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Abstract: In the present manuscript, free vibration re-
sponse of circular cylindrical shells with functionally
graded material (FGM) is investigated. The method of dis-
crete singular convolution (DSC) is used for numerical so-
lution of the related governing equation of motion of FGM
cylindrical shell. The constitutive relations are based on
the Love’s �rst approximation shell theory. The material
properties are graded in the thickness direction accord-
ing to a volume fraction power law indexes. Frequency
values are calculated for di�erent types of boundary con-
ditions, material and geometric parameters. In general,
close agreement between the obtained results and those
of other researchers has been found.

Keywords: Discrete singular convolution; free vibration;
functionally graded material; cylindrical shells

1 Introduction
Circular cylindrical shells are generally used in di�erent
applications compared to the conical, spherical, shells
of revolution and toroidal shells because of its simple
and advantages geometry. Cylindrical shells are used in
many engineering applications such as mechanical, civil
and aerospace engineering. Thus, frequencies and mode
shapes of such structures are important in the design of
systems [1–5]. Many of researchers have spent great - ef-
forts in order to analysis of the circular shells under di�er-
ent e�ects. As a consequence, a number of analytical and
numerical methods have been also studied on the vibra-
tion analysis of circular cylindrical shells during the past
�fty years [6–26].
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By using the functionally graded materials in the
structural components, FGM shells are gaining the con-
siderable importance and �nd plenty of applications in
high temperature applications in petro-chemical, civil and
aerospace industries [27–30]. Nowadays, FGMbased struc-
tures and devices such as beams, plates and shells have
been widely used in aerospace, mechanical, automobile
and civil engineering applications. Understanding of free
vibration behavior of these structures is an important task
for the successful applications. So, many studies have
been made by researchers on this �eld [31–45].

Recently, the method of discrete singular convolution
(DSC) proposed by Wei [46, 47] has been increasingly ap-
plied to solve many engineering and sciences problems
such as mathematical physics, �uid and solid mechanics
[48–52]. By this time, Ritz, Galerkin, �nite di�erences, �-
nite elements method, boundary element methods have
widely used for vibration problem of shells. Recent years,
the method of di�erential quadrature (DQ), discrete sin-
gular convolution (DSC) and meshless methods have be-
come increasingly popular in thenumerical solution of ini-
tial and boundary value problems in engineering applica-
tions. Thesemethods can yield accurate solutionswith rel-
atively much fewer grid points. It has been also success-
fully employed for di�erent solid and �uidmechanic prob-
lems. More recently, a detailed investigated and discus-
sion of the strong formulation and di�erential quadrature
methods has been presented by Tornabene et al [15].

In the present study, free vibration analysis of FGMcir-
cular cylindrical shells is performed on the basis of Love’s
shell theory. The related governing di�erential equation
for vibration with corresponding boundary conditions is
derived. Then, the method of DSC is used for numerical
solution of the related di�erential equations. The e�ects
of the power of the material property variation function,
boundary conditions and mode numbers on frequency re-
sponse of FGM shell are investigated. Some comparative
results are also presented to show the convergence and
accuracy of the results obtained by present DSC method.
This is the �rst instance in which the DSC method has
been adopted for free vibration analysis of FGM cylindri-
cal shells.
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Figure 1: Functionally graded circular shells

2 Formulations

2.1 Circular shell

Consider a cylindrical shell rotating about its symmetrical
and horizontal axis at an angular velocity ω as shown in
Figure 1. The thickness of the shell and length are denoted
by h and L, respectively. The cylindrical shell is referred to
a coordinate system (x, θ, z) as shown inFigure 1. The com-
ponents of the deformationof the cylindrical shellwith ref-
erences to this coordinate system are denoted by u, v, w in
the x, θ and z directions, respectively.
BasedonLove’s �rst approximation theory, the strain com-
ponents of this vector are de�ned as linear functions of the
normal (thickness) coordinate z, namely

εx = ε1 + zκ1 , (1a)
εθ = ε2 + zκ2 , (1b)
εxθ = γ + 2zτ, (1c)

where {ε}T = {ε1, ε2, γ} and {κ}T = {κ1, κ2, 2τ} are re-
spectively the strain and curvature vectors of the reference
surface. They are de�ned by [1]

ε1 =
∂u
∂x , (2a)

ε2 =
1
R

(
∂v
∂θ + w

)
, (2b)

γ = 1
R
∂u
∂θ + ∂v∂x , (2c)

κ1 = −
∂2w
∂x2 , (3a)

κ2 = −
1
R2
∂2w
∂θ2 + ∂v∂θ , (3b)

τ = − 2R
∂2w
∂x∂θ + ∂v∂x . (3c)

The force and moment resultants and can be obtained by{
N
M

}
=
[
A B
B D

]{
e
κ

}
, (4)

where Aij, Bij and Dij are the extensional, coupling and
bending sti�nesses and calculated from the following
equations:

(
Aij , Bij , Dij

)
=

h/2∫
−h/2

Q*ij
(
1, z, z2

)
dz, (5)

i = 1, 2 and j = 3+i. For an arbitrarily laminated composite
shell, these sti�nesses can be given as [26]

(
Aij
)
=

NL∑
k=1

Q(k)
ij (hk − hk−1) , (6a)

(
Bij
)
= 1
2

NL∑
k=1

Q(k)
ij

(
h2k − h

2
k−1

)
, (6b)

(
Dij
)
= 1
3

NL∑
k=1

Q(k)
ij

(
h3k − h

3
k−1

)
. (6c)

Where NL is the number of total layers of the laminated
conical shell,Q(k)

ij , the element of the transformed reduced
sti�ness matrix for the kth layer, and hk and hk−1 denote
distances from the shell reference surface to the outer and
inner surfaces of the kth layer.
The transverse shear force resultants can be given from
Mx, Mθ and Mxθ by

Qx =
1
R(x)

∂
∂x
[
R(x)Mx

]
− Mθ sin α

R(x) + 1
R(x)

∂Mxθ
∂θ , (7)

Qθ =
1
R(x)

∂
∂x
[
R(x)Mxθ

]
+ Mxθ sin α

R(x) + 1
R(x)

∂Mθ
∂θ , (8)

where

ρt(x, θ) =
1
h

h/2∫
−h/2

ρ(x, θ, z)dz, (9)

where ρ and ρt are, respectively, the density and density
per unit area. Moment resultants and in-surface force can
be obtained by

N = (Nx , Nθ , Nxθ)T =
h/2∫

−h/2

(σx , σθ , σxθ)T dz, (10a)

M = (Mx ,Mθ ,Mxθ)T =
h/2∫

−h/2

(σx , σθ , σxθ)T zdz, (10b)
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where the stress vector �eld (σ)T = {σx , σθ , σxθ}. The
stress vector of the kth layer for laminated composite con-
ical shells in which each layer is orthotropic is

{σk} =
[
Qij
]
{εk} , (11)

where {εk}T = {εx , εθ , εxθ} is the strain vector. For a thin
shell, the stresses de�ned in Equation (11) are given by

σx
σθ
σxθ

 =

 Q11 Q12 0
Q12 Q22 0
0 0 Q66




εx
εθ
εθx

 . (12)

The element of the reduced sti�ness are de�ned as

Q11 =
E(z)

1 − υ(z)2 , Q12 =
υ(z)E(z)
1 − υ2 , (13a)

Q22 =
E(z)

1 − υ(z)2 , Q66 =
E(z)

2[1 + υ(z)] . (13b)

Following the Love’s �rst approximation shell the-
ory [31] governing equations for free vibration analysis of
cylindrical shells can be given as [16, 17];

L11u + L12v + L13w − ρh
∂2u
∂t2 = 0, (14a)

L21u + L22v + L23w − ρh
∂2v
∂t2 = 0, (14b)

L31u + L32v + L33w − ρh
∂2w
∂t2 = 0, (14c)

where

L11 = A11
∂2
∂x2 +

(
A66
R2

)
∂2
∂θ2 , (15)

L12 =
(A12 + A66)

R
∂2
∂x∂θ + (B12 + 2B66)

R2
∂2
∂x∂θ , (16)

L13 =
A12
R

∂
∂x −

B12 + 2B66
R2

∂3
∂x∂θ2 − B11

∂3
∂x3 , (17)

L21 =
(A12 + A66)

R
∂2
∂x∂θ + (B12 + 2B66)

R2
∂2
∂x∂θ , (18)

L22 =
[
A66 +

3B66
R − 2D66

R2

]
∂2
∂x2 + (19)

+
[
A22
R2 + 2B22

R3 + D22
R4

]
∂2
∂θ2 ,

L23 =
(
A22
R2 + B22R3

)
∂
∂θ −

(
B22
R3 + D22

R4

)
∂3
∂θ3 −(20)

−
[
(B12 + 2B66)

R + (D12 + 2D66)
R2

]
∂3

∂x2∂θ ,

L31 = B11
∂3
∂x3 − A12

1
R
∂
∂x +

(B12 + 2B66)
R2

∂3
∂x∂θ2 , (21)

L32 =
[
−A22

1
R2 + B22R3

]
∂
∂θ + (22)

+
[
B22
R3 + D22

R4

]
∂3
∂θ3 +

+
[
(B12 + 2B66)

R + (D12 + 4D66)
R2

]
∂3

∂x2∂θ ,

L33 = −A22
1
R2 − D11

∂4
∂x4 − (23)

− 2D12 + 4D66
R2

∂4
∂x2∂θ2 −

D22
R4

∂4
∂θ4 +

+ 2B12
R

∂2
∂x2 +

[
2B22
R3

]
∂2
∂θ2 ,

whereAij , Bij andDij are the tensile, couplingandbending
sti�ness respectively, and de�ned above.

2.2 Functionally graded materials

Functionally gradedmaterials are relatively newadvanced
composite material. After the invitation of the FGM, great
deals of researchhavebeenmadeon fabrication andappli-
cations of this new material concept. Functionally graded
materials are characterized by gradually changed physical
properties.

p = p0
[
1 + p−1/T + p1T + p2T2 + p3T3

]
, (24)

where pi are the coe�cients of temperature de�ned in
Kelvin and them are unique to the constituent materials.

p =
k∑
j=1

pjVf , (25)

where pj and Vf are thematerial property and volume frac-
tion of the constituent material j, respectively. The sum of
volume fraction is de�ned as

l∑
k=1

V� = 1. (26)

For an uniform thickness shell, the volume fraction is de-
�ned by

Vf =
(
z
h + 1

2

)N
. (27)

The power-law exponent is de�ned by N. The material
properties for two-constituent FGM can be de�ned as [31]

E(z) = (E1 − E2)
(
z
h + 1

2

)N
+ E2 (28)
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υ(z) = (υ1 − υ2)
(
z
h + 1

2

)N
+ v2 (29)

ρ(z) = (ρ1 − ρ2)
(
z
h + 1

2

)N
+ ρ2 (30)

3 Discrete Singular Convolution
(DSC)

Themethodof discrete singular convolution (DSC) is based
on the principles of the theory of wavelets and the theory
of distributions [46]. Discrete singular convolutions algo-
rithm was originally introduced by Wei [47] as a potential
numerical method via some regularized kernels. Hilbert
and delta transforms are generally used in this approach.
Since then, applications of the DSC method to various sci-
ence and engineering problems have been investigated
and their successes have demonstrated the potential of the
method as an attractive numerical analysis technique. In
this paper, details of the DSC method are not given; inter-
ested readers may refer to the works of [46–59]. Consider
a distribution, T and η(t) as an element of the space of the
test function.A singular convolution canbede�nedby [46]

F(t) = (T * η)(t) =
∞∫

−∞

T(t − x)η(x)dx, (31)

where T(t − x) is a singular kernel. The DSC algorithm can
be realized by using many approximation kernels. How-
ever, it was shown [53–70] that formany problems, the use
of the regularized Shannon kernel (RSK) is very e�cient.
The RSK is given by [47]

δ∆,σ (x − xk) =
sin
[
(π/∆) (x − xk)

]
(π/∆) (x − xk)

exp
[
−(x − xk)

2

2σ2

]
; (32)

σ > 0,

where ∆ = π/(N−1) is the grid spacing andN is thenumber
of grid points. Theparameter σ determines thewidth of the
Gaussian envelope and often varies in associationwith the
grid spacing, i.e., σ = rh. In the DSC method, the function
f (x) and its derivatives with respect to the x coordinate at a
grid point xi are approximated by a linear sum of discrete
values f (xk) in a narrow bandwidth [x − xM , x + xM]. This
can be expressed as [48]

dn f (x)
dxn

∣∣∣∣
x=xi

= f (n)(x) ≈
M∑

k=−M
δ(n)∆,σ (xi − xk) f (xk) ; (33)

(n = 0, 1, 2, . . . , ),

where superscript n denotes the nth-order derivative with
respect to x. The displacement terms are taken as

u = U(x) · cos(nθ) · cos(ϖt), (34a)
v = V(x) · sin(nθ) · cos(ϖt), (34b)
w = W(x) · cos(nθ) · cos(ϖt), (34c)

where ϖ is referred to as the circular frequency parameter.
Substituting Equations (34) into Equations (14), the gov-
erning equations can be written as[

Sij
]
{D} = 0. (35)

In this study, the following two boundary conditions are
considered. The letters S and C denote simply supported
and clamped boundary conditions, respectively.
Simply supported edge (S)

V = 0, W = 0, Nx = 0, Mx = 0. (36)

Clamped edge (C)

U = 0, V = 0, W = 0 and ∂W/∂x = 0. (37)

DSC formof the boundary conditions can be easilywritten.
For clamped edge, for example, given as

Ui,j = 0, Vi,j = 0, Wi,j = 0 and (38)
M∑

k=−M
δ(1)∆,σ(k∆x)Wi+k,j = 0.

By the DSC rule, the governing equations and the corre-
sponding boundary conditions can be replaced by a sys-
tem of simultaneously linear algebraic equations in terms
of the displacements at all the sampling points. It is noted
that for a well-posed problem the number of equations
should be identical to the number of unknowns. A treat-
ment commonly used in the open literature [46–70] is ap-
plied in this study. By rearranging the DSC form of the gov-
erning equations, one has the assembled form of the re-
sulting equations as

[[Sdd] [Sdb]]

{
{Ud}
{Ub}

}
− (39)

−Ω [[Bdd] [Bdb]]

{
{Ud}
{Ub}

}
= {0},

where {Ub} represents the unknown boundary grid points
values, whereas, {Ud} represent the domain grid point un-
knowns. The subscript b represents the degree of freedom
on the boundary and subscript d represents the degree of
freedom on the domain. Substituting the DSC rule into the
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boundary conditions at the sampling points at two bound-
ary points leads to

[[Sbd] [Sbb]]

{
{Ud}
{Ub}

}
= {0}. (40)

After rewriting Equation (40) as Ub = −S−1bbSbdUd and then
substituting the resulting equation into Equation (39), we
obtain

SU = ΩBU, (41)

in which S = Sdd − SdbS−1bbSbd, B = Bdd − BdbS−1bbSbd and
U is the displacement vector on the domain. In this study,
the numerical results are given by the dimensionless fre-
quency parameter Ω, de�ned as [31]

Ω = R

√
ρ
[
1 − υ(z)2

]
E(z) ϖ. (42)

4 Numerical results
Table 1 lists the material properties for related three ma-
terials as T=300 K (room temperature). Threematerials are
denoted asMaterial I,Material II, andMaterial III for Stain-
less Steel, Zirconia andNickel, respectively. By using these
three materials, six di�erent con�gurations (Type A, Type
B, Type C, TypeD, Type E, Type F) of FGMcylindrical shells
are possible for inner and outer surfaces as listed in Table
2.

Firstly, a comparative study for vibration analysis of
isotropic cylindrical shell andFGshell has beenpresented.
In order to obtain a reasonable convergence for the fre-
quency values, the number of required grid points in re-
lated directions of shells in the DSC solution should be de-
termined.
To validate the analysis, obtained frequency values for
FGM cylindrical shells are comparedwith the results given
by Loy et al. [31] in the literature, as shown in Table 3 for
di�erent grid numbers. The comparison shows that the
present DSC results agreedwell with those in literatures. It
is found from the results that, only 13 grid points can yield
accurate results for frequency.
Table 4 shows the frequency values of FGM shell for six

di�erent cases and di�erent index values. It is shown that
the value of volume fraction exponent has less e�ect on
frequency. For some types of materials (Type B, Type C,
Type E) frequency values increased with the increasing
value of volume fraction exponent. However, the frequen-
cies decrease with p for the other type of material com-
binations (Type A, Type D, Type F). This situation is de-

Figure 2: Variation of natural frequency with length-to-radius ratio
of FGM cylindrical shell with SS edges (m=1; R/h=500; Type A)

Figure 3: Variation of natural frequency with mode numbers of FGM
cylindrical shell with di�erent boundary conditions (m=1; R/h=500;
Type A)

Figure 4: Frequency values for di�erent FGM con�gurations of C-S
shell
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Table 1:Material properties of FG materials for circular cylindrical shell

Material Types Material Constants Coe�cients
p0 p p1 p2 p3

Material I υ 0.3262 0 −2.002 × 10−4 −3.797 × 10−7 0
(Stainless Steel) ρ(kg/m3) 8166 0 0 0 0

E(N/m2) 201.04 × 109 0 3.079 × 10−4 −6.534 × 10−7 0

Material II υ 0.2882 0 1.133 × 10−4 0 0
(Zirconia) ρ (kg/m3) 5700 0 0 0 0

E(N/m2) 244.27 × 109 0 −0.1371 × 10−4 1.133 × 10−4 −3.681 × 10−10

Material III υ 0.310 0 0 0 0
(Nickel) ρ(kg/m3) 8900 0 0 0 0

E(N/m2) 223.95 × 109 0 2.794 × 10−4 −3.998 × 10−9 0

Table 2: Types of FGM circular shell for each layer (surface)

Types of FGM shells Inner Surface Outer Surface

Type A Nickel Stainless Steel
Type B Stainless Steel Nickel
Type C Stainless Steel Zirconia
Type D Zirconia Stainless Steel
Type E Nickel Zirconia
Type F Zirconia Nickel

pendent on the values of material parameter for two con-
stituentmaterials con�guration for FGMshell. Namely, the
ratio of modulus of elasticity and ratio of Poisson’s are sig-
ni�cant e�ect on this change (decrease or increases). This
phenomenon detailed investigated by Iqbal et al. [33]. Nat-
ural frequency of FG circular cylindrical shell with di�er-
ent boundary conditions is listed for material D in Table 5.
It is shown that the natural frequencies initially decrease
gradually and then increase with n. The frequency versus
mode numbers trend is very similar to homogenous shell.
Also, the frequencies values in C-C boundary conditions
are greater than that for C-S and S-S boundary conditions.

Variation of natural frequencies with length-to-radius
ratio (L/R) of FGM cylindrical shell with SS (both ends sim-
ply supported) edges are depicted in Figure 2 for the value
of m=1; R/h=500. The material con�guration is the Nickel
at the inner surface and stainless steel at the outer sur-
face. It is seen that the frequency values of FGM shells are
decreased rapidly with the inceaseing value of the length-
to-radius ratio. Becasue, the sti�ness of the shell decrase
with the increasing of L/R ratio. Also, the e�ect of vol-
ume fraction index on frequency is very small. The e�ect of
boundary conditions on frequency with mode numbers is

Table 3: Comparative study of natural frequency of FG circular cylin-
drical shell with simply supported edges (m=1;h/R=0.002;L/R=20;
Type A; p=2)

n Ref. 31 Present DSC results
N=9 N=13 N=15 N=17

1 13.103 12.9982 13.1088 13.1088 13.1088
2 4.4435 4.44967 4.45013 4.45013 4.45013
3 4.1235 4.11034 4.12365 4.12365 4.12365
4 6.9820 6.98285 6.98271 6.98271 6.98271
5 11.151 11.1498 11.1516 11.1516 11.1516
6 16.323 16.3301 16.3241 16.3241 16.3241
7 22.454 22.4638 22.4550 22.4550 22.4550
8 29.533 29.6013 29.5346 29.5346 29.5346
9 37.559 37.5749 37.5602 37.5602 37.5602

shown in Figure 3. According to the �gure, frequency val-
ues in C-C boundary condition is greater than that for C-
S and S-S type of boundary conditions. With the increase
of the mode number, teh frequency value decreases when
n< 3. Then the frequency valus increase slowly to a stable
value. Frequency values for di�erent FGM con�gurations
of C-S shell is drawn in Figure 4 for p=15; h/R=0.002 and
L/R=20 values. For some types of materials (Type B, Type
C, Type E) frequency values increased with the increasing
value of volume fraction exponent. However, the frequen-
cies decrease with p for the other type of material com-
binations (Type A, Type D, Type F). This situation is de-
pendent on the values of material parameter for two con-
stituentmaterials con�guration for FGMshell. Namely, the
ratio of modulus of elasticity and ratio of Poisson’s are sig-
ni�cant e�ect on this change (decrease or increases). This
phenomenondetailed investigatedby Iqbal et al. [33]. Vari-
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Table 4: Frequency values of simply supported (S-S) FGM circular cylindrical shell with di�erent types and modes

p n FGM types for inner and outer material
Type A Type B Type C Type D Type E Type F

1 13.3895 13.0387 14.2828 13.7341 14.0703 13.1821
0.3 2 4.5301 4.4160 4.8351 4.6601 4.7640 4.4671

3 4.2120 6.9392 4.4830 4.3073 4.4150 4.1261

1 12.9504 13.4834 13.6185 14.4623 13.003 14.3708
10 2 4.3896 4.5681 4.6082 4.9076 4.4001 4.8742

3 4.0715 4.2369 4.2411 4.5783 4.0458 4.5425

1 12.9334 13.5051 13.5960 14.5004 12.9682 14.4361
15 2 4.3831 4.5755 4.6020 4.9185 4.3904 4.8951

3 4.0654 4.2451 4.2431 4.5813 4.0431 4.5562

Table 5: Natural frequencies of FG circular cylindrical shell with
di�erent boundary conditions (m=1;h/R=0.002;L/R=20; Type D;
p=15)

n SS CC CS

1 14.5012 31.4103 22.2627
2 4.9185 10.6005 7.4646
3 4.5813 6.41363 5.3103
4 7.6503 8.2011 7.9245
5 12.4026 12.5338 5.3087

ation of frequency valueswithmodenumber of SS shell for
di�erent constituent of material is given in Figure 5 for S-S
shell. Freqeuncies values are �rstly decrased (for n=1,2,3)
and increasing rapidly with the mode numbers, as similar
to the isotropic one.

5 Conclusions
By using the e�cient numerical method, free vibration
analysis of functionally graded cylindrical shells has been
investigated. It is possible to say that the method of
DSC provides a controllable numerical accuracy by us-
ing the suitable bandwidth. This is more important for
large scale computations. The implementation of bound-
ary conditions, programming and formulation procedures
are found to be straightforward and simple. Being a non-
iterative method, the method DSC is relatively less compu-
tationally intensive. Also the method of DSC gives reason-
ably accurate values for frequencies. The required com-
puting time is very small. Although not provided here, the

Figure 5: Variation of frequency values with mode number of SS
shell for di�erent types of FGM

method is also producesmore accurate results for classical
single material shell.
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