (59)

where = =r x R x x,θ i i nˆ
1, … ,

( ) { ( )}

= + −σ x σ u x R θ1 1 1 ,

G

t t
ˆ

2 2 1( ) ( ( ) ( ( ) ) (60)

where = −−u x R θ r x1 1

t 1( ) ( ) ( ) and 1 is the vector of size n
and filled with 1.

To build the Kriging model in this article and to solve
the global optimization problem of Eq. (58), which is com-
plex and cannot be solved analytically, an optimization
algorithm is developed in MATLAB to solve this problem.

6 Algorithm of the proposed
methodology

The methodology developed in this article for reliability
analysis and sensitivity to reliability is organized into three
main stages. The implementation details of this method are
described below and illustrated in Figure 3.

6.1 Stage 1: convergence analysis and
numerical validation

This stage holds paramount significance within our meth-
odology, aiming to validate the FE model and determine
the optimal mesh to use. The first substage involves
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validating the obtained results by comparing them with
analytically calculated results. Subsequently, the second
substage aims to determine the optimal mesh size. It is well
known that a finer mesh yields more precise results, albeit
often at the cost of longer computational time. Therefore, a
convergence study becomes necessary, employing various
mesh sizes to ascertain the optimal size that provides both
adequate accuracy and reasonable computation time.

Moreover, in the absence of precise analytical results,
it is conceivable to assess the model’s validation and conver-
gence by comparing it to other established finite element

models based on different theories or concepts. Alternatively,
running it within a different finite element software is also a
viable approach.

6.2 Stage 2: reliability analysis

The objective of this stage is to achieve a precise estimation
of failure. It includes the following steps:
1. Generate the Monte Carlo population S using Latin
hypercube sampling (LHS) technique.

Figure 3: Algorithm of the methodology used for calculating the reliability and sensitivity of composite materials.
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2. Select from S a number N0 (e.g., N0 = 12) of points X =

{X1,…,XN
0

}, and calculate the corresponding system
responses for the initial N0 points, Y = {Y1,…,YN

0

};
3. Build the three metamodels Kriging–ANN–SVR using {X,

Y} and determine the metamodel mean Y xˆ

ens
( ) and its

variance V xYˆ ens
( )

4. Estimate the failure probability Pf using the equation:

∑≈
=

≤
P

I x

N
.f

i

N
Y x i

1

ˆ
0

ens

( )( ) (61)

5. Evaluate the stopping criterion in Eq. (46). If the condi-
tion is met, proceed to the next stage; otherwise, find the
best point X* from all points in S to add it to the DoE, by
minimizing the learning function UEM. Then calculate the
response Y(X*). Next, update the = ∪X X X*{ },
= ∪Y Y G X*{ ( )} and return to step (3).

6. Calculate the coefficient of variation of Pf using Eq. (11)
and check if CoV < 0.05 proceed to stage 3; otherwise,
expand the population by adding Snew to S, and return
to step (1).

6.3 Stage 3: reliability sensitivity analysis

Once the failure probability calculation algorithm is com-
pleted, the sensitivity of the failure probability with respect
to a given parameter θi is estimated using the following
expression:

∑=
∂
∂=

≤
S

σ

P

I x

N

f

f θ

ˆ
.θ

i

f i

N
Y x i x

x i
1

ˆ
0

i

i

i

ens

( )( ) (62)

7 Numerical results and discussion

Numerical analysis was conducted on two graphite/epoxy
T300/5208 composite plates examined by [65]. The first com-
posite plate is characterized by an antisymmetric angle-ply
configuration [−45°, 45°, −45°, 45°], subjected to a uniformly
distributed transverse load. The second composite plate adopts
a symmetric cross-ply arrangement [0°, 90°, 90°, 0°], and it
experiences uniaxial loading on one side only.

Reliability analysis for these two applications was con-
ducted using three different methods to ensure the relia-
bility of the results and facilitate comparisons between
these methods. The three methods employed are the MCS
method, the proposed method in this article, and the well-
known AK-MCS method [53], which serves as a reference for
new approaches based on machine learning. It is worth
noting that, for the AK-MCS method, we utilized its proposed

stopping criterion rather than its original one to ensure a
fair and consistent comparison.

Local sensitivity analysis was conducted to assess the
sensitivity of failure probability with respect to changes
in the mean and standard deviation of input variables.
This sensitivity was calculated using the reliability results
obtained from the three methods employed to evaluate the
laminate’s reliability. A positive sensitivity indicates that
when the mean of a variable increases, the probability of
failure also increases, while a negative sensitivity suggests
the opposite, namely, that an increase in the mean of a
variable decreases the probability of failure.

7.1 Techniques and applications utilized

7.1.1 Tools and software

The simulationswere conductedusing theANSYSAPDL software
with the SHELL181 finite element, which provides six degrees of
freedom at each node, as illustrated in Figure 4. This software
was used to model the laminates. Furthermore, the necessary
codes for performing reliability analysis and sensitivity analysis
were developed within the MATLAB environment. A coupling
between the two software tools was established.

Figure 4: Quadrilateral four-node shell element in ANSYS software
(SHELL181).
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This element is based on the FSDT, which assumes that
the transverse deformation through the thickness is con-
stant and also takes into account the transverse shear dis-
placement. The parameter settings and assumptions used
for this element in ANSYS are as follows:
– KEYOPT(1) = 0: This parameter is set to include both

membrane forces and moments in the calculation of
the element stiffness.

– KEYOPT(3) = 0: It is set to zero to utilize reduced inte-
gration, which reduces computational time while main-
taining acceptable accuracy.

– KEYOPT(5) = 1: This option selects the standard formula-
tion of the shell under the FSDT theory.

– KEYOPT(8) = 3: By setting this parameter to 3, results are
computed at the top, bottom, and mid-plane of each
layer, allowing us to subsequently assess failure criteria
at three points for each layer, aiming to ensure more
reliable results.

– KEYOPT(9) = 0: No subroutine is used to provide initial
thickness, meaning that thickness data is directly defined
within the model.

– KEYOPT(10) = 0: By default, the normal stress is assumed
to be zero.

– KEYOPT(11) = 0: The standard orientation axes of the
element are used by default.

7.1.2 Transformation of stress to the local coordinate
systems of each laminate layer

In the context of evaluating failure criteria, it is imperative
to analyze stresses and strains with respect to the material
axes specific to each constituent layer of the laminate.
However, it is common for the intrinsic axes of the lami-
nate not to align with the principal axes of individual
layers. Since the stresses predicted by ANSYS are calculated
with respect to the global axes (σxx, σyy, σzz, τyz, τxz, τxy), a
transformation using MATLAB is performed to determine
the principal stresses (σ1, σ2, σ3, σ4, σ5, σ6) for each lami-
nate. This transformation is carried out using the following
matrix:

7.2 Convergence analysis and validation of
the FE model

A FE validation study was conducted to confirm the accu-
racy of the model. Furthermore, a convergence study was
carried out by varying the mesh size (2 × 2), (4 × 4), (6 × 6),
(8 × 8), and (10 × 10) to determine the optimal mesh,
allowing for precise analytical results while minimizing
resource utilization and computation time. Precise deflec-
tion values for the plates were extracted from the research
of Reddy and Pandey [65,66]. The properties of the epoxy
graphite material T300/5208 and the applied force for this
validation are presented in Table 1.

The results, presented in Table 2, indicate that the max-
imum deflection values obtained from numerical simula-
tions of the plate are nearly equal to the exact solutions.
This confirms the validation of the FE-based model. Further-
more, in the analysis of results convergence based on mesh
size, the choice was made to use the (8 × 8) mesh for all
subsequent steps. This selection is justified by its ability to
provide sufficiently accurate results compared to the exact
solution while exhibiting minimal differences compared to
the next mesh size, which is (10 × 10).

7.3 Example 1: Composite plate under
Uniformly distributed transverse load

The first example involves a laminated composite plate con-
sisting of 4 layers with an antisymmetric angular arrange-
ment [−45°, 45°, −45°, 45°] made of graphite/epoxy T300/5208,
as depicted in Figure 5. This laminate is simply supported
at its edges and subjected to a uniformly distributed load over
its surface. Dimensional characteristics such as length, width,
and thickness, as well as the properties of the graphite/epoxy
material (elasticity modules in different directions, Poisson’s
ratio in direction 12, maximum strengths in different direc-
tions), and the applied surface force are all considered as
random variables in this example. The probability distribu-
tions of these variables are presented in Table 3.
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7.3.1 Reliability analysis of the composite plate

The reliability results for the laminate are presented in
Table 4. The exact probability was computed using the
MCS method with 100,000 simulations. It is noteworthy
that the proposed method yielded results very close to the
exact value, with an estimation error of only 2.27% com-
pared to the MCS method. Furthermore, it is important to
highlight that the proposed method required only 102 simu-
lations to achieve this probability, which is significantly
fewer than the simulations needed by the AK-MCS method.

Figure 6 illustrates the evolution curve of the esti-
mated failure probability using the proposed method and

the AK-MCS method. It can be observed that the proposed
method rapidly converged to the exact solution starting
from the 86th iteration, and the algorithm did not require
many simulations to meet the stopping criterion, as it
reached it after only about 16 additional simulations. In
contrast, the AK-MCS method required a much higher
number of simulations to meet the same stopping criterion.

Figure 7 presents the evolution of weighting coeffi-
cients associated with the three metamodels used in the
proposed method. Overall, it can be observed that the Kri-
ging metamodel dominates in the initial and final segments
of the curve, while in the central part of the curve, covering
approximately one-third, the SVR metamodel takes prece-
dence at certain points. On the other hand, the ANNs meta-
model consistently maintains low weights in comparison to
the other two, except in 3 out of the 102 iterations where it
outperforms the other two metamodels.

7.3.2 Sensitivity analysis of the composite plate

Figures 8 and 9, respectively, depict the sensitivity of
failure probability regarding the mean and standard devia-
tion of variables. It is clearly observed that the thickness t

Table 1: Applied force and mechanical properties of epoxy graphite material T300/5208

Parameter Description Unit Value

E11 Elastic modulus in the 11 direction MPa 132,500
E22 Elastic modulus in the 22 direction MPa 10,800
v12 Poisson’s ratio in the 12 direction — 0.24
G12 Elastic modulus in the 12 direction MPa 5,700
G13 Elastic modulus in the 13 direction MPa 5,700
G23 Elastic modulus in the 23 direction MPa 3,400
L Length of the laminate m 0.2286
l Width of the laminate m 0.127
t Thickness of the laminate m 0.000127
XT Tensile strength of the laminate in the 11 direction MPa 1,515
Xc Tensile strength in the 22 and 33 directions MPa 1,697
YT & ZT Compression strength in the 22 and 33 directions MPa 43.8
Yc & Zc Compression strength in the 22 and 33 directions MPa 43.8
R Shear strength in the 23 direction MPa 67.6
S & T Shear strength in the 13 and 12 directions MPa 86.9
P Applied surface force MPa 0.000689476

Table 2: Results of the study on FE model validation and convergence

Laminate Solution found by FEM (mm) Exact solution (mm) [58] Error (%)

Mesh (2 × 2) (4 × 4) (6 × 6) (8 × 8) (10 × 10) — —

[−45°, 45°, −45°, 45°] 2.6740 2.8148 2.7713 2.7654 2.7634 2.7609 0.0877
[0°, 90°, 90°, 0°] 5.4153 5.8615 5.8451 5.8364 5.8323 5.8166 0.2699

Figure 5: Composite plate under uniformly distributed transverse load.
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of the laminate layers has a significant impact on the
failure probability. Furthermore, given its positive sensi-
tivity to the mean, it can be affirmed that it positively
contributes to the increase in the failure probability. Vari-
ables such as Young’s moduli E11 and E22, as well as the
maximum strengths YT/ZT and YC/ZC, length L, width l, and
force P exhibit almost the same level of impact. Among
these, E22, L, l, and P significantly contribute to the failure
probability, while E11, YT/ZT, and YC/ZC have a reducing

Table 4: Results of reliability analysis for the antisymmetric angle-ply
composite [−45°, 45°, −45°, 45°]

Method Number of calls Pf Error (%)

MCS 100,000 0.009131 —

AK-MCS [53] 12 + 159 = 171 0.009596 5.09
Proposed method 12 + 90 = 102 0.009339 2.27

Table 3: Random variable distribution of the antisymmetric angle-ply [−45°, 45°, −45°, 45°]

Variable Description Unit Mean value Standard deviation Distribution

E11 Elastic modulus in the 11 direction MPa 132,500 13,250 Normal
E22 Elastic modulus in the 22 direction MPa 10,800 1,080 Normal
v12 Poisson’s ratio in the 12 direction — 0.24 0.024 Normal
G12 Elastic modulus in the 12 direction MPa 5,700 570 Normal
G13 Elastic modulus in the 13 direction MPa 5,700 570 Normal
G23 Elastic modulus in the 23 direction MPa 3,400 340 Normal
L Length of the laminate m 0.2286 0.02286 Normal
l Width of the laminate m 0.1270 0.002 Normal
t Thickness of the laminate m 0.000127 0.0000127 Normal
XT Tensile strength of the laminate in the 11 direction MPa 1,515 151.5 Normal
XC Tensile strength in the 22 & 33 directions MPa 1,697 169.7 Normal
YT & ZT Compression strength in the 22 & 33 directions MPa 43.8 4.38 Normal
YC & ZC Compression strength in the 22 & 33 directions MPa 43.8 4.38 Normal
R Shear strength in the 23 direction MPa 67.6 6.76 Normal
S & T Shear strength in the 13 & 12 directions MPa 86.9 8.69 Normal
P Applied surface force MPa 0.0035 0.00035 Gumbel

Figure 6: Evolution of probability for example 1.
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effect on the failure probability. As for the remaining vari-
ables, their impact on the failure probability is negligible.

To enhance reliability and reduce the probability of
failure of this composite plate, it is imperative to take
appropriate measures. Based on the results of our sensi-
tivity analysis, it is evident that enhancing the robustness
of critical variables is essential. Specifically, by prioritizing
the optimization of the thickness t of the laminate layers
and selecting high-quality composite materials character-
ized by high Young’s modulus E11 and optimal maximum
strengths (YT/ZT and YC/ZC), while ensuring that dimensions
(length and width) align with the required specifications, it

becomes feasible to significantly diminish the probability
of failure. This proactive approach will bolster the overall
resilience of the structure and promote a more dependable
performance of the composite plate.

7.4 Laminates with hole under in-plane
loading

The second example is a laminated composite plate com-
prising 4 layers, arranged in a symmetric cross-ply config-
uration [0°, 90°, 90°, 0°], made of graphite/epoxy T300/5208,

Figure 7: Evolution of weight contribution of metamodels for example 1.

Figure 8: Sensitivity of failure probability to the mean of variables for example 1.
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and featuring a circular hole at the center of the plate. This
laminate is clamped on one side and simply supported on
the other, while being subjected to a linear tensile load on
that side, as illustrated in Figure 10.

In the context of this example, given the absence of an
analytical solution to validate the FE model, the structure was
modeled using two types of predefined FEs in the ANSYS
software, namely, shell181 and shell281. A comparison of
the displacement results for the node located at the center

Figure 9: Sensitivity of failure probability to the standard deviation of variables for example 1.

L

t

x

Nx

Figure 10: Composite laminates with a hole under in-plane loading.

Table 5: Random variable distribution of the symmetric cross-ply [0°, 90°, 90°, 0°]

Variable Description Unit Mean value Standard deviation Distribution

E11 Elastic modulus in the 11 direction MPa 13,2500 13,250 Normal
E22 Elastic modulus in the 22 direction MPa 10,800 1,080 Normal
v12 Poisson’s ratio in the 12 direction — 0.24 0.024 Normal
G12 Elastic modulus in the 12 direction MPa 5,700 570 Normal
G13 Elastic modulus in the 13 direction MPa 5,700 570 Normal
G23 Elastic modulus in the 23 direction MPa 3,400 340 Normal
L Length of the laminate m 0.2286 0.02286 Normal
l Width of the laminate m 0.127 0.002 Normal
d Subtracted hole diameter m 0.0254 0.00254 Normal
t1 Thickness of laminate 1 m 0.000127 0.0000127 Normal
t2 Thickness of laminate 2 m 0.000127 0.0000127 Normal
t3 Thickness of laminate 3 m 0.000127 0.0000127 Normal
t4 Thickness of laminate 4 m 0.000127 0.0000127 Normal
θ1 Fiber orientation in laminate 1 ° 0 5 Normal
θ2 Fiber orientation in laminate 2 ° 90 5 Normal
θ3 Fiber orientation in laminate 3 ° 90 5 Normal
θ4 Fiber orientation in laminate 4 ° 0 5 Normal
Nx Linear force applied MN/m 0.045 0.0045 Gumbel
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of the edge under a uniformly distributed load revealed con-
sistency between the two approaches.

Regarding meshing, a specific strategy was employed,
with an increase in density near the central hole and a
decrease in other areas. To assess mesh convergence, var-
ious mesh sizes were utilized, gradually decreasing. The
optimal mesh size was chosen by observing that the lateral
displacement results of the specified node showed no

Table 6: Results of reliability analysis for the symmetric cross-ply [0°,
90°, 90°, 0°]

Method Number of calls Pf Error (%)

MCS 50,000 0.0339 —

AK-MCS [53] 12 + 241 = 253 0.0396 16.81
Proposed method 12 + 142 = 154 0.0308 9.14

Figure 11: Evolution of probability for example 2.

Figure 12: Evolution of weight contribution of metamodels for example 2.
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significant improvement for smaller meshes, while main-
taining stability for the larger mesh.

In this example, the maximum strengths in different
directions are considered constant and are presented in
Table 1. The variables in this problem are the length, the
width, the thickness of each layer, the radius of the hole,
the fiber orientation for each layer, the elastic modulus in
different directions, Poisson’s ratio in direction 12, and the
applied linear force. The probability distributions of these
variables are presented in Table 5.

7.4.1 Reliability analysis of the composite plate

The reliability results for the laminate are presented in
Table 6. The exact probability was computed using the
MCS method with 50,000 simulations. It is observed in
the table that the proposed method yielded an acceptable
result with an error of 9.14%, and it achieved this with only
154 simulations. In contrast, the AK-MCS method required
a larger number of simulations to produce a result with a
greater error than the proposed method.

Figure 13: Sensitivity of failure probability to the mean of variables for example 1.

Figure 14: Sensitivity of failure probability to the standard deviation of variables for example 2.

Reliability and sensitivity assessment of laminated composite plates  19



The evolution of failure probability as a function of the
number of simulations is presented in Figure 11, illus-
trating the trajectory of the estimated failure probability
using both our proposed method and the AK-MCS method.
It is remarkable that our method converged to the exact
solution by the 154th iteration, while the AK-MCS method
required 253 simulations to reach the same stopping cri-
terion. Therefore, it is encouraging to note that our method
required a relatively modest number of simulations, espe-
cially considering the large number of random variables
involved, totaling 18 variables.

Figure 12 shows the evolution of the weighting coeffi-
cients of the three meta-models used in the proposed
method. In this example, the Kriging meta-model does
not dominate as much as in the previous example. In
fact, it can be observed that the three metamodels almost
equally contributed throughout the process. This shows the
advantage of this approach, which combines the strengths
of each meta-model by assigning them different weights
based on their accuracy.

7.4.2 Sensitivity analysis of the composite plate

Figures 13 and 14, respectively, illustrate the sensitivity of
failure probability concerning the mean and standard
deviation of variables. It is evident that the mechanical
properties of the laminates have a negligible impact on
the probability of failure. However, regarding the thick-
ness of the laminates, only the thicknesses t2 and t3, corre-
sponding to laminates with fibers oriented at 90°, have
moderate and negative effects on the probability of failure.
Concerning the dimensions of the laminate, the length L of
the laminate has no effect, while the width and hole dia-
meter have a significant impact on the probability of
failure, with negative and positive effects, respectively.

As for the fiber orientation angles, they have no effect
on the probability of failure when their mean changes.
However, for variations in their standard deviations, angles
θ2 and θ3 have an impact on the probability of failure.
Finally, just like in the first example, the applied force has
a substantial impact as a contributor to the probability of
failure.

According to the results of our sensitivity analysis,
to enhance the reliability and reduce the probability of
failure of this composite plate, it is essential to decrease
the hole diameter and increase the width of the composite,
as these adjustments have a significant impact on the prob-
ability of failure. In addition, a slight increase in the thick-
ness of the 90° oriented fiber layers can also contribute to
strengthening the structure.

8 Conclusion

The new reliability methodology for laminated composites
was presented, cleverly combining MCS with a metamodel
resulting from the fusion of three approaches: ANN, SVM,
and Kriging. This methodology demonstrated remarkable
accuracy while minimizing the number of simulations
required to estimate the probability of failure. Its efficiency
is undeniable. However, it is important to note that the
accuracy of the estimationmay vary depending on the quality
of the metamodels used, as shown in our second example
where the precision of the metamodels slightly decreased.
Thus, ensuring the robustness of the metamodels is essential
to guarantee reliable results. It is important to emphasize that
the failure criteria used in our analysis may not always accu-
rately reflect the actual behavior of composite materials in
complex situations. The accuracy of these criteria should be
considered in the interpretation of the results.

In addition, local sensitivity was evaluated, highlighting
the critical variables that most influence the probability of
failure. This rigorous analysis has allowed us to recommend
essential optimization measures to strengthen reliability
and reduce the probability of failure of composite plates.
In particular, it is imperative to prioritize the optimization
of the thickness of the laminated layers, to choose high-
quality composite materials, and to ensure that the dimen-
sions strictly meet the required specifications. These actions
aim to guarantee optimal performance of laminated com-
posite materials, even in uncertain situations, and to
strengthen their structural integrity.

In summary, this study opens valuable perspectives for
improving design and decision-making in the field of laminated
composite materials, while ensuring reliable performance in
the face of uncertainty. It encourages further research to
further refine the reliability and sensitivity methodologies
applicable to these crucial materials in modern engineering.
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