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Abstract: This paper deals with the dynamic behavior of
curved-in-plane bridges where the effect of the bridge cur-
vature radius, the moving load (vehicle) speed, the truck
cant angle, thedeck surface conditions and,mainly, the re-
sponse accuracy depending on the vehicle model used are
investigated. Besides the above parameters, the influence
of several loadingmodels is studied as well, especially the
models of a concentrated load, a damped mass-load, a se-
quence of two concentrated loads anda real vehicle aswell
as a damped vehicle, where itswidth is taken into account.
A 3-DOFmodel is considered for the analysis of the bridge,
while the theoretical formulation is based on a continuum
approach, which has been widely used in the literature to
analyze such bridges.

Keywords: Bridge dynamics; curved bridges; moving
loads; damped vehicle

1 Introduction
Numerous studies have been reported during the last
100 years dealing with the dynamic response of railway
bridges and later of highway bridges, under the influence
of moving loads. Extensive references on the literature for
this subject can be found in the excellent book of Frýba [1].

Two early contributions in this area presented by
Stokes [2] and Zimmerman [3] are very interesting. In 1905,
Krýlov [4] presented a complete solution to the problem
of the dynamic behavior of a prismatic bar under a load
of constant magnitude moving with constant velocity. In
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1922, Timoshenko [5] solved the same problem but for a
harmonic pulsating moving force. Another pioneer work
on this subjectwas presented in 1934 by Inglis [6], inwhich
numerous parameters were taken into account. In 1951,
Hillerborg [7] presented an analytical solution to the pre-
vious problem by means of the Fourier method.

Despite the availability of powerful computers, most
of the methods used today for analyzing bridge vibration
problems are essentially based on the Inglis’s or Hiller-
borg’s early techniques. Relevant publications are ones by
Stending [8], Honda et al. [9], Gillespi [10], Green and Ce-
bon [11], Lee [12], Michaltsos et al. [13], Xu and Genin [14],
Foda and Abduljabbar [15] and Michaltsos [16, 17].

In engineering practice and despite the large number
of studies for over 50 years, bridges (as well as other struc-
tures) have been designed to account for dynamic loads by
just increasing the design live loads by a semi-empirical
“impact factor” or “dynamic load allowance”.

Recently,many research programs dealingwith the ef-
fect of the characteristics of a bridge or a vehicle on the dy-
namic response of a bridge have been developed such as:
the programs in U.S.A [18], in U.K. and Canada [19], in the
Organization for Economic Cooperation and Development
(O.E.C.D.) [20], in Switzerland [21] etc. Among the impor-
tant studies in this field, one must especially refer to the
important experimental research by Cantieri [22] dealing
with different models of moving loads.

Curved-in-plane bridges made from reinforced con-
crete or steel material are very common as elements of
highway access, ramps and viaduct interchanges, while
they are often the only solution in special territory condi-
tions. A wide field of research is the one of seismic behav-
ior of curved-in-plane bridges.

The majority of experimental and numerical research
on curved-in-plane bridges was done in the USA in the
late 1960s and early 1970s by Mozer and Culver [23], Cul-
ver [24] and Brennan [25]. This research continued in the
1990s by Yoo and Carbine [26]; Zureick et al. [27] and was
used to improve the American Association of State High-
way and Transportation Officials (AASHTO) specifications
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regarding this topic. The aforementioned research mainly
addressed steel bridges.

The seismic behavior of bridges is principally influ-
enced by the seismic response of the substructures, such
as bridge columns, abutments and foundations. In fact,
design codes such as the Eurocodes in Europe (CEN) [28]
and the Caltrans Seismic Design Criteria in California (Cal-
trans [29]) assume that the bridgedeck remains elastic dur-
ing a seismic event, and that the energy introduced by the
groundmotion is dissipated by either the substructures or
specific seismic isolation and/or damping devices.

Parametric analyses related to the seismic behavior of
curved bridges have been carried out recently by Abdel-
Salam and Heins [30], Wu and Najjar [31] and Linzell and
Nadakuditi [32] who highlighted that the radius of curva-
ture had the most significant influence on the seismic re-
sponse of curved-in-plane steel I-girder simply supported
bridges. Onemust alsomention thework of Dimitrakopou-
los and Zeng [33], who studied the interaction of trains in
curved-in-plane railway bridges and also the paper of Ton-
dini and Stojadinovic [34] who studied the seismic behav-
ior of curved-in-plane bridges.

After the two previous publications by Avraam and
Michlatsos [35] and Raftoyiannis and Michaltsos [36], the
present work deals with the dynamic behavior of curved-
in-plane bridges where the effect of the radius of curva-
ture, the vehicle speed, the truck cant angle, the deck sur-
face conditions and, mainly, the response accuracy de-
pending on the vehicle model used are thoroughly exam-
ined.

Besides the above parameters, the influence of several
loading models is studied as well, especially the models
of a concentrated load, a damped mass-load, a sequence
of two concentrated loads and a real vehicle as well as a
damped vehicle, where its width is taken into account. A
3-DOF model is considered for the analysis of the bridge,
while the theoretical formulation is based on a continuum
approach, which has been widely used in the literature to
analyze such bridges.

2 Mathematical formulation

2.1 The equations of motion

Let us consider the deck of a bridge that is shown in Fig. 1
by the gravity-center line of its cross-sections (OS).

The bridge is curved-in-plane with radius of curvature
R and thus, its length L is given by the relation L = R · α,
where α is the sectorial angle corresponding to length L.

Figure 1: Geometrical notations and displacements for a curved
bridge deck.

An arbitrary point A can be determined by the angle ϑ.
Assuming that the distance zM between the shear center
M and the gravity center S is very small compared to the
radius R, one can consider the torsionalmomentmx acting
about the gravity center axis (instead of the shear center
axis).

According to the theory of curved beams with
thin-walled cross-sections, the following equations are
valid [36]:

E Jzv′′′′ +
2 E Jz
R2 · v′′ + E JzR4 · v + cy v̇ + mv̈ = qy(︂

E Jy −
E Jω
R2

)︂
w′′′′ + G JdR2 · w′′ − E Jy − G JdR · ϕ′′ − E JωR

· ϕ′′′′ + czẇ + m ẅ = qz

E Jωϕ′′′′ − G Jd ϕ′′ − E JyR2 · ϕ + E JωR

· w′′′′ + E Jy − G JdR · w′′ + cϕϕ̇

+ Jpxϕ̈ = mx (1)

where qy, qz and mx are the internal forces developed in
the cross-sectionat x = R·α,while Jpx is the torsionalmass-
moment of inertia about the x-axis. In the present analysis,
we will proceed for the usual case where my = mz = 0 (for
the directions and axes x, y, z, see Fig. 1).

For the following analysis and in order to apply the
Galerkin method, a suitable set of expressions for the dis-
placements v, w, and φ is required.
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3 Set of expressions v,w, φ
Considering the case of a free vibrating beam and neglect-
ing, for instant, the effect of the torsion on the vertical
bending, eqs (1) become:

E Jzv′′′′ +
2 E Jz
R2 · v′′ + E JzR4 · v + cy v̇ + m v̈ = 0 (2a)

(︂
E Jy −

E Jω
R2

)︂
w′′′′ + G JdR2 · w′′ + czẇ + m ẅ = 0 (2b)

E Jωϕ′′′′ − G Jd ϕ′′ − E JyR2 · ϕ + E JωR

· w′′′′ + E Jy − G JdR · w′′ + cϕϕ̇ + Jpxϕ̈ = 0 (2c)

Equation (2a) shows that the lateralmotion is independent
of the other two, while the vertical and torsional ones are
coupled. Hence, one can set:

v(x, t) = Y(x) · Ty(t) (2d)

w(x, t) = Z(x) · Tz(t) (2e)

ϕ(x, t) = Φ(x) · Tz(t) (2f)

3.1 The lateral motion

Introducing eq. (2d) into eq. (2a), one obtains the following
uncoupled equations:

E IzY ′′′′(x) + 2 E Iz
R2 Y ′′(x) + E Iz

R4 Y(x) − mω
2
yY(x) = 0 (3a)

T̈y +
cy
m Ṫy + ω2

yTy = 0 (3b)

Solution of eq. (3a) gives the eigenshapes of the lateralmo-
tion:

Yn(x) = c1
(︂
sin λ1nx +

sin λ1nL
Sinh λ2nL

· Sinh λ2nx
)︂

(3c)

where : λ1n =

⎯⎸⎸⎷ 1
R2 +

√︃
mω2

yn
E Jz

, (3d)

λ2n =

⎯⎸⎸⎷− 1
R2 +

√︃
mω2

yn
E Jz

(3e)

and : ω2
yn =

E Jz
m ·

(︂
n2π2
L2 − 1

R2

)︂2

(3f)

3.1.1 The vertical-torsional motion

Introducing eqs (2e, 2f) into eqs (2b, 2c), one obtains the
following equations:(︂

E Jy −
E Jω
R2

)︂
Z′′′′ + G JdR2 · Z′′ − mω2

z Z = 0 (4a)

E JωΦ′′′′ − G Jd Φ′′ − E JyR2 · Φ + E JωR · Z′′′′

+ E Jy − G JdR · Z′′ − Jpxω2
z Φ = 0 (4b)

T̈z +
cz
m Ṫ + ω2

z Tz = 0 (4c)

Equation (4a) gives:

Zn(x) = c1
(︂
sin k1nx +

sin k1nL
Sinh k2nL

· Sinh k2nx
)︂

(4d)

where:

k1n =

⎯⎸⎸⎷ G Jd
2 (R2E Jy − EJω)

+

√︃(︂
G Jd

2 (R2E Jy − EJω)

)︂2
+

R2m ω2
zn

R2E Jy − EJω
(4e)

k2n =

⎯⎸⎸⎷− G Jd
2 (R2E Jy − EJω)

+

√︃(︂
G Jd

2 (R2E Jy − EJω)

)︂2
+

R2m ω2
zn

R2E Jy − EJω
(4f)

and

ω2
zn =

R2E Jy − EJω
R2m · n

2π2
L2 ·

(︂
n2π2
L2 + G Jd

R2E Jy − EJω

)︂
(4g)

The second of eqs (4) becomes:

EJωΦ′′′′
n − GJdΦ′′

n −
EJy
R2 Φn − ω2

znJpxΦn = −
EJy
R Z′′′′n

− EJy − GJdR Z′′n

The above due to the first of eqs (4) becomes:

EJωΦ′′′′
n − GJdΦ′′

n −
EJy
R2 Φn − ω2

znJpxΦn

= ζ1n sin k1nx + ζ2n sinh k2nx (5a)

where : ζ1n = k21n
(︂
−k21n

EJω
R + EJy − GJdR

)︂
(5b)

ζ2n = −k22n
(︂
k22n

EJω
R + EJy − GJdR

)︂
sin k1nL
sinh k2nL

(5c)

The solution of the above equation is:

Φn(x) = c1 sin µ1nx + c2 cos µ1nx + c3 sinh µ2nx
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+ cosh µ2nx + An sin k1nx + Bn cos k2nx (5d)

where:

An =
ζ1n

EJωk41n + GJdk21n − EJω/R2 − ω2
znJpx

(5e)

Bn =
ζ2n

EJωk41n − GJdk21n − EJω/R2 − ω2
znJpx

(5f)

µ1n =

⎯⎸⎸⎷− G Jd
2 E Jω

+

√︃(︂
G Jd
2 E Jω

)︂2
+
Jpx ω2

ϕn
E Jω

+ Jy
R2Jω

(5g)

µ2n =

⎯⎸⎸⎷ G Jd
2 E Jω

+

√︃(︂
G Jd
2 E Jω

)︂2
+
Jpx ω2

ϕn
E Jω

+ Jy
R2Jω

(5h)

The boundary conditions are: Φ(0) = Φ(L) = Φ′′(0) =
Φ′′(L) = 0, from which one can determine:

c2n = 0 (6a)

c4n = 0 (6b)

c1n =
−An(k21n + µ21n) sin k1nL + Bn(k22n − µ22n) sinh k2nL

(µ21n + µ22n) sin µ1nL
(6c)

c3n =
An(k21n − µ21n) sin k1nL − Bn(k22n + µ22n) sinh k2nL

(µ21n + µ22n) sinh µ2nL
(6d)

and finally:

Φn(x) = c1n sin µ1nx + c3n sinh µ2nx + An sin k1nx
+ Bn cos k2nx (6e)

4 The free vibrating bridge
The equations for the free motion of the bridge are:

E Jzv′′′′ +
2 E Jz
R2 · v′′ + E JzR4 · v + mv̈ = 0 (7a)

(︂
E Jy −

E Jω
R2

)︂
w′′′′ + G JdR2 · w′′ − E Jy − G JdR · ϕ′′

− E JωR · ϕ′′′′ + m ẅ = 0 (7b)

E Jωϕ′′′′ − G Jd ϕ′′ − E JyR2 · ϕ + E JωR · w′′′′ + E Jy − G JdR
· w′′ + Jpxϕ̈ = 0 (7c)

4.1 The horizontal motion

The first of eqs (7) is independent of the other two. There-
fore, the eigenfrequencies and shape functions are given
by eqs (3c, 3d, 3e, 3f).

4.2 The coupled vertical-torsional motion

In order to solve eqs (7b, 7c), one can search for a solution
of the form:

w(x, t) = W(x) · T(t) (8a)

ϕ(x, t) = Θ(x) · T(t) (8b)

Introducing eqs (8) into eqs (7b, 7c), the following differ-
ential system is obtained:

S1 ·W ′′′′ + G JdR2 ·W ′′ − S2 · Θ′′ − E JωR · Θ′′′′ − mω2W = 0
(9a)

E JωΘ′′′′ − G Jd Θ′′ − E JyR2 · Θ + E JωR ·W ′′′′ + S2 ·W ′′

− Jpxω2Θ = 0 (9b)

where : S1 = E Jz −
E Jω
R2 , S2 =

E Jz − G Jd
R (9c)

In order to apply the Galerkin procedure, one can set:

Wρ(x) = aρ1Z1(x) + aρ2Z2(x) + · · · + aρnZn(x) (10a)

Θρ(x) = bρ1Φ1(x) + bρ2Φ2(x) + · · · + bρnΦn(x) (10b)

where ai and bi are unknown coefficients to be determined
and Zi,Φi, are arbitrarily chosen functions of x, which sat-
isfy the boundary conditions. As such functions, the ex-
pressions given by eqs (4a) and (6e) are chosen. The func-
tionsWk and Θk, corresponding to the eigenfrequency ωk
are determined as follows.

Introducing eqs (10) into eqs (9), multiplying the out-
come successively the first by Z1, Z2, . . . , Zn and the sec-
ond by Φ1, Φ2, . . . , Φn, and integrating from 0 to L, one
obtains the following linear homogeneous system of equa-
tions with unknowns the coefficients aki and bki.

n∑︁
i=1

aρ i

⎛⎝S1 L∫︁
0

Z
′′′′

i Zσdx +
G Jd
R2

L∫︁
0

Z
′′

i Zσdx

+mω2
L∫︁

0

ZiZσdx

⎞⎠
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−
n∑︁
i=1

bρ i

⎛⎝S2 L∫︁
0

Φ
′′

i Zσ +
E Jω
R

L∫︁
0

Φ
′′′′

i Zσdx

⎞⎠ = 0

n∑︁
i=1

aρ i

⎛⎝E Jω
R

L∫︁
0

Z
′′′′

i Φσdx + S2
L∫︁

0

Z
′′

i Φσdx

⎞⎠
+

n∑︁
i=1

bρ i

⎛⎝E Jω L∫︁
0

Φ
′′′′

i Φσdx − G Jd

L∫︁
0

Φ
′′

i Φσdx

−
(︂
E Jy
R2 + ω2Jpx

)︂ L∫︁
0

ΦiΦσdx

⎞⎠ = 0 (11)

with σ = 1 to n and ρ = 1 to n.
Equations (11) form a linear system of homogeneous

equationswithunknowns aρ i and bρ i. For a non-trivial so-
lution of this system, the determinant of the coefficients of
the unknowns must be equal to zero, i.e.:⃒⃒

∆i j
⃒⃒
= 0 (12)

from which the eigenfrequencies of the bridge for coupled
motion can be determined.

Eliminating the first of eqs (11) and solving the remain-
ing equations, one can determine the constants ai (i =
2 to n) and bi (i = 1 to n), with respect to a1 and
thus, the expressions of the eigenfunctions corresponding
to vertical-torsional motion of the bridge.

4.3 The orthogonality conditions

Easily, through the known process, one can determine the
following orthogonality conditions for the eigenshapes de-
termined according to the previous paragraphs 3.1 and 3.2:

4.3.1 Orthogonality conditions for the lateral motion

L∫︁
0

YnYkdx =
{︃
0 for n = k
Γk for n ≠ k

(13)

4.3.2 Orthogonality conditions for the coupled
vertical-torsional motion

L∫︁
0

(mWnWk + JpxΘnΘk)dx =
{︃
0 for n = k
Γk for n ≠ k

(14)

5 The forced vibrating bridge

5.1 The horizontal motion

The equation of motion is:

E Jzv′′′′ +
2 E Jz
R2 · v′′ + E JzR4 · v + cy v̇ + m v̈

= qy(x, t) = q̄y(x) · f (t) (15)

One can search for a solution of the form:

v =
∑︁
n
Yn(x) · Tn(t) (16a)

where Yn(x) are the eigenshapes of the bridge given by
eq. (3a) and Tn(t) the time functions to be determined. In-
troducing eq. (16a) into eq. (15) one gets:

E Jz
∑︁
n
Y

′′′′

n Tn +
2 E Jz
R2

∑︁
n
Y

′′

n Tn +
E Jz
R4
∑︁
n
YnTn

+ cy
∑︁
n
Yn Ṫn + m

∑︁
n
Yn T̈n = q̄y f (t)

Since Yn(x) satisfies the equation of free motion eq. (3a),
the above expression becomes:

m
∑︁
n
Yn T̈n + cy

∑︁
n
Yn Ṫn + m

∑︁
n
ω2
ynYnTn = q̄y(x)f (t)

(16b)

Multiplying the above by Yρ and taking into account the
orthogonality condition, one concludes to the following
equation:

T̈ρ(t) +
cy
m Ṫρ(t) + ω

2
yρTρ(t)

= 1

m
L∫︀
0
Y2
ρdx

·
L∫︁

0

q̄y(x)Yρ(x)dx · f (t) (16c)

The solution of the above equation is given by the
Duhamel’s integral:

Tρ(t) =

L∫︀
0
q̄y(x)Yρ(x)dx

mω̄yρ
L∫︀
0
Y2
ρdx

·
t∫︁

0

e−β(t−τ)f (τ)

· sin ω̄yρ(t − τ) dτ

with : β = cy
2m , ω̄2

yρ = ω2
yρ − β2 (16d)

5.2 The lateral-torsional motion

The equations of motion are:(︂
E Jy −

E Jω
R2

)︂
w′′′′ + G JdR2 · w′′ − E Jy − G JdR · ϕ′′



The Influence of the Load Model and other Parameters on the Curved-in-Plane Bridges | 245

− E JωR · ϕ′′′′ + czẇ + m ẅ = q̄z(x)fz(t) (17a)

E Jωϕ′′′′ − G Jd ϕ′′ − E JyR2 · ϕ + E JωR · w′′′′ + E Jy − G JdR
· w′′ + cϕϕ̇ + Jpxϕ̈ = m̄x(x)fϕ(t) (17b)

One can search for a solution of the form:

w(x, t) =
∑︁
n
Wn(x) · Pn(t) (18a)

ϕ (x, t) =
∑︁
n
Θn(x) · Pn(t) (18b)

where Wn and Θn are the eigenshapes of the bridge given
by eqs (10a, 10b) and Pn(t) the time functions to be deter-
mined. Introducing eq. (18a, 18b) into eq. (17a, 17b) we get:

S1
∑︁
n
W

′′′′

n Pn +
GJd
R2
∑︁
n
W

′′

n Pn − S2
∑︁
n
Θ

′′

n Pn

− EJωR
∑︁
n
Θ

′′′′

n Pn + cz
∑︁
n
Wn Ṗn

+ m
∑︁
n
Wn P̈n = q̄z(x) · fz(t) (18c)

EJω
∑︁
n
Θ

′′′′

n Pn − GJd
∑︁
n
Θ

′′

n Pn −
EJy
R2
∑︁
n
ΘnPn

+ EJωR
∑︁
n
W

′′′′

n Pn + S2
∑︁
n
W

′′

n Pn

+ cϕ
∑︁
n
Θn Ṗn + Jpx

∑︁
n
Θn P̈n

= m̄x(x) · fϕ(t) (18d)

Since Wn and Θn satisfy the equations of the free motion
eq. (9a, 9b), the above eqs become:

m
∑︁
n
Wn P̈n + cz

∑︁
n
Wn Ṗn + m

∑︁
n
ω2
znWnPn

= q̄z(x) · fz(t) (19a)

Jpx
∑︁
n
Θn P̈n + cϕ

∑︁
n
Θn Ṗn + Jpx

∑︁
n
ω2
znΘnPn

= m̄x(x) · fϕ(t) (19b)

Multiplying eqs (19a) by Wρ and integrating from 0 to L,
next, eqs (19b) by Θρ and integrating from 0 to L, and tak-
ing into account that cϕ = czJpx/m, the above eqs become:

∑︁
n

L∫︁
0

mWnWρdx · (P̈n +
cz
m Ṗn + ω

2
znPn)

= fz(t)
L∫︁

0

q̄z ·Wρdx (20a)

∑︁
n

L∫︁
0

JpxΘnΘρdx · (P̈n +
cz
m Ṗn + ω

2
znPn)

= fϕ(t)
L∫︁

0

m̄x · Θρdx (20b)

The solution of the above system of equations is given by
the Duhamel’s integral:

Pρ(t) =

L∫︀
0
q̄zWρdx

ω̄zρ

(︃
m

L∫︀
0
W2
ρdx + Jpx

L∫︀
0
Θ2
ρdx
)︃ · t∫︁

0

e−β(t−τ) · fz(τ)

· sin ω̄zρ(t − τ) dτ +

L∫︀
0
m̄xΘρdx

ω̄zρ

(︃
m

L∫︀
0
W2
ρdx + Jpx

L∫︀
0
Θ2
ρdx
)︃

·
t∫︁

0

e−β(t−τ) · fϕ(τ) · sin ω̄zρ(t − τ) dτ (21)

where β = cz
2m , ω̄

2
zρ = ω2

zρ − β2.

6 The moving loads
In this section, the behavior of a curved-in-plane bridge
under the action of various types of loads,movingwith ve-
locity υ is studied. In Figs (2a,b) one can see the bridge and
its cross-section under the action of a concentrated load,
while in Figs (2c, 2d, 2e, 2f) the different loading cases stud-
ied herein are shown.

Usually, a track cant angle φ exists on the curved
parts of road bridges. This angleφ, which is important and
sometimes necessary in railway bridges, has not a signif-
icant influence on road bridges, since it is always smaller
than 5∘ (contrarily in railway bridges it may be up to 10∘).

Let us examine the influence of the angle φ on the al-
lowed safe speed υ of the moving load.

The equilibrium equation of the horizontal forces
gives: M·υ

2

R = µ M g+M g Sinϕ, which concludes to the fol-
lowing inequality for the allowed speed υ:

υ ≤
√︁
R · g · (µ + Sinϕ) (22)

The values of the coefficient of friction µ between car tires
– asphalt, given by the relative manuals are:

µ = 0.72 for dry surfaces
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Figure 2: Bridge geometry and various cases of moving load models.

µ = 0.35 for wet surfaces

In the plots of Fig. 3, one can see the influence of angle
φ on the load speed υ for both dry andwet deck surface for
three characteristic radius of curvature R = 50m (Fig. 3a),
R = 100 m (Fig. 3b) and R = 150 m (Fig. 3c)

In Table 1, the allowed speeds and the achieved in-
crease of the allowed speeds (in percentage) for ϕ = 5∘

and both for dry and wet deck surface for the above cho-
sen radius R are shown.

6.1 The concentrated moving load

In this case, the right side members of eqs (4) become:

qy =
M · υ2
R + eH

· δ(x − α) (23a)

qz = M · g · δ(x − α) (23b)

mx =
(︂
M · g · eH +

M · υ2
R + eH

· eV
)︂
· δ(x − α) (23c)

where δ is the Dirac delta function and α is the position of
the load P at time t.

6.1.1 The lateral motion

Introducing eq. (23a) into the right sidemember of eq. (15),
and following the process of paragraph 4.1, one concludes
to the following equation:

T̈ρ +
cy
m Ṫρ + ω

2
yρTρ =

1

m
L∫︀
0
Y2
ρdx

t∫︁
0

Mυ2
R + eH

Yρ(x)δ(x − α)dx
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Table 1:Maximum speeds for various R, φ and deck surface conditions.

R= 50m R= 100m R= 150m
φ 5∘ 0∘ % 5∘ 0∘ % 5∘ 0∘ %
dry 20.25 18.80 7.7 28.80 26.80 7.4 35.10 32.90 6.6
wet 15.10 13.20 14.4 21.30 18.65 14.3 26.10 22.90 13.9

(a)

(b)

(c)

Figure 3: The influence of track cant angle φ on the allowed speed υ
for various R.

= M υ2

m(R + eH)
L∫︀
0
Y2
ρdx

Yρ(α)

or finally:

T̈ρ +
cy
m Ṫρ + ω

2
yρTρ =

Mυ2

m(R + eH)
L∫︀
0
Y2
ρdx

Yρ(υt),

which has the solution:

Tρ =
Mυ2

m(R + eH)ω̄yρ
L∫︀
0
Y2
ρdx

·
t∫︁

0

e−β(t−τ)Yρ(υτ)Sinω̄yρ(t − τ) dτ (24)

with β and ω̄yρ from eq. (16).

6.1.2 The vertical-torsional motion

Introducing eqs (23b, 23c) into the right side members of
eqs (20a, 20b) and following the process of paragraph 4.2,
one concludes to the following equation:

P̈ρ +
cz
m Ṗρ + ω

2
zρPρ

=
M · g · Zρ(υ t) +

(︁
M · g · eH + Mυ2

R+eH eV
)︁
Θρ(υ t)

m
L∫︀
0
Z2ρdx + Jpx

L∫︀
0
Θ2
ρdx

which has the solution:

Pρ =
M · g · Zρ(υ t)(︃

m
L∫︀
0
Z2ρdx + Jpx

L∫︀
0
Θ2
ρdx
)︃ L∫︁

0

e−β(t−τ) · Zρ(υ τ)

· Sinω̄zρ(t − τ) dτ +
M · g · eH + Mυ2

R+eH eV(︃
m

L∫︀
0
Z2ρdx + Jpx

L∫︀
0
Θ2
ρdx
)︃

·
L∫︁

0

e−β(t−τ) · Θρ(υ τ) · Sinω̄zρ(t − τ) dτ (25)
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Figure 4: The damped mass-load.

6.2 The moving damped mass-load

Let us consider next themass-loadM of Fig. 4,movingwith
a constant velocity υ and supported through a suspension
system on wheels with mass mo.

This system is composed of an elastic spring with con-
stant kp and a damper with constant cp.

When the load, i.e., the system of masses M and mo is
on the left end of the bridge (at t = 0), the spring is stati-
cally deformed by P

kp =
M g
kp .

Considering axis (ϵ) as the reference system for mea-
suring the motion of the mass M (Fig. 4) and apply-
ing the Newton’s second law, one obtains: M z̈ = P −
kp
(︁
P
kp + z − w(α)

)︁
− cp[ż − ẇ(α)] or

M z̈ + cp ż + kpz = kpwe(α) + cpẇe(α)
where : we(α) = w(α) + eHϕ(α) (26a)

and φ is the angle at x = α and eH from Fig. 2. The above
relation can also be written as follows:

z̈ + 2 βp ż + ω2
pz = F(t) (26b)

where : F(t) = ω2
p[w(α) + eHϕ(α)] + 2 βp[ẇ(α) + eH ϕ̇(α)]

βp =
cp
2M , ω2

p =
kp
M (26c)

The solution of the above differential equation (26b) is
given by the following integral:

z(t) = 1
ω̄p

t∫︁
0

e−βp(t−τ)F(τ) · sin ω̄p(t − τ) dτ (26d)

with : ω̄p =
√︁
ω2
p − β2 (26e)

Applying the Leibnitz formula, according to which the

function f (x) =
b(x)∫︀
a(x)

R(x, t)dt, can be differentiated as fol-

lows: df (x)dx = R(x, b(x)) db(x)dx − R(x, a(x))
da(x)
dx +

b(x)∫︀
a(x)

∂R(x,t)
∂x dt,

equation (26d) gives successively:

ż(t) = 1
ω̄p

t∫︁
0

e−β(t−τ)F(τ) [ω̄p cos ω̄p(t − τ)

− βp sin ω̄p(t − τ)] dτ (27a)

z̈(t) = F(t) + 1
ω̄p

t∫︁
0

e−β(t−τ)F(τ) [(β2p − ω̄2
p) sin ω̄p(t − τ)

− 2βpω̄p cos ω̄p(t − τ)] dτ (27b)

Therefore, the right side members of eqs (1) become:

qy =
Mυ2
R + eH

· δ(x − α) (28a)

qz =
{︁
M(g − z̈) + mo[g − ẅ(α) − eH ϕ̈(α)]

}︁
· δ(x − α)

(28b)

mx =
{︁
M(g − z̈) + mo[g − ẅ(α) − eH ϕ̈(α)]

}︁
· eH · δ(x − α)

+ Mυ2
R + eH

· eV · δ(x − α) (28c)

6.2.1 The lateral motion

Introducing eq (28a) into the right side member of eq. (15),
one concludes to the solution of eq. (24).

6.2.2 The vertical-torsional motion

Introducing eqs (28b, 28c) into the right side members of
eqs (17a, 17b), one concludes to the following equations:

S1w′′′′ + GJdR2 w
′′ − S2ϕ′′ − E JωR ϕ′′′′ + czẇ + mẅ

=
{︁
(M + mo)g −Mz̈ − mo[ẅ(α) + eH ϕ̈(α)]

}︁
· δ(x − α) (29a)

E Jωϕ′′′′ − GJdϕ′′ − E JyR2 ϕ + E JωR w′′′′ + S2w′′ + cϕϕ̇

+ Jpxϕ̈ =
[︂{︀

(M + mo)g −Mz̈ − mo[ẅ(α)

+eH ϕ̈(α)]
}︁
· eH +

Mυ2
R + eH

· eV
]︂
· δ(x − α) (29b)

One can search for a solution in the form:

w(x, t) =
∑︁
n
Wn(x)Tn(t) (29c)
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ϕ(x, t) =
∑︁
n
Θn(x)Tn(t) (29d)

where Wn and Θn are the shape functions, according to
§3.2.

Following the procedure described in the preceding
sections, the following differential equation for the time
function Tρ(t) is obtained:

T̈ρ +
cz
m Ṫρ + ω

2
ρTρ =

1

m
L∫︀
0
W2
ρdx + Jpx

L∫︀
0
Θ2
ρdx

{︃
(M + mo)

· g ·Wρ(υt) −MWρ(υt)
∑︁
n
(Rn(υt)[ω2

pTn(t) + 2βp Ṫn(t)])

− M
ω̄ρ

[︃
ω2
pWρ(υt)

∑︁
n
Rn(υt)Q1n(t)

+2βpWρ(υt)
∑︁
n
Rn(υt)Q2n(t)

]︃
− moWρ(υt)

∑︁
n
Rn(υt)T̈(t)

−MeHΘρ(υt)
∑︁
n
(Rn(υt)[ω2

pTn(t) + 2βp Ṫn(t)])

− MeHω̄ρ

[︃
ω2
pΘρ(υt)

∑︁
n
Rn(υt)Q1n(t)

+2βpΘρ(υt)
∑︁
n
Rn(υt)Q2n(t)

]︃
+ Mυ2
R + eH

· eVΘρ(υt)
}︃
(30a)

where:

Rn(x) = Wn(x) + eHΘn(x)

Q1n(t) =
t∫︁

0

Tn(τ) · e−β(t−τ)Ξ(τ)dτ

Q2n(t) =
t∫︁

0

Ṫn(τ) · e−β(t−τ)Ξ(τ)dτ

Ξ(τ) = e−β(t−τ)
[︁
(β2p − ω̄2

p) sin ω̄ρ(t − τ)

−2βpω̄ρ cos ω̄ρ(t − τ)
]︀

(30b)

Clearly, a closed form solution of eq. (30a) is not pos-
sible. However, one can seek approximate solutions based
on previous pertinent works (Kounadis [37], Michalt-
sos [16]). A first approximate solution of eq. (30a), is ob-
tained by considering as loading the force P = Mg, that
leads to eqs (25). Introducing the known Pρ(t) instead of
Tn(t) in the right side member of eq. (30a), one can deter-
mine its solution according to Duhamel’s integral.

6.3 The moving vehicle

Let us consider next the vehicle of Fig. 5b, moving on the
curved bridge (see Fig. 5a)with constant speed υ. This case
of loading can be easily solved following the above proce-
dure with external loads:

qy =
(︂

M · υ2
4(R + eH − b)

+ M · υ2
4(R + eH + b)

)︂
· δ(x − α)

+
(︂

M · υ2
4(R + eH − b)

+ M · υ2
4(R + eH + b)

)︂
· δ(x − α + 2d)

(31a)

qz =
M · g
2 · δ(x − α) + M · g2 · δ(x − α + 2d) (31b)

mx =
(︂
M · g
4 + FceV4b

)︂
(eH + b) · δ(x − α)

+
(︂
M · g
4 − FceV4b

)︂
(eH − b) · δ(x − α)

+
(︂
M · g
4 + FceV4b

)︂
(eH + b) · δ(x − α + 2d)

+
(︂
M · g
4 − FceV4b

)︂
(eH − b) · δ(x − α + 2d) (31c)

Figure 5: The curved bridge (a), the moving vehicle (b) and the
damped vehicle (c).
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The first members of eqs (31a, 31b), and the first two of
eqs (31c) are valid for 0 ≤ t ≤ L/υ, while the second mem-
bers of eqs (31a, 31b), and the third and fourthmembers of
eqs (31c) are valid for 2d/υ ≤ t ≤ (L + 2d)/υ.

6.3.1 The lateral motion

Introducing eq. (31a) into the right sidemember of eq. (15),
and following the process of §4.1, one concludes to the fol-
lowing equation:

Tρ =
Qy

mω̄yρ
L∫︀
0
Y2
ρdx

⎧⎨⎩
⎛⎝ t∫︁

0

e−β(t−τ)Yρ(υτ)Sinω̄yρ(t − τ) dτ

⎞⎠

·
[︂
1 − H

(︂
1 − Lυ

)︂]︂
+

⎛⎝ t∫︁
0

e−β(t−τ)Yρ(υτ − 2d)

· Sinω̄yρ(t − τ) dτ
)︃
· H
(︂
1 − 2d

υ

)︂}︃
(32a)

with Qy =
Mυ2

4 · (R + eH − b)
+ Mυ2
4 · (R + eH + b)

(32b)

where H is the Heaviside unit function.

6.3.2 The vertical-torsional motion

Introducing eqs (31b, 31c) into the right side members of
eqs (17a, 17b) and following the known process, one con-
cludes to the following equation:

Pρ(t) =
1
Kρ

[R1ρ(t) + Q1ρ(t) + Q3ρ(t)]

+ 1
Kρ

[R2ρ(t) + Q2ρ(t) + Q4ρ(t)] (33a)

where:

Kρ = ω̄zρ

⎛⎝m L∫︁
0

Z2ρdx + Jpx
L∫︁

0

Θ2
ρdx

⎞⎠
R1 ρ(t) =

M g
2

⎛⎝ L∫︁
0

e−β(t−τ)Zρ(υτ) Sinω̄zρ(t − τ) dτ

⎞⎠
·
(︂
1 − H

(︂
t − Lυ

)︂)︂
R2 ρ(t) = R1 ρ

(︂
t − 2d

υ

)︂
H
(︂
t − 2d

υ

)︂
Q1 ρ(t) =

(︂
M g
4 + FceV4b

)︂
(eH + b)

·

⎛⎝ L∫︁
0

e−β(t−τ)Φρ(υτ) Sinω̄zρ(t − τ) dτ

⎞⎠
·
(︂
1 − H

(︂
t − Lυ

)︂)︂
Q2 ρ(t) = Q1 ρ

(︂
t − 2d

υ

)︂
H
(︂
t − 2d

υ

)︂
Q3 ρ(t) =

(︂
M g
4 − FceV4b

)︂
(eH − b)

·

⎛⎝ L∫︁
0

e−β(t−τ)Φρ(υτ) Sinω̄zρ(t − τ) dτ

⎞⎠
·
(︂
1 − H

(︂
t − Lυ

)︂)︂
Q4 ρ(t) = Q3 ρ

(︂
t − 2d

υ

)︂
H
(︂
t − 2d

υ

)︂
(33b)

where H is the Heaviside’s unit function.

6.4 The damped vehicle

Consider the vehicle of Fig. 5c, moving on the bridge with
constant speed υ. This case of loading can be easily solved
following the known procedure with external loads:

qy =
(︂

M · υ2
4(R + eH − b)

+ M · υ2
4(R + eH + b)

)︂
· δ(x − α)

+
(︂

M · υ2
4(R + eH − b)

+ M · υ2
4(R + eH + b)

)︂
· δ(x − α + 2d)

(34a)

qz = 2 · F · δ(x − α) + 2 · F · δ(x − α + 2d) (34b)

mx =
(︂
F + FceV4b

)︂
(eH + b) · δ(x − α) +

(︂
F − FceV4b

)︂
· (eH − b) · δ(x − α) +

(︂
F + FceV4b

)︂
(eH + b)

· δ(x − α + 2d) +
(︂
F − FceV4b

)︂
(eH − b) · δ(x − α + 2d)

(34c)

where:

F = 1
4{M(g − z̈) + mo[g − ẅ(α) − eH ϕ̈(α)]}

Fc =
Mυ2
R + eH

(34d)

The firstmembers of eqs (34a, 34b), and the first two of
eqs (34c) are valid for 0 ≤ t ≤ L/υ, while the second mem-
bers of eqs (34a, 34b), and the third and fourth members
of eq. (34c) are valid for 2d/υ ≤ t ≤ (L + 2d)/υ.
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6.4.1 The lateral motion

Introducing eq. (34a) into the right side member of eq. (15)
and following the process of §4.1 one concludes to the so-
lution of eqs (32a) and (32b).

6.4.2 The vertical-torsional motion

Introducing eqs (34b, 34c) into the right side members of
eqs (17a, 17b) and following the known process, one con-
cludes to the following equation:

Pρ(t) =
1
Kρ

[R1ρ(t) + Q1ρ(t) + Q3ρ(t)]

+ 1
Kρ

[R2ρ(t) + Q2ρ(t) + Q4ρ(t)] (35a)

where:

Kρ = ω̄zρ

⎛⎝m L∫︁
0

Z2ρdx + Jpx
L∫︁

0

Θ2
ρdx

⎞⎠
R1 ρ(t) = 2 · F ·

⎛⎝ L∫︁
0

e−β(t−τ)Zρ(υτ) Sinω̄zρ(t − τ) dτ

⎞⎠
·
(︂
1 − H

(︂
t − Lυ

)︂)︂
R2 ρ(t) = R1 ρ

(︂
t − 2d

υ

)︂
H
(︂
t − 2d

υ

)︂
Q1 ρ(t) =

(︂
F + FceV4b

)︂
(eH + b)

·

⎛⎝ L∫︁
0

e−β(t−τ)Φρ(υτ) Sinω̄zρ(t − τ) dτ

⎞⎠
·
(︂
1 − H

(︂
t − Lυ

)︂)︂
Q2 ρ(t) = Q1 ρ

(︂
t − 2d

υ

)︂
H
(︂
t − 2d

υ

)︂
Q3 ρ(t) =

(︂
F − FceV4b

)︂
(eH − b)

·

⎛⎝ L∫︁
0

e−β(t−τ)Φρ(υτ) Sinω̄zρ(t − τ) dτ

⎞⎠
·
(︂
1 − H

(︂
t − Lυ

)︂)︂
Q4 ρ(t) = Q3 ρ

(︂
t − 2d

υ

)︂
H
(︂
t − 2d

υ

)︂
(35b)

and H is the Heaviside unit function.

7 Numerical results and discussion
Let us consider a bridge, curved-in-plane, with length L =
60 m (see Fig. 4). The bridge is made from structural steel
(isotropic and homogeneous material) with modulus of
elasticity E = 2, 1 × 108 kN/m2, shear modulus G =
0, 8 × 108 kN/m2, moments of inertia Jy = 0, 50 m4, Jz =
8, 00 m4, torsional constant Jd = 0, 50 m4, warping con-
stant Jω = 0, 25 m6, mass per unit length m = 1200 kg/m
and mass moment of inertia Jpx = 10200 kg·m2. Three
characteristic radius of curvature are considered: R =
50 m, R = 100 m, and R = 150 m.

We will study the dynamic behavior of the bridge un-
der the action of:

(a) A concentrated moving load with speed υ and mag-
nitude P = M · g and M = 4000 kg.

(b) A concentrated damped mass-load moving with
speed υ and magnitude P = M · g.

(c) A vehicle with dimensions 2d · 2b, whose the tires
are considered as concentrated loads, and of a con-
sequence of two concentrated loads spaced at 2d
with magnitude P1 = P2 = M · g/2.

(d) A vehicle with dimensions 2d · 2b, having mass M
and mass of its four tires mo = 40 kg, and damping
system with kp = 10000 dN/m, cp = 500 dN·s/m.

According to the results of Table 1, the studied speeds
must be less than υ = 35 m/sec.

7.1 The concentrated moving load

7.1.1 The lateral motion

• Influence of the radius of curvature

The plots of Fig. 6 show the lateral vibrations of the
middle of the bridge (at x = L/2) for speeds υ = 10 m/s
(Fig. 6a), υ = 20 m/s (Fig. 6b), and υ = 30 m/s (Fig. 6c)
and various values of radius of curvature.

As expected, it is observed that for small R the devel-
oped deflections are much higher than the ones for big R.
These differences amount to:

about 150% for 100 < R < 150 m
about 250% for 50 < R < 100 m
about 400% for 50 < R < 150 m

These percentage differences are slightly affected by
the value of the speed υ.

• Influence of the eccentricity
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(a) υ = 10 m/s

(b) υ = 20 m/s

(c) υ = 30 m/s

Figure 6: The influence of the radius of curvature for various values
of υ: ___ R = 50m, . . . . . . R = 100m, - - - R = 150m.

The plots of Fig. 7 show the lateral vibrations of the
middle of the bridge (at x = L/2) for υ = 30m/s, eccentric-
ities eH = 3 m, eH = 0 m, eH = −3 m, and various radii of
curvature.

From these plots, one can see that as R increases, the
influence of the eccentricity eH on the bridge’s deflections
decreases. For R = 50 m and υ = 30 m/s the difference
between eH = 3 and eh = −3 amounts to about 15%, while

(a) R = 50 m

(b) R = 100 m

(c) R = 150 m

Figure 7: The influence of the eccentricity for υ = 30m/s and vari-
ous values of R: ___ eH = 3m, . . . . . . eH = 0m, - - - eH = −3m.

for R = 150 m and υ = 30 m/s the difference between
eH = 3 and eh = −3 amounts to about 3%.

• Influence of the speed

Finally, in Fig. 8 one can see the deflections of themid-
dle of the bridge for R = 50 m, eH = 0 and various values
of speed.
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Figure 8: The influence of the speed for R = 50m, eH = 0m and
υ = 10m/s ( ___ ), υ = 20m/s (. . . . . . ), υ = 30m/s ( - - - ).

Figure 9: The influence of the speed for R = 50m, eH = 3m, eV =
1.20m, and υ = 10m/s ( ___ ), υ = 20m/s (. . . . . . ), υ = 30m/s
( - - - ).

7.1.2 The vertical-torsional motion

• Influence of the speed

The plots of Fig. 9 show the vertical-torsional vibra-
tions of the middle of the bridge (at x = L/2) for R = 50 m,
eccentricity eH = 3 m, and eV = 1.20 m.

The plots of Fig. 10 show the vertical-torsional vibra-
tions of themiddle of the bridge (at x = L/2) for R = 100m,
eccentricity eH = 3 m, and eV = 1.20 m.

Figure 10: The influence of the speed for R = 100m, eH = 3m, eV =
1.20m, and υ = 10m/s ( ___ ), υ = 20m/s (. . . . . . ), υ = 30m/s
( - - - ).

The plots of Fig. 11 show the vertical-torsional vibra-
tions of themiddle of the bridge (at x = L/2) for R = 150m,
eccentricity eH = 3 m, and eV = 1.20 m.

From the above plots, one can ascertain that for both
deformations (deflection and torsion), the influence of the
speed is higher in bridges with small radius of curvature
than in bridges with big radius of curvature. For the cases
studied, this influence amounts to about 60–70% for R =
50 m decreasing to about 10–20% for R = 150 m.

• Influence of the radius of curvature

The plots of Fig. 12 show the vertical-torsional mo-
tion of the middle of the bridge (at x = L/2) for speed
υ = 20 m/s, eH = 1.50 m, eV = 1.20 m, and various radii
of curvature.

• Influence of the eccentricity

The plots of Fig. 13 show the vertical-torsional vibra-
tions of the middle of the bridge (at x = L/2) for R = 50 m,
υ = 30 m/s, and various values of eccentricity.

The plots of Fig. 14 show the vertical-torsional vibra-
tions of themiddle of the bridge (at x = L/2) for R = 100m,
υ = 30 m/s, and various values of eccentricity.

The plots of Fig. 15 show the vertical-torsional vibra-
tions of themiddle of the bridge (at x = L/2) for R = 150m,
υ = 30 m/s, and various values of eccentricity.
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Figure 11: The influence of the speed for R = 150m, eH = 3m, eV =
1.20m, and υ = 10m/s ( ___ ), υ = 20m/s (. . . . . . ), υ = 30m/s
( - - - ).

Figure 12: The influence of the radius of curvature for υ = 20m/s,
eH = 1.5m, eV = 1.2m and R = 50m ( ___ ), R = 100m (. . . .. ),
R = 150m ( - - - ).

Figure 13: The influence of the eccentricity for υ = 30m/s, R =
50m, and ___ eH = 3m, . . . . . . eH = 0m, - - - eH = −3m.

Figure 14: The influence of the eccentricity for υ = 30m/s, R =
100m, and ___ eH = 3m, . . . . . . eH = 0m, - - - eH = −3m.
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Figure 15: The influence of the eccentricity for υ = 30m/s, R =
150m, and ___ eH = 3m, . . . . . . eH = 0m, - - - eH = −3m.

Figure 16: The influence of the vehicle’s speed for R = 150m,
eH = 3m and υ = 10m/s ( __ ), υ = 20m/s ( _ _ ) and υ = 30m/s
(- - - ).

Figure 17: The influence of the load model for R = 150m and υ =
10m/s and ( - - - ) Concentrated load P = Mg, ( ___ ) Damped mass-
load M.

From the plots of Fig. 13 and for eH = −3, we observe
that both deformations (deflection and torsion) are nega-
tive. This was expected for the rotation angle, but not for
the deflection. However, this deflection is referred to the
axis of the cross-section, while the deflection of the point
where the load is applied is: −0.0005 + (−3) · (−0.002) =
+0.0055 >> |−0.0005|.

7.2 The damped mass-load

In this section, the bridge’s motion under the action of a
damped mass-load is studied. Given that the lateral mo-
tion is the same for both cases of loading, one may study
the vertical-torsionalmotion and then compare themotion
of the bridge under the action of a concentrated load and
of a damped mass-load.

The plots of Fig. 16 show the influence of the speed υ
on the vertical-torsionalmotion of themiddle of the bridge
for R = 150 m and eH = 3 m.

From the above plots, one can see the strong influence
of the speed on the dynamic lateral-torsionalmotion of the
bridge.

The plots of Figs 17, 18, 19 show themotion of themid-
dle of the bridge under the action of a concentrated load
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Figure 18: The influence of the load model for R = 150m and υ =
20m/s and ( - - - ) Concentrated load P = Mg, ( ___ ) Damped mass-
load M.

Figure 19: The influence of the load model for R = 150m and υ =
30m/s and ( - - - ) Concentrated load P = Mg, ( ___ ) Damped mass-
load M.

P = M * g and a damped mass-load M for R = 150 m and
different speeds.

From the above plots, is clear that the model of the
damped mass-load gives more favorable results compared
with the ones of the model of a simple concentrated load.

These differences, for small values of radii of curva-
ture are approximately ~25%, decreasing for bigger radii
to ~5%.

7.3 The moving vehicle

In this section, the dynamic behavior of the bridge shown
in Fig. 5a, under the action of a vehicle like the one of
Fig. 5b, is studied.

7.3.1 The lateral motion

• The influence of the load model

The plots of Fig. 20 show the lateralmotion of themid-
dle of the bridge (at x = L/2), for υ = 30m/s, eH = 3.00m,
eV = 1.20 m and various radii of curvature.

From the above plots, it is clear that the radius of
curvature has small effect on the lateral vibrations of the
bridge. This effect varies from 6 to 10%.

• The influence of length 2d

The plots of Fig. 21 show the lateral motion of themid-
dle of the bridge (at x = L/2), for R = 50 m, υ = 30 m/s,
eH = 3.00 m, eV = 1.20 m and various values of the vehi-
cle length 2d.

The plots of Fig. 22 show the lateral motion of themid-
dle of the bridge (at x = L/2), for R = 100 m, υ = 30 m/s,
eH = 3.00 m, eV = 1.20 m and various values of the vehi-
cle length 2d.

The plots of Fig. 23 show the lateral motion of themid-
dle of the bridge (x = L/2), for R = 150 m, υ = 30 m/s,
eH = 3.00 m, eV = 1.20 m and various values of the vehi-
cle length 2d.

From the above plots, one can see that the vehicle’s
long has small effect on the lateral vibrations of the bridge.
This effect varies from 4 to 8%.

7.3.2 The vertical-torsional motion

• The model influence

The plots of Fig. 24 show the vertical-torsional motion
of the middle of the bridge (at x = L/2), for R = 50 m,



The Influence of the Load Model and other Parameters on the Curved-in-Plane Bridges | 257

(a) R = 50 m

(b) R = 100 m

(c) R = 150 m

Figure 20: The influence of the load model for υ = 30m/s, eH =
3.00m, eV = 1.20m, for a vehicle with 2d = 10m ( ___ ), one
concentrated load ( - - - ).

υ = 30 m/s, eH = 3.00 m, eV = 1.20 m and three models
of loading: one model of a real vehicle with dimensions
2d · 2b, a second model consisting of two concentrated
loads and a third model consisting of one concentrated
load. It is observed that for this value of R the differences
are significant.

Figure 21: The influence of the vehicle length for R = 50m, υ =
30m/s, eH = 3.00m, eV = 1.20m and d = 3m ( __ ), d = 5m
( _ _ ), d = 7m (- - - ) and d = 0m ( . . . . ).

Figure 22: The influence of the vehicle length for R = 100m, υ =
30m/s, eH = 3.00m, eV = 1.20m and d = 3m ( __ ), d = 5m
( _ _ ), d = 7m (- - - ) and d = 0m ( . . . . ).

Figure 23: The influence of the vehicle length for R = 150m, υ =
30m/s, eH = 3.00m, eV = 1.20m and d = 3m ( __ ), d = 5m
( _ _ ), d = 7m (- - - ) and d = 0m ( . . . . ).

The plots of Fig. 25 show the vertical-torsional motion
of the middle of the bridge (at x = L/2), for R = 100 m,
υ = 30 m/s, eH = 3.00 m, eV = 1.20 m and the same as
above three models of loading.

The plots of Fig. 26 show the vertical-torsional motion
of the middle of the bridge (at x = L/2), for R = 100 m,
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Figure 24: The vertical-torsional motion of the middle of the bridge
(at x = L/2), for R = 50m, υ = 30m/s, eH = 3.00m, eV = 1.20m
and three models of loading ( __ ) the real vehicle, (- - -) sequence of
two loads, ( . . . . ) one concentrated load.

Figure 25: The vertical-torsional motion of the middle of the bridge
(at x = L/2), for R = 100m, υ = 30m/s, eH = 3.00m, eV =
1.20m and three models of loading ( __ ) the real vehicle, (- - -)
consequence of two loads, ( . . . . ) one concentrated load.

Figure 26: The vertical-torsional motion of the middle of the bridge
(at x = L/2), for R = 150m, υ = 30m/s, eH = 3.00m, eV =
1.20m and three models of loading ( __ ) the real vehicle, (- - -)
consequence of two loads, ( . . . . ) one concentrated load.

Figure 27: The influence of the vehicle length for R = 50m, υ =
30m/s, eH = 3.00m, eV = 1.20m and d = 3m ( __ ), d = 5m
( _ _ ), d = 7m (- - - ) and d = 0m ( . . . . ).
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Figure 28: The influence of the vehicle length for R = 100m, υ =
30m/s, eH = 3.00m, eV = 1.20m and d = 3m ( __ ), d = 5m
( _ _ ), d = 7m (- - - ) and d = 0m ( . . . . ).

υ = 30 m/s, eH = 3.00 m, eV = 1.20 m and the above
three models of loading.

From Fig. 24, one can see that for small radii of curva-
ture the choice of the right model significantly affects the
dynamic response. It is also shown that themodelwith two
concentrated loads leads to inaccurate results. This error
amounts up to about 100%.

From the plots of Figs 25 and 26, it is shown that the
abovemodel of two loads produces themost inaccurate re-
sults with error from 15 to 25%.

• The influence of length 2d

The plots of Fig. 27 show the lateral motion of themid-
dle of the bridge (at x = L/2), for R = 50 m, υ = 30 m/s,
eH = 3.00 m, eV = 1.20 m and various values of the vehi-
cle length 2d.

The plots of Fig. 28 show the lateral motion of themid-
dle of the bridge (at x = L/2), for R = 100 m, υ = 30 m/s,
eH = 3.00 m, eV = 1.20 m and various values of the vehi-
cle length 2d.

The plots of Fig. 29 show the lateral motion of themid-
dle of the bridge (at x = L/2), for R = 150 m, υ = 30 m/s,
eH = 3.00 m, eV = 1.20 m and various values of the vehi-
cle length 2d.

Figure 29: The influence of the vehicle length for R = 150m, υ = 30
m/s, eH = 3.00m, eV = 1.20m and d = 3m ( __ ), d = 5m ( _ _ ),
d = 7m (- - - ) and d = 0m ( . . . . ).

From the above plots, on can see that for small radii of
curvature (R = 50 m), the single concentrated load is the
most inaccuratemodel (error ~20%). The rest threemodels
give somewhat similar results.

For bigger radii of curvature (R = 100 m or 150 m),
all models give similar results regarding themaximum de-
formations. The differences amount to about 3 to 6%. Note
that each model gives a different view of the deformations
of the bridge. For example, the models with d = 3 and
d = 5 m give one maximum while the ones with d = 0
and d = 7 m give two maxima.

7.4 The damped vehicle

In this section, the dynamic behavior of the bridge shown
in Fig. 5a, under the action of a vehicle like the one of
Fig. 5c, is studied.

Given that the lateralmotion is the same for both cases
of loading (vehicle and damped vehicle), we will study the
vertical-torsional motion and compare the motion of the
bridge under the action of a simple vehicle and a damped
vehicle.
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Figure 30: The influence of the vehicle length for R = 150m, υ = 30
m/s, eH = 3.00m, eV = 1.20m and d = 7m ( __ ), d = 5m ( _ _ ),
and d = 3m (- - - ).

Figure 31: Influence of the speed υ for R = 150m, d = 5m, eH =
3.00m, eV = 1.20m and υ=10m/s ( __ ), υ = 20m/s ( _ _ ), and
υ = 30m/s (- - - ).

Figure 32: Influence of the radius of curvature R for d = 5m, eH =
3.00m, eV = 1.20m υ = 30m/s and R = 50m ( __ ), R = 100m
( _ _ ), and R = 150m (- - - ).

The plots of Fig. 30 show the vertical-torsional motion
of the middle of the bridge (at x = L/2), for R = 150 m,
υ = 30 m/s, eH = 3.00 m, eV = 1.20 m and various values
of the damped vehicle length 2d.

From the above plots, it is ascertained that the wheel-
base 2d strongly affects the dynamic behavior of the
bridge, similarly as in the plots of Fig. 27.

The plots of Fig. 31 show the vertical-torsional motion
of the middle of the bridge (at x = L/2), for R = 150 m,
d = 5m, eH = 3.00 m, eV = 1.20 m, and various speeds υ.

From the plots of Fig. 31, one can see that the speed υ
strongly affects the dynamic behavior of the bridge.

The plots of Fig. 32 show the vertical-torsional motion
of the middle of the bridge (at x = L/2), for d = 5 m, eH =
3.00 m, eV = 1.20 m, υ = 30 m/s and various radii of
curvature R.

From the plots of Fig. 32, it can be deduced that for
small radii of curvature the vertical motion is very small
while the torsional one becomes maximum.

In contrast, quite the opposite is happening for big val-
ues of curvature radii.

The plots of Fig. 33, 34 and 35 show the vertical-
torsional motion of the middle of the bridge (at x = L/2),
for R = 150 m, d = 5 m, eH = 3.00 m, eV = 1.20 m and
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Figure 33: The vertical-torsional motion of the middle of the bridge
for υ = 10m/s and for damped vehicle ( __ ) , simple vehicle ( - - - ).

Figure 34: The vertical-torsional motion of the middle of the bridge
for υ = 20m/s and for damped vehicle ( __ ) , simple vehicle ( - - - ).

Figure 35: The vertical-torsional motion of the middle of the bridge
for υ = 30m/s and for damped vehicle ( __ ) , simple vehicle ( - - - ).

different values of speed υ under the action of a simple ve-
hicle and of a damped vehicle.

From the above plots, one can see that the damped
mass-load model produces more favorable results com-
pared to the ones of the model with a simple concentrated
load.

Thesedifferences, for small values of radii of curvature
are approximately ~35% and decrease for bigger radii to
~12%.

Finally, the plots of Figs 36, 37 and 38 show the
vertical-torsional motion of the middle of the bridge (at
x = L/2), for R = 50m, R = 100m, R = 150mand d = 5m,
eH = 3.00 m, eV = 1.20 m, υ = 30 m/sunder the action of
the four loading models.

The above plots show that the exact model of the
damped vehicle gives for:

– small radii of curvature:

~40% smaller deflections compared with the
simple vehicle
~20% smaller deflections compared with the
simple load
~10% smaller deflections compared with the
damped load

– medium radii of curvature:
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Figure 36: The vertical-torsional motion of the middle of the bridge,
for R = 50m, d = 5m, eH = 3.00m, eV = 1.20m, υ = 30m/s, un-
der the action of a Damped load ( __ ), Simple load ( _ _ ), Damped
vehicle (- - - ), Simple vehicle (. . . .).

Figure 37: The vertical-torsional motion of the middle of the bridge,
for R = 100m, d = 5m, eH = 3.00m, eV = 1.20m, υ = 30m/s, un-
der the action of a Damped load ( __ ), Simple load ( _ _ ), Damped
vehicle (- - - ), Simple vehicle (. . . .).

Figure 38: The vertical-torsional motion of the middle of the bridge,
for R = 150m, d = 5m, eH = 3.00m, eV = 1.20m, υ = 30m/s, un-
der the action of a Damped load ( __ ), Simple load ( _ _ ), Damped
vehicle (- - - ), Simple vehicle (. . . .).

~18% smaller deflections compared with the
simple vehicle
~15% smaller deflections compared with the
simple load
~10% smaller deflections compared with the
damped load

– bigger radii of curvature:

~10% smaller deflections compared with the
simple vehicle
~20% smaller deflections compared with the
simple load
~10% smaller deflections compared with the
damped load

8 Conclusions
From the preceding analysis and the models chosen
herein, one can draw the following conclusions:

• A simple mathematical model for studying curved-
in-plane bridges is presented.

• Regarding the deck surface conditions, it is shown
that for wet surfaces the value of a safe speed de-
creases significantly (24 to 27% for R = 50 m
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to 150 m), while the use of track cant angle im-
proves noticeable the value of the allowed safe
speed (~16%).

• The radius of curvature strongly affects the lateral
motion of the bridge.

• For the vertical-torsional motion and for small val-
ues of the radius of curvature, negative deflections
of the bridge’s axis are sometimes observed, while
the deflections of the points where the load applies
is positive with values much bigger than the ones
corresponding to the bridge axis.

• The above mentioned deformations are affected by
the eccentricity of the applied load, and this influ-
ence amounts from 3 to 15%.

• In bridges with small radii of curvature, one should
use load models approaching, as possible, the ac-
tual vehicle. In this case, it is recommended to avoid
using the model of one concentrated load, or the
one of a simple vehicle without a damping system,
because the dynamical response error is extremely
high.

• Regarding the distance of vehicle axles, the use of
real data is crucial not only for determining the exact
value of themaximumdeflection but also to achieve
the correct view of the bridge deflections.

• For ratios L/2d >~ 7, the resulting maximum values
of deformations are not severely affected by the use
of a specific load model.

• In all cases, the use of the exact load model of the
damped vehicle is recommended, since it clearly
produces themost accurate results, mainly for small
radii of curvature. For bigger radii, one can employ
the damped concentrated load with an error from 9
to 11%.

• The use of the simple vehicle model is not recom-
mended in the case of small radii of curvature, since
the error may reach up to 40%.

• The abovementioned errors are all in favor of safety,
since the dynamical deformations are all bigger than
the ones obtained with simplified models.
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