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Abstract: A hybrid-mixed ANS four-node shell element by
using the sampling surfaces (SaS) technique is developed.
The SaS formulation is based on choosing inside the nth
layer In not equally spaced SaS parallel to the middle sur-
face of the shell in order to introduce the displacements
of these surfaces as basic shell variables. Such choice of
unknowns with the consequent use of Lagrange polyno-
mials of degree In − 1 in the thickness direction for each
layer permits the presentation of the layered shell formu-
lation in a very compact form. The SaS are located inside
each layer at Chebyshev polynomial nodes that allows one
to minimize uniformly the error due to the Lagrange in-
terpolation. To implement the efficient analytical integra-
tion throughout the element, the enhanced ANS method
is employed. The proposed hybrid-mixed four-node shell
element is based on the Hu-Washizu variational equation
and exhibits a superior performance in the case of coarse
meshes. It could beuseful for the 3D stress analysis of thick
and thin doubly-curved shells since the SaS formulation
gives the possibility to obtain numerical solutions with a
prescribed accuracy, which asymptotically approach the
exact solutions of elasticity as the number of SaS tends to
infinity.
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1 Introduction
A conventional way of developing the higher-order shell
formulation consists in the expansion of displacements
into power series with respect to the transverse coordi-
nate, which is referred to the direction normal to the mid-
dle surface. For the approximate presentation of the dis-
placement field, it is possible to use finite segments of
power series because the principal purpose of the shell
theory consists in the derivation of approximate solutions
of elasticity. The idea of this approach can be traced back
to Cauchy [1] and Poisson [2]. However, its implementation
for thick shells is not straightforward since it is necessary
to retain the large number of terms in corresponding ex-
pansions to obtain the comprehensive results.

An alternative way of developing the shell theory is to
choose inside each layer a set of not equally spaced sam-
pling surfaces (SaS) Ω(n)1, Ω(n)2,. . ., Ω(n)In parallel to the
middle surface in order to introduce the displacement vec-
tors u(n)1, u(n)2, u(n)In of these surfaces as basic shell vari-
ables, where In is the total number of SaS of the nth layer
(In ≥ 3) and n = 1,2,. . .,N, where N is the number of layers.
Such choice of displacements with the consequent use of
the Lagrange polynomials of degree In −1 in the thickness
direction for each layer allows the presentation of govern-
ing equations of the layered shell formulation in a very
compact form. The SaS concept was proposed recently by
the authors to evaluate analytically the 3D stress state in
rectangular plates and cylindrical and spherical shells [3–
5].

It should be noticed that the SaS shell formulation
with equally spaced SaS does not work properly with
the Lagrange polynomials of high degree because of the
Runge’s phenomenon [6]. This phenomenon can yield the
wild oscillation at the edges of the interval when the user
deals with any specific functions. If the number of equi-
spaced nodes is increased then the oscillations become
even larger. However, the use of the Chebyshev polyno-
mial nodes [7] inside the shell body can help to improve
significantly the behavior of the Lagrange polynomials of
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high degree because such a choice permits one to min-
imize uniformly the error due to the Lagrange interpo-
lation. This fact gives an opportunity to derive displace-
ments and stresses with a prescribed accuracy employing
the sufficiently large number of SaS. It means in turn that
the solutions based on the SaS technique asymptotically
approach the 3D exact solutions of elasticity as the num-
ber of SaS goes to infinity. Note also that the origins of the
SaS concept can be found in contributions [8, 9] in which
three, four and five equally spaced SaS are employed. The
SaS formulation with the arbitrary number of equispaced
SaS is considered in [10]. The more general approach with
the SaS located at the Chebyshev polynomial nodes was
developed later [3–5]. In contribution [11], both SaS formu-
lations are compared with each other.

It is well-known that the low-order finite elements
are sensitive to shear locking. This is because of incorrect
shear modes, which infect the pure bending element be-
havior. In regards to exact geometry or geometrically exact
(GeX) four-node shell elements, they reproduce addition-
ally membrane locking. The abbreviation “GeX” reflects
the fact that the parametrization of the middle surface is
known a priori and, therefore, the coefficients of the first
and second fundamental forms are taken exactly at ele-
ment nodes [12, 13]. The feature of GeX solid-shell ele-
ments [12, 13] is that they are based on strain-displacement
relationships of the simplest SaS formulation with In = 3,
which precisely represent all rigid-body motions of the
shell in any convected curvilinear coordinates. This fact is
of great importance since one may read in paper [14] that
“shell theory is an absolute academic exercise” due to “the
difficulties of representing the rigid bodymodes in shell fi-
nite element formulations”.

To avoid shear and membrane locking and have no
spurious zero energy modes, the hybrid-mixed finite ele-
ment method can be applied. This method pioneered by
Pian [15] utilizes the robust interpolation of displacements
on the element boundary to provide displacement com-
patibility between elements, whereas the internal stresses
are assumed so as to satisfy the differential equilibrium
equations. The Pian’s hybrid stress finite elementwas orig-
inally based upon the principle of the stationary comple-
mentary energy. Alternatively, the assumed stress finite el-
ement was proposed by applying the Hellinger-Reissner
variational principle that simplifies the evaluation of the
element stiffnessmatrix [16]. Then, the assumed strain [17]
and assumed stress-strain [18] finite elements were de-
veloped. The former is based on the modified Hellinger-
Reissner functional in which displacements and strains
are utilized as basic shell variables, whereas the latter de-
parts from the Hu-Washizu functional depending on dis-

placements, strains and stresses. However, here we do not
use these terms because amore general termhybrid-mixed
finite element covers all hybrid andmixed finite elements,
which are "formulated by multivariable variational func-
tional, yet the resulting matrix equations consist of only
the nodal values of displacements as unknowns” [19].

In the present paper, the hybrid-mixed GeX four-node
solid-shell element formulation is proposed in which the
SaS are located inside each layer at Chebyshev polynomial
nodes [5]. To circumvent lockingphenomena, the assumed
interpolations of displacement-independent strains and
stress resultants are invokedandutilized togetherwithdis-
placement and displacement-dependent strain interpola-
tions into the Hu-Washizu variational equation. Such an
approach exhibits an excellent performance in the case
of coarse mesh configurations and has computational ad-
vantages compared to conventional isoparametric hybrid-
mixed solid-shell element formulations [20–23] because
it reduces the computational cost of numerical integra-
tion in the evaluation of the element stiffness matrix. This
is due to the facts that all element matrices require only
direct substitutions, i.e., no expensive numerical matrix
inversion is needed. It is impossible in the framework
of the isoparametric hybrid-mixed shell element formula-
tion. Second, the GeX four-node solid-shell element for-
mulation is based on the effective analytical integration
throughout the finite element by the use of the enhanced
ANSmethod [24, 25]. The latter has a greatmeaning for the
numerical modelling of thick doubly-curved shells with
variable curvatures.

The thin doubly-curved shells based on strong and
weak formulations are widely discussed in the literature.
The static and dynamic analyses of doubly-curved shells
by using the classic Kirchhoff-Love and Timoshenko-
Mindlin-type theories can be found in books [26–30]. The
state-of-the-art development of the problem is analyzed
in review articles [31, 32]. The higher-order doubly-curved
shell formulation based on the Carrera’s equivalent single
layer theory [33] accounting for thickness stretching has
been proposed in [34, 35]. Both free vibration and static
problems are discussed with a particular emphasis on the
stress recovery procedure. The authors report that their
procedure leads to stable, accurate and reliable results for
the moderately thick and thin doubly-curved shells with
variable principal curvatures. However, for the analysis of
thick doubly-curved shell structures instead of the post-
processing stress recovery technique a more general ap-
proach based on the 3D constitutive equations should be
applied. Such a question is discussed here in detail.



Geometry solid-shell element based on analysis of composite shells | 3

 7 

nin
i

)(
g  are the base vectors of SaS of the nth layer given by 

3
)(

3
)()(

,
)(

, egeRg  nnnn inininin
cA  ,                            (5) 

where nnn ininin
kcc

)(
3

)(
3

)(
1)(     are the components of the shifter tensor at SaS. 

Here and in the following developments,   i,  stands for the partial derivatives 

with respect to coordinates i ; the index nm  identifies the belonging of any quantity to 

the inner SaS of the nth layer and runs from 2 to 1nI , whereas the indices ni , nj , nk  

describe all SaS of the nth layer and run from 1 to nI ; Latin tensorial indices lkji ,,,  

range from 1 to 3; Greek indices  ,  range from 1 to 2. 

 

Figure 1: Geometry of the layered shell. 

Remark 1: As follows from (3), the transverse coordinates of inner SaS coincide 

with the nodes of Chebyshev polynomials [7]. This fact has a great meaning for a 

convergence of the SaS method [3, 11]. 

 

4  Kinematic description of deformed shell 

A position vector of the deformed shell is written as 

uRR  ,                                                         (6) 

Figure 1: Geometry of the layered shell.

2 Kinematic description of
undeformed shell

Consider a layered shell of the thickness h. Let the middle
surface Ω be described by orthogonal curvilinear coordi-
nates θ1 and θ2, which are referred to the lines of prin-
cipal curvatures of its surface. The coordinate θ3 is ori-
ented along the unit vector e3(θ1, θ2) normal to the mid-
dle surface (see Figure 1). Introduce the following nota-
tions: eα(θ1, θ2) are the orthonormal base vectors of the
middle surface; Aα(θ1, θ2) are the coefficients of the first
fundamental form; kα(θ1, θ2) are the principal curvatures
of the middle surface; cα = 1+ kαθ3 are the components of
the shifter tensor; r = r(θ1, θ2) is the position vector of any
point of the middle surface; ai(θ1, θ2) are the base vectors
of the middle surface given by

aα = r,α = Aαeα , a3 = e3; (1)

θ[n−1]3 and θ[n]3 are the transverse coordinates of layer inter-
faces Ω[n−1] and Ω[n]; hn = θ[n]3 − θ[n−1]3 is the thickness of
the nth layer; θ(n)in3 are the transverse coordinates of SaS of
the nth layer Ω(n)in expressed as

θ(n)13 = θ[n−1]3 , θ(n)In3 = θ[n]3 , (2)

θ(n)mn
3 = 1

2

(︁
θ[n−1]3 + θ[n]3

)︁
− 1
2hn cos

(︂
π 2mn − 3
2(In − 2)

)︂
; (3)

R = r + θ3e3 is the position vector of any point in the shell
body; R(n)in = r + θ(n)in3 e3 are the position vectors of SaS of
the nth layer; gi are the base vectors in the shell body de-
fined as

gα = R,α = Aαcαeα , g3 = R,3 = e3; (4)

g(n)ini are the base vectors of SaS of the nth layer given by

g(n)inα = R(n)in
,α = Aαc(n)inα eα , g(n)in3 = e3, (5)

where c(n)inα = c(θ(n)in3 ) = 1 + kαθ(n)in3 are the components of
the shifter tensor at SaS.

Here and in the following developments, (. . .),i stands
for the partial derivatives with respect to coordinates θi;
the index mn identifies the belonging of any quantity to
the inner SaS of the nth layer and runs from 2 to In − 1,
whereas the indices in, jn, kn describe all SaS of the nth
layer and run from 1 to In; Latin tensorial indices i, j, k, l
range from 1 to 3; Greek indices α, β range from 1 to 2.

Remark 1: As follows from (3), the transverse coordi-
nates of inner SaS coincide with the nodes of Chebyshev
polynomials [7]. This fact has a great meaning for a con-
vergence of the SaS method [3, 11].

3 Kinematic description of
deformed shell

A position vector of the deformed shell is written as

R̄ = R + u, (6)

where u is the displacement vector, which is measured in
accordancewith the total Lagrangian formulation from the
initial configuration to the current configuration directly.
In particular, the position vectors of SaS of the nth layer
are

R̄(n)in = R(n)in + u(n)in , (7)

u(n)in = u(θ(n)in3 ), (8)

where u(n)in (θ1, θ2) are the displacement vectors of SaS of
the nth layer Ω(n)in .

The base vectors in the current shell configuration are
defined as

ḡi = R̄,i = gi + u,i . (9)

In particular, the base vectors of deformed SaS of the nth
layer (see Figure 2) are

ḡ(n)inα = R̄(n)in
,α = g(n)inα + u(n)in,α , (10)

ḡ(n)in3 = ḡ3(θ(n)in3 ) = e3 + β(n)in ,

β(n)in = u,3(θ(n)in3 ), (11)

where β(n)in (θ1, θ2) are the values of the derivative of the
displacement vector with respect to the thickness coordi-
nate at SaS of the nth layer.
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Figure 2: Initial and current configurations of the shell. 
Figure 2: Initial and current configurations of the shell.

The Green-Lagrange strain tensor in an orthogonal
curvilinear coordinate system [12] can be written as

2εij =
1

AiAjcicj
(ḡi · ḡj − gi · gj), (12)

where A3 = 1 and c3 = 1. In particular, the Green-Lagrange
strain tensor at SaS is

2ε(n)inij = 2εij
(︁
θ(n)in3

)︁
(13)

= 1
AiAjc(n)ini c(n)inj

(ḡ(n)ini · ḡ(n)inj − g(n)ini · g(n)inj ),

where ε(n)inij (θ1, θ2) are the strains of SaS of the nth layer.
Substituting (5) and (10) into strain-displacement re-

lationships (13) and discarding the non-linear terms, one
derives

2ε(n)inαβ = 1
Aαc(n)inα

u(n)in,α · eβ +
1

Aβc(n)inβ

u(n)in, β · eα , (14)

2ε(n)inα3 = β(n)in · eα +
1

Aαc(n)inα
u(n)in,α · e3, ε(n)in33 = β(n)in · e3.

Next, we represent the displacement vectors u(n)in and
β(n)in in the middle surface frame ei as follows:

u(n)in =
∑︁
i

u(n)ini ei , (15)

β(n)in =
∑︁
i

β(n)ini ei . (16)

Using (15) and formulas for the derivatives of unit vectors
ei with respect to orthogonal curvilinear coordinates [25],
we have

1
Aα

u(n)in,α =
∑︁
i

λ(n)iniα ei , (17)

where

λ(n)inαα = 1
Aα

u(n)inα,α + Bαu(n)inβ + kαu(n)in3 for β ≠ α, (18)

λ(n)inβα = 1
Aα

u(n)inβ,α − Bαu
(n)in
α for β ≠ α,

λ(n)in3α = 1
Aα
u(n)in3,α − kαu

(n)in
α , Bα =

1
AαAβ

Aα,β for β ≠ α.

Substitution of (16) and (17) into strain-displacement
relationships (14) yields the component form of these rela-
tionships

2ε(n)inαβ = 1
c(n)inβ

λ(n)inαβ + 1
c(n)inα

λ(n)inβα , (19)

2ε(n)inα3 = β(n)inα + 1
c(n)inα

λ(n)in3α , ε(n)in33 = β(n)in3 .

4 Displacement and strain
distributions in thickness
direction

Up to this moment, no assumptions concerning displace-
ment and strain fields have been made. We start now with
the first fundamental assumption of the proposed higher
order layer-wise shell theory. Let us assume that the dis-
placements are distributed through the thickness of the
nth layer as follows:

u(n)i =
∑︁
in

L(n)inu(n)ini , θ[n−1]3 ≤ θ3 ≤ θ[n]3 , (20)

where L(n)in (θ3) are the Lagrange polynomials of degree
In − 1 expressed as

L(n)in =
∏︁
jn≠in

θ3 − θ(n)jn3

θ(n)in3 − θ(n)jn3

. (21)

The use of (11), (16) and (20) yields

β(n)ini =
∑︁
jn

M(n)jn (θ(n)in3 )u(n)jni , (22)

whereM(n)jn = L(n)jn,3 are the derivatives of Lagrange polyno-
mials. The values of these derivatives at SaS are calculated
as

M(n)jn
(︁
θ(n)in3

)︁
= 1
θ(n)jn3 − θ(n)in3

∏︁
kn≠in , jn

θ(n)in3 − θ(n)kn3

θ(n)jn3 − θ(n)kn3

(23)

for jn ≠ in ,

M(n)in
(︁
θ(n)in3

)︁
= −

∑︁
jn≠in

M(n)jn
(︁
θ(n)in3

)︁
.

Thus, the key functions β(n)ini of the proposed layer-wise
shell theory are represented according to (22) as a linear
combination of displacements of SaS of the nth layer u(n)jni .
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The following step consists in a choice of the consistent approximation of strains through the thickness of the nth
layer. It is apparent that the strain distribution should be chosen similar to the displacement distribution (20), that is,

ε(n)ij =
∑︁
in

L(n)in ε(n)inij , θ[n−1]3 ≤ θ3 ≤ θ[n]3 . (24)

Remark 2: The functions β(n)1i , β(n)2i ,. . ., β(n)Ini are linearly dependent, that is, there exist numbers α(n)1,
α(n)2, . . ., α(n)In , which are not all zero, such that ∑︁

in

α(n)inβ(n)ini = 0. (25)

The proof of this proposition follows from a homogeneous system of linear equations⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

M(n)1(θ(n)13 ) M(n)2(θ(n)13 ) ... M(n)In (θ(n)13 )

M(n)1(θ(n)23 ) M(n)2(θ(n)23 ) ... M(n)In (θ(n)23 )

...

M(n)1(θ(n)In3 ) M(n)2(θ(n)In3 ) ... M(n)In (θ(n)In3 )

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

α(n)1

α(n)2

...

α(n)In

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
=

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0

0

...

0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
(26)

and the identity ∑︁
in

M(n)in (θ3) = 0. (27)

5 Hu-Washizu mixed variational equation
To develop the assumed stress-strain finite element formulation, we invoke the Hu-Washizu variational principle in
which displacements, strains and stresses are utilized as independent variables [36]. It can be written as follows:

δJHW = 0, (28)

JHW =
∫︁∫︁
Ω

∑︁
n

θ[n]3∫︁
θ[n−1]3

[︂
1
2 e

(n)
ij C

(n)
ijkle

(n)
kl − σ

(n)
ij (e

(n)
ij − ε

(n)
ij )

]︂
A1A2c1c2dθ1dθ2dθ3 −W , (29)

W =
∫︁∫︁
Ω

(︀
c+1c+2p+i u+i − c−1c−2p−i u−i

)︀
A1A2dθ1dθ2 +WΣ ,

where σ(n)ij are the stresses of the nth layer; e(n)ij are the displacement-independent strains of the nth layer; C(n)ijkl are
the elastic constants of the nth layer; u−i and u+i are the displacements of bottom and top surfaces; p−i and p+i are the
tractions acting on the bottom and top surfaces; c−α = 1−kαh/2 and c+α = 1+kαh/2 are components of the shifter tensor of
bottom and top surfaces;WΣ is the work done by external loads applied to the edge surface Σ. Here and in the following
developments, the summation on repeated Latin indices is implied.

Following the SaS technique, we introduce the third assumption of the proposed hybrid-stress solid-shell element
formulation. Let the displacement-independent strains be distributed through the thickness similar to displacement
and displacement-dependent strain distributions (20) and (24), that is,

e(n)ij =
∑︁
in

L(n)in e(n)inij , θ[n−1]3 ≤ θ3 ≤ θ[n]3 , (30)
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where e(n)inij are the displacement-independent strains of SaS of the nth layer.
Substituting strain distributions (24) and (30) in (28) and (29), and introducing stress resultants

H(n)in
ij =

θ[n]3∫︁
θ[n−1]3

σ(n)ij L
(n)in c1c2dθ3, (31)

the following variational equation is obtained:∫︁∫︁
Ω

∑︁
n

∑︁
in

⎡⎣δ (︁e(n)in)︁T
⎛⎝H(n)in −

∑︁
jn

Λ(n)in jnC(n)e(n)jn
⎞⎠ + δ

(︁
H(n)in

)︁T (︁
e(n)in − ε(n)in

)︁
(32)

−δ
(︁
ε(n)in

)︁T
H(n)in

]︂
A1A2dθ1dθ2 +

∫︁∫︁
Ω

(︀
c+1c+2p+i δu+i − c−1c−2p−i δu−i

)︀
A1A2dθ1dθ2 + δWΣ = 0,

where

ε(n)in =
[︁
ε(n)in11 ε(n)in22 ε(n)in33 2ε(n)in12 2ε(n)in13 2ε(n)in23

]︁T
, (33)

e(n)in =
[︁
e(n)in11 e(n)in22 e(n)in33 2e(n)in12 2e(n)in13 2e(n)in23

]︁T
,

H(n)in =
[︁
H(n)in
11 H(n)in

22 H(n)in
33 H(n)in

12 H(n)in
13 H(n)in

23

]︁T
,

C(n) =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

C(n)1111 C(n)1122 C(n)1133 C(n)1112 0 0

C(n)2211 C(n)2222 C(n)2233 C(n)2212 0 0

C(n)3311 C(n)3322 C(n)3333 C(n)3312 0 0

C(n)1211 C(n)1222 C(n)1233 C(n)1212 0 0

0 0 0 0 C(n)1313 C(n)1323

0 0 0 0 C(n)2313 C(n)2323

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

Λ(n)in jn =
θ[n]3∫︁

θ[n−1]3

L(n)inL(n)jn c1c2dθ3.

6 Hybrid-mixed GeX solid-shell element formulation
The finite element formulation is based on the simple and efficient interpolation of shells via curved GeX four-node
solid-shell elements

u(n)ini =
∑︁
r
Nru(n)inir , (34)

Nr =
1
4 (1 + n1rξ1) (1 + n2rξ2) , (35)

n1r =

⎧⎪⎪⎨⎪⎪⎩
1 for r = 1, 4

−1 for r = 2, 3

, n2r =

⎧⎪⎪⎨⎪⎪⎩
1 for r = 1, 2

−1 for r = 3, 4

,
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where  21,rN  are the bilinear shape functions of the element; nin
iru

)(
 are the 

displacements of SaS nin)(
  at element nodes;     /d  are the normalized 

curvilinear coordinates (see Figure 3); 2  are the lengths of the element in  21, -

space; the nodal index r runs from 1 to 4. The surface traction vector is also assumed to 

vary bilinearly throughout the element. 

 

Figure 3: Biunit square in  21, -space mapped into the middle surface of the GeX 

four-node solid-shell element in  321 ,, xxx -space. 

Figure 3: Biunit square in (ξ1 , ξ2)-space mapped into the middle
surface of the GeX four-node solid-shell element in (x1 , x2 , x3)-
space.

whereNr (ξ1, ξ2) are the bilinear shape functions of the el-
ement; u(n)inir are the displacements of SaSΩ(n)in at element
nodes; ξα = (θα − dα) /ℓα are the normalized curvilinear co-
ordinates (see Figure 3); 2ℓα are the lengths of the element
in (θ1, θ2)-space; the nodal index r runs from 1 to 4. The
surface traction vector is also assumed to vary bilinearly
throughout the element.

To implement analytical integration throughout the
element, we employ the enhanced ANS interpolation [24,
25]

ε(n)in =
∑︁
r
Nrε(n)inr , (36)

ε(n)inr =
[︁
ε(n)in11r ε(n)in22r ε(n)in33r 2ε(n)in12r 2ε(n)in13r 2ε(n)in23r

]︁T
,

where ε(n)inijr are the strains of SaSof the nth layer at element
nodes. These strains can be evaluated as

ε(n)inr = B(n)in
r U. (37)

Here, B(n)in
r - are the constant throughout the element ma-

trices of order 6×12NSaS,whereNSaS =
∑︀
n
In −N +1 is the

total number of SaS; U is the element displacement vector
defined as

U =
[︁
UT1 UT2 UT3 UT4

]︁T
, (38)

Ur =
[︂(︁

u[0]r
)︁T (︁

u(1)2r

)︁T
. . .

(︁
u(1)I1−1r

)︁T (︁
u[1]r

)︁T (︁
u(2)2r

)︁T
. . .

(︁
u(N−1)IN−1−1r

)︁T (︁
u[N−1]r

)︁T (︁
u(N)2r

)︁T
. . .

(︁
u(N)IN−1r

)︁T (︁
u[N]r

)︁T]︂T
,

u[m]r =
[︁
u[m]1r u[m]2r u[m]3r

]︁T
(m = 0, 1, . . . , N) ,

u(n)mn
r =

[︁
u(n)mn
1r u(n)mn

2r u(n)mn
3r

]︁T
(mn = 2, . . . , In − 1) ,

Remark 3: The main idea of such approach can be
traced back to theANSmethod [37–39] developed bymany
scientists for the isoparametric displacement-based and
hybrid-mixed finite element formulations [22, 23, 28, 40,
41]. In contrast with above formulations, we treat the term
“ANS” in a broader sense. In the proposed GeX four-node
solid-shell element formulation, all components of the
strain tensor are assumed to vary bilinearly inside the biu-
nit square. This implies that instead of the expected non-
linear interpolation due to variable curvatures in strain-
displacement relationships (18) and (19) themore suitable
bilinear ANS interpolation is utilized.

Remark 4: In order to circumvent curvature thick-
ness locking for the isoparametric four-node solid-shell el-
ement, BetschandStein [42] proposed to apply thebilinear
interpolation (36) only for the transverse normal strain. It
is apparent that curvature thickness locking is not related
to the curved GeX four-node solid-shell element because
it can handle the arbitrary geometry of surfaces properly.
We advocate the use of the enhanced ANS method for all
components of the strain tensor to implement the efficient
analytical integration throughout the element.

From the computational point of view it is convenient
to represent the ANS interpolation (36) as follows:

ε(n)in =
∑︁
r1 , r2

(ξ1)r1 (ξ2)r2 ε(n)inr1r2 , (39)

ε(n)inr1r2 = B(n)in
r1r2 U, (40)

where

ε(n)inr1r2 =
[︁
ε(n)in11r1r2 ε(n)in22r1r2 ε(n)in33r1r2 (41)

2ε(n)in12r1r2 2ε(n)in13r1r2 2ε(n)in23r1r2

]︁T
,

B(n)in
00 = 1

4

(︁
B(n)in
1 + B(n)in

2 + B(n)in
3 + B(n)in

4

)︁
,

B(n)in
01 = 1

4

(︁
B(n)in
1 + B(n)in

2 − B(n)in
3 − B(n)in

4

)︁
,

B(n)in
10 = 1

4

(︁
B(n)in
1 − B(n)in

2 − B(n)in
3 + B(n)in

4

)︁
,

B(n)in
11 = 1

4

(︁
B(n)in
1 − B(n)in

2 + B(n)in
3 − B(n)in

4

)︁
.
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Here and below, the indices r1 and r2 run from 0 to 1.
To overcome shear and membrane locking and have no spurious zero energy modes, the robust displacement-

independent strain and stress resultant interpolations are utilized

e(n)in =
∑︁

r1+ r2<2
(ξ1)r1 (ξ2)r2 Qr1 r2e(n)inr1r2 , (42)

e(n)in00 =
[︁
e(n)in1100 e(n)in2200 e(n)in3300 2e(n)in1200 2e(n)in1300 2e(n)in2300

]︁T
,

e(n)in01 =
[︁
e(n)in1101 e(n)in3301 2e(n)in1301

]︁T
, e(n)in10 =

[︁
e(n)in2210 e(n)in3310 2e(n)in2310

]︁T
and

H(n)in =
∑︁
r1+r2<2

(ξ1)r1 (ξ2)r2 Qr1 r2H(n)in
r1r2 , (43)

H(n)in
00 =

[︁
H(n)in
1100 H(n)in

2200 H(n)in
3300 H(n)in

1200 H(n)in
1300 H(n)in

2300

]︁T
,

H(n)in
01 =

[︁
H(n)in
1101 H(n)in

3301 H(n)in
1301

]︁T
, H(n)in

10 =
[︁
H(n)in
2210 H(n)in

3310 H(n)in
2310

]︁T
,

where Qr1 r2 are the projective matrices given by

Q00 =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 0 0 0 0 0

0 1 0 0 0 0

0 0 1 0 0 0

0 0 0 1 0 0

0 0 0 0 1 0

0 0 0 0 0 1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

, Q01 =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 0 0

0 0 0

0 1 0

0 0 0

0 0 1

0 0 0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

, Q10 =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 0 0

1 0 0

0 1 0

0 0 0

0 0 0

0 0 1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

. (44)

Inserting interpolations (34), (39), (42) and (43) into the Hu-Washizu variational equation (32) and replacing the
metric product A1A2 in surface integrals by its value at the element center, one can integrate analytically throughout
the finite element. As a result, the following equilibrium equations of the hybrid-mixed GeX solid-shell element are
obtained:

e(n)inr1r2 = (Qr1 r2 )TB(n)in
r1r2 U for r1 + r2 < 2, (45)

H(n)in
r1r2 =

∑︁
jn

Λ(n)in jn (Qr1 r2 )TC(n)Qr1 r2e(n)jnr1r2 for r1 + r2 < 2, (46)

∑︁
r1+r2<2

1
3r1+r2

∑︁
n

∑︁
in

(B(n)in
r1r2 )

TQr1 r2H(n)in
r1r2 = F, (47)

where F is the element-wise surface traction vector.
Eliminating column matrices e(n)inr1r2 and H(n)in

r1r2 from (45)-(47), we arrive at the governing finite element equations

KU = F, (48)

where K is the element stiffness matrix of order 12NSaS × 12NSaS defined as

K =
∑︁
r1+r2<2

1
3r1+r2

∑︁
n

∑︁
in

∑︁
jn

Λ(n)in jn (B(n)in
r1r2 )

TQr1 r2 (Qr1 r2 )TC(n)Qr1 r2 (Qr1 r2 )TB(n)jn
r1r2 . (49)
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6  Numerical examples 

The performance of the proposed hybrid-mixed GeX four-node solid-shell element on 

the basis of the SaS technique, denoted here by the SaSGeX4 element, is assessed 

through the use of exact solutions of elasticity for the laminated composite rectangular 

plate and spherical shell, and authors’ hyperbolic composite shell example. 

 

Figure 4: Three-layer rectangular plate subjected to transverse sinusoidal loading. 

 

6.1  Laminated composite rectangular plate under sinusoidal loading 

Here, we study a simply supported laminated composite rectangular plate subjected to a 

sinusoidally distributed transverse load acting on its top surface 

,0,sinsin 3
21

03   p
b

x

a

x
pp


                                    (50) 

where a and b are the length and width of the plate (see Figure 4). Consider a symmetric 

three-ply graphite/epoxy plate with the stacking sequence [0/90/0] and ply thicknesses 

]//[ 321 hhh , where 3/hhn  . The mechanical parameters of the graphite/epoxy 

composite are taken to be TL 25EE  , TLT 5.0 EG  , TTT 2.0 EG  , 6
T 10E  and 

25.0TTLT  , where subscripts L and T refer to the fiber and transverse directions 

of a ply. 

Figure 4: Three-layer rectangular plate subjected to transverse sinu-
soidal loading.
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Due to symmetry, only one quarter of the plate with dimensions 1a  and 3b  is 

discretized by uniform meshes of SaSGeX4 elements depicted in Figure 5. To compare 

the results with Pagano’s exact solution [43], we introduce the following dimensionless 

variables at crucial points as functions of the dimensionless thickness coordinate z: 

,/),2/,2/(100,/),2/,0(10 0
4

3
3

T30
3

1
2

T1 pazbauhEupazbuhEu        (51) 

,/),2/,2/(10,/),2/,2/( 0
2

22
2

220
2
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2
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,/),2/,0(10,/),0,0(10 013130
2

12
2
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Figure 5: One quarter of the three-layer rectangular plate discretized by uniform 

nn 44   meshes, where the mesh parameter 16,...,2,1n . 

The data listed in Tables 1 and 2 show that the SaSGeX4 element allows 

reproducing the exact solution of elasticity [43] for thick and thin plates with a high 

accuracy by using a fine 6464  mesh and the sufficiently large number of SaS. As can 

be seen, the SaSGeX4 element provides from four to five right digits for displacements 

and stresses except for the transverse normal stress comparing to authors’ exact SaS 

solution [4]. Figure 6 displays the distributions of displacements and stresses (51) 

through the thickness of the plate for different values of the slenderness ratio ha /  

Figure 5: One quarter of the three-layer rectangular plate dis-
cretized by uniform 4n × 4n meshes, where the mesh parameter
n = 1,2,. . .,16.

It is worth noting that the element stiffnessmatrix (49)
requires only direct substitutions, i.e., no expensive ma-
trix inversion is needed to derive it. This is impossible
for the isoparametric hybrid-mixed finite element formu-
lations [20–23]. Furthermore, the stiffness matrix is eval-
uated by using analytical integration throughout the ele-
ment that permits the use of coarse mesh configurations.
Thus, the hybrid-mixed GeX solid-shell element formula-
tion developed is economical and efficient.

Remark 5: Due to the linear dependence of key func-
tions of the SaS formulation β(n)1i , β(n)2i , . . ., β(n)Ini , see
Remark 2, the element stiffness matrix has a correct
rank. This can be established utilizing analytical develop-
ments [12].

7 Numerical examples
The performance of the proposed hybrid-mixed GeX four-
node solid-shell element on the basis of the SaS technique,
denotedhere by the SaSGeX4 element, is assessed through

the use of exact solutions of elasticity for the laminated
composite rectangular plate and spherical shell, and au-
thors’ hyperbolic composite shell example.

7.1 Laminated composite rectangular plate
under sinusoidal loading

Here, we study a simply supported laminated composite
rectangular plate subjected to a sinusoidally distributed
transverse load acting on its top surface

p+3 = p0 sin
πx1
a sin πx2b , p−3 = 0, (50)

where a and b are the length and width of the plate (see
Figure 4). Consider a symmetric three-ply graphite/epoxy
plate with the stacking sequence [0/90/0] and ply thick-
nesses [h1/h2/h3], where hn = h/3. The mechanical pa-
rameters of the graphite/epoxy composite are taken to be
EL = 25ET, GLT = 0.5ET, GTT = 0.2ET, ET = 106 and
νLT = νTT = 0.25, where subscripts L and T refer to the
fiber and transverse directions of a ply.

Due to symmetry, only one quarter of the platewith di-
mensions a = 1 and b = 3 is discretized by uniformmeshes
of SaSGeX4 elements depicted in Figure 5. To compare
the results with Pagano’s exact solution [43], we introduce
the following dimensionless variables at crucial points as
functions of the dimensionless thickness coordinate z:

ū1 = 10ETh2u1(0, b/2, z)/a3p0, (51)
ū3 = 100ETh3u3(a/2, b/2, z)/a4p0,
σ̄11 = h2σ11(a/2, b/2, z)/a2p0,
σ̄22 = 10h2σ22(a/2, b/2, z)/a2p0,
σ̄12 = 10h2σ12(0, 0, z)/a2p0,
σ̄13 = 10hσ13(0, b/2, z)/ap0,
σ̄23 = 10hσ23(a/2, 0, z)/ap0,
σ̄33 = σ33(a/2, b/2, z)/p0, z = x3/h.

The data listed in Tables 1 and 2 show that the SaS-
GeX4 element allows reproducing the exact solution of
elasticity [43] for thick and thin plates with a high accu-
racy by using a fine 64×64mesh and the sufficiently large
number of SaS. As can be seen, the SaSGeX4 element pro-
vides from four to five right digits for displacements and
stresses except for the transverse normal stress comparing
to authors’ exact SaS solution [4]. Figure 6 displays the dis-
tributions of displacements and stresses (51) through the
thickness of the plate for different values of the slender-
ness ratio a/h utilizing five SaS inside each layer and the
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Figure 6: Through-thickness distributions of displacements and stresses for a three-

layer rectangular plate with 5nI  using a uniform 6464  mesh of SaSGeX4 

elements; exact SaS solution (○) [4] and Pagano's closed form solution (□) [43]. 

Figure 6: Through-thickness distributions of displacements and stresses for a three-layer rectangular plate with In = 5 using a uniform
64 × 64mesh of SaSGeX4 elements; exact SaS solution (○) [4] and Pagano’s closed form solution ( ) [43].

same 64 × 64 mesh. These results demonstrate convinc-
ingly the high potential of the SaSGeX4 element because
the boundary conditions on bottom and top surfaces and
the continuity conditions at layer interfaces for transverse
stresses are satisfied correctlywithout employing the post-
processing stress recovery technique. Figure 7 shows the
results of the convergence study due to mesh refinement

through the use of normalized displacements and stresses
for slenderness ratios a/h = 4 and 100 by choosing five SaS
for each layer. The analytical answers are provided again
by the exact SaS solution [4]. It is seen that the SaSGeX4
element behaves practically insensitive with respect to the
mesh parameter n introduced in Figure 5.
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Figure 7: Convergence study due to mesh refinement for a simply supported three-layer rectangular plate with In = 5; reference displace-
ments and stresses are provided by the exact solution based on the SaS formulation [4].

Table 3: Results for a spherical shell with R/h = 2 using a regular 64 × 1mesh of SaSGeX4 elements.

Formulation ū3(0) σ̄11(−0.5) σ̄11(0.5) σ̄33(0) σ̄33(−0.5)
I1 = 3 2.281 5.345 2.438 −0.3759 −0.5882
I1 = 5 2.300 4.616 2.087 −0.2576 −0.9770
I1 = 7 2.300 4.572 2.066 −0.2626 −0.9978

Lamé’s solution [45] 2.300 4.566 2.066 −0.2626 −1.0000

Table 4: Results for thick and thin spherical shells using a regular 64 × 1mesh of SaSGeX4 elements.

R/h SaS formulation with seven equispaced SaS Lamé’s solution [45]
ū3(0) σ̄11(−0.5) σ̄11(0.5) σ̄33(0) ū3(0) σ̄11(−0.5) σ̄11(0.5) σ̄33(0)

4 2.945 4.583 3.332 −0.3766 2.945 4.582 3.332 −0.3766
10 3.291 4.784 4.284 −0.4501 3.291 4.783 4.282 −0.4501
100 3.480 4.976 4.926 −0.4950 3.480 4.975 4.925 −0.4950

Table 5: Convergence results for a spherical shell with R/h = 100 through the use of three equispaced SaS.

Mesh 2 × 1 4 × 1 8 × 1 16 × 1 32 × 1 64 × 1 Lamé’s solution [45]
ū3(0.5) 3.750 3.533 3.482 3.469 3.466 3.465 3.465
ε̄11(0.5) 3.805 3.515 3.464 3.452 3.449 3.448 3.448
ε̄33(0.5) −3.341 −3.012 −2.969 −2.958 −2.956 −2.955 −2.955
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elements. A comparison with Lamé’s solution [45] is also given. As turned out, the 

SaSGeX4 element provides from 3 to 4 right digits for displacements and stresses. 

Figure 9 displays the through-thickness distributions of stresses for different values of 

the slenderness ratio R/h choosing seven SaS inside the shell body. One can see that the 

boundary conditions for the transverse normal stress on outer surfaces are satisfied 

properly. Table 5 lists the results of the convergence study due to mesh refinement for a 

thin shell with three equispaced SaS. It is seen that the SaSGeX4 element is free of 

locking and practically insensitive to coarse meshes. 

 

Figure 8: A part of the spherical shell modeled by regular 12 n  meshes, where 

32,...,2,1n . 

 

Figure 9: Through-thickness distributions of stresses for a spherical shell with seven 

equispaced SaS using a regular 164  mesh; exact Lamé’s solution [45] (○). 

Figure 8: A part of the spherical shell modeled by regular 2n × 1meshes, where n = 1,2,. . .,32.
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6.3 Hyperbolic composite shell under nonuniform inner pressure 

Finally, we study a hyperbolic composite shell subjected to inner pressure 

103 4cos pp  . The mechanical and geometrical parameters of the shell are taken as 

EE 401  , EEE  32 , EGGG 6.0231312  , 610E , 25.0231312   , 

5.7r , 15R  and 20a , where 2a is the height of the shell (see Figure 10). To 

analyze the numerical results efficiently, we introduce dimensionless stresses as 

functions of the dimensionless thickness coordinate hz /3  as follows: 

033330330
22 /z)P,(,/z)P,(10,/z)P,(10 phpapha    ,       (54) 

where ),(P 21   is the point belonging to the middle surface. 

Due to symmetry of the problem, only one sixteenth of the shell is discretized with 

regular meshes depicted in Figure 10. Figure 11 presents the through-thickness 

distributions of stresses (54) for different values of the slenderness ratio R/h by 

choosing seven SaS inside the shell body. One can see that the boundary conditions for 

transverse stresses on the bottom and top surfaces are satisfied again correctly without 

the use of the post-processing stress recovery technique. 

 

Figure 10: A sixteenth part of the hyperbolic shell modeled by regular nn 22   meshes, 

where 32,...,2,1n . 

Figure 10: A sixteenth part of the hyperbolic shell modeled by regular 2n × 2n meshes, where n = 1,2,. . .,32.

7.2 Spherical shell under uniform inner pressure

Next, we consider a single-layer spherical shell with 0.02∘ hole at the top subjected to uniform inner pressure p−3 = −p0.
This problem is a good benchmark to test the proposed analytical integration scheme and verify that the SaSGeX4 solid-
shell element is free of locking. In the literature there is Lame’s closed-form solution [44, 45], which can be written as

ur =
p0a3

E (b3 − a3)

[︂
(1 − 2ν) r + (1 + ν) b

3

2r2

]︂
, a = R − 1

2h, b = R + 1
2h, (52)

where r is the radial distance from a point to the origin; R is the radius of the middle surface. The mechanical and
geometrical parameters of the shell are chosen to be E = 105, ν = 0.3, R = 10 and ϑ* = 89.98∘, where ϑ* is the up limit
value of the meridional coordinate θ1 (see Figure 8). To compare the results derived with Lame’s analytical solution, we
introduce dimensionless variables

ū3 = 10Ehu3(P, z)/R2p0, σ̄11 = 10hσ11(P, z)/Rp0, σ̄33 = σ33(P, z)/p0, (53)
ε̄11 = 10hEε11(P, z)/Rp0, ε̄33 = 10hEε33(P, z)/Rp0, z = θ3/h,
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Figure 11: Through-thickness distributions of stresses for a hyperbolic composite shell 

with seven SaS using a regular 6464  mesh of SaSGeX4 elements. 

Figure 11: Through-thickness distributions of stresses for a hyperbolic composite shell with seven SaS using a regular 64 × 64mesh of
SaSGeX4 elements.

where P(0, 0) is the point belonging to the middle surface.
Owing to symmetry, we consider a part of the shell andmodel it by regularmeshes shown in Figure 8. Tables 3 and 4

list the results for thick and thin spherical shells due to increasing the number of equispaced SaS by using a fine 64 × 1
mesh of SaSGeX4 elements. A comparison with Lamé’s solution [45] is also given. As turned out, the SaSGeX4 element
provides from 3 to 4 right digits for displacements and stresses. Figure 9 displays the through-thickness distributions of
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stresses for different values of the slenderness ratio R/h
choosing seven SaS inside the shell body. One can see that
the boundary conditions for the transverse normal stress
on outer surfaces are satisfied properly. Table 5 lists the re-
sults of the convergence study due to mesh refinement for
a thin shell with three equispaced SaS. It is seen that the
SaSGeX4 element is free of locking and practically insen-
sitive to coarse meshes.

7.3 Hyperbolic composite shell under
nonuniform inner pressure

Finally, we study a hyperbolic composite shell subjected to
inner pressure p−3 = −p0 cos 4θ1. The mechanical and ge-
ometrical parameters of the shell are taken as E1 = 40E,
E2 = E3 = E, G12 = G13 = G23 = 0.6E, E = 106,
ν12 = ν13 = ν23 = 0.25, r = 7.5, R = 15 and a = 20, where
2a is the height of the shell (see Figure 10). To analyze the
numerical results efficiently, we introduce dimensionless
stresses as functions of the dimensionless thickness coor-
dinate z = θ3/h as follows:

σ̄αα = 10a2σαα(P, z)/h2p0, (54)
σ̄α3 = 10aσα3(P, z)/hp0,
σ̄33 = σ33(P, z)/p0,

where P(θ1, θ2) is the point belonging to the middle sur-
face.

Due to symmetry of the problem, only one sixteenth
of the shell is discretized with regular meshes depicted in
Figure 10. Figure 11 presents the through-thickness distri-
butions of stresses (54) for different values of the slender-
ness ratio R/h by choosing seven SaS inside the shell body.
One can see that the boundary conditions for transverse
stresses on the bottom and top surfaces are satisfied again
correctly without the use of the post-processing stress re-
covery technique.

8 Conclusions
The paper presents a geometrically exact hybrid-mixed
four-node solid-shell element SaSGeX4 based on the SaS
formulation inwhich the displacements of SaS are utilized
as fundamental shell unknowns. The SaS are located at
Chebyshev polynomial nodes inside the shell body that al-
lows one to minimize uniformly the error due to Lagrange
interpolations of displacements and strains through the
thickness. To implement the efficient analytical integra-
tion throughout the element, the enhanced ANS method

for all components of the strain tensor is employed. The
element stiffnessmatrix is evaluatedwithout the use of ex-
pensive numericalmatrix inversion andhas six zero eigen-
values as required for satisfaction of the general rigid-body
motion representation. The SaSGeX4 element exhibits a
superior performance in the case of coarse mesh configu-
rations for all 3D benchmarks considered. It can be recom-
mended for the 3D stress analysis of thick and thin doubly-
curved shells because the SaS solutions asymptotically ap-
proach 3D solutions as the number of SaS tends to infinity.
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