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1 Introduction

In recent years, corpus linguistics has seen an increased use of advanced statistical
analysis methods. While (generalized) linear models still remain the most commonly
applied approach, researchers have become increasingly interested in other
approaches, including methods from the field of machine learning. Especially the
family of tree-based methods has emerged as an alternative to classical parametric
statistics.

Early implementations of classification and regression trees include CART
(Breiman et al. 1984) and C4.5 (Quinlan 1986, 1993). To overcome some of the limi-
tations of individual trees, the ensemble methods bagging (Breiman 1996) and
random forests (Breiman 2001) have been introduced and implemented by Leo
Breiman and Adele Cutler around the turn of the millennium.

These traditional tree and forests algorithms are still widely used, despite the
fact that they show a preference for predictor variables offering many possible
cutpoints — regardless of their information content (e.g., Kim and Loh 2001; Strobl
et al. 2007a; White and Liu 1994). This unwanted behavior is termed variable
selection bias and also carries forward to variable importance measures for bagging
and random forests (Strobl et al. 2007b). Modern implementations of trees and
forests by Loh and Shih (1997) and Hothorn et al. (2006) have overcome this issue.
In the R system for statistical computing, two implementations of conditional
inference trees (Hothorn et al. 2006) and random forests based on conditional
inference trees' are available in the party and partykit packages and provide
unbiased variable selection when used with the default settings (Hothorn and Zeileis
2015; Hothorn et al. 2006, 2024a, 2024b; Strobl et al. 2007D).

These modern implementations of trees and forests have been made known, and
also critically assessed, in corpus linguistics by, e.g., Tagliamonte and Baayen (2012),
Szmrecsanyi et al. (2016), Gries (2020), Gries (2021), and Bernaisch (2022). The critical
discussion of tree based methods in corpus linguistics is much more sophisticated
than in many other application areas of these methods, such as medicine or genetics.
We highly appreciate this discussion culture, and would like to contribute to this
discussion from a methodological point of view. In particular, we will take up and
comment on a few remarks and a methodological suggestion in Gries (2020) and
Gries (2021), and also provide references to related methodological literature for
the interested reader. Note, however, that a complete introduction to trees and

1 Please note that in the remainder of this text we will use the term random forests as an umbrella
term of all types of random forests, including random forests based on conditional inference trees,
unless explicitly stated otherwise.
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forests is beyond the scope of this text, so that readers who are not yet familiar with
the topic should first consult introductory texts, such as Strobl et al. (2009b) and Gries
(2021).

2 Properties and pitfalls of trees and forests

Traditional tree algorithms are based on descriptive criteria, such as the Gini
index, for selecting the optimal splitting variable and cutpoint in one step. This
leads to the undesired variable selection bias pointed out above. Modern tree
algorithms have disentangled variable and cutpoint selection, and base the vari-
able selection step on statistical significance tests. This procedure not only solves
the problem of variable selection bias. It also means that, while traditional trees
required pruning (as is very well explained in Gries 2021), modern trees can use the
same statistical significance tests as stopping criteria to regulate tree depth.
However, users should be aware that — just like any other statistical significance
tests — the tests employed in modern tree algorithms have a higher statistical
power for detecting effects in larger samples (cf. Henninger et al. 2023b, for an
example from psychology).

Due to the fact that trees only ever consider one splitting variable at a time,”
apparently simple patterns in the data generating process can be very hard to
capture for a tree. In particular, a pattern where two variables have a perfect
interaction effect but no main effects (termed an XOR problem in the machine
learning literature) is hard to impossible to detect for a tree. Another thing that trees
are not good at is approximating linear functions, as is pointed out by Gries (2020).
This can be seen as a downside of the exploratory nature of trees. They are not
provided with as much structure as, for example, linear models. On the other hand,
this also means that they are not forced to stick to a provided structure — which may
be too restrictive to describe the true pattern in the data.

Trees are able to approximate any functional form given enough data. The
result, a piecewise constant function, may not look very elegant (ensemble methods
like random forests do a much better job of approximating functional forms more
smoothly), but the advantage of such an exploratory approach in general is that it
can detect patterns in the data that were not known to or hypothesized by the

2 For the first splitin each tree, this corresponds to assessing the strength of the marginal main effect
of each potential predictor variable. For any subsequent split, this corresponds to assessing the
strength of each potential predictor conditional on and in interaction with any previous splits, but
regardless of any splits yet to come. In this sense, the tree building process is only locally optimal, and
does not necessarily lead to the globally optimal model, as is also mentioned by Gries (2020).
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researchers. In contrast, a linear model will fit only a linear function unless other-
wise specified and will miss, for example, a quadratic effect in the data if a quadratic
term is not explicitly added to the model.

2.1 From trees to ensemble methods

A problematic property of trees, that is often mentioned in the literature and has led
to the development of ensemble methods like random forests, is their instability
to small changes in the data. While Gries (2020) mentions that these changes can affect
both the prediction and the tree structure, Philipp et al. (2016, 2018) point out that quite
different-looking tree structures can actually lead to essentially the same predictions.
This highlights that often the tree structure is over- or misinterpreted. For example,
while the variable used for the first split in a tree is the one that showed the strongest
main effect, it is the entire pattern of the predictions in the end nodes that shows
whether and how several splits in the same variable approximate the functional
form (as illustrated for a linear effect approximated by several splits in a tree by
Gries 2020, Fig. 3) or whether the first variable works together with the variables
below to form an interaction effect (as illustrated by Strobl et al. 2009b, Fig. 4).

Ensemble methods like random forests (Breiman 2001) and their predecessor
method bagging (Breiman 1996) have overcome the instability issue by means of
averaging predictions over several hundreds or thousands of trees. This makes the
predictions of ensembles much more smooth and typically more accurate than those
of single trees, but comes at the price that one looses the interpretability that is
inherent to individual trees (as long as they are not too large, as Gries 2020, points
out). This lack of interpretability refers to the fact that random forests do not offer
direct insights into the relationship between the individual predictor variables
and the response variable. It remains unclear whether and how the individual
predictor variables contribute to the prediction of the response variable alone and/or
ininteractions. For thisreason, in the machine learning literature ensemble methods
are often termed black box methods (a metaphor for the fact that one enters the
predictor variables and out comes the prediction — but what happened in between is
obscure).

2.2 Overfitting and related issues

The way that ensembles of bagged trees and random forests are constructed — by
fitting individual trees on bootstrap samples with replacement or (preferably for
unbiased variable selection, as shown by Strobl et al. 2007b) subsamples without
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replacement from the original data — also has the advantage that each tree comes
with its own, built-in test data set, namely those observations that were not used for
training the respective tree (termed out-of-bag, or OOB, data). This is a very useful
property of random forests, which Gries (2020) rightly draws attention to. However,
since the terminology used by Gries (2020) is not entirely in line with the statistical
and machine learning literature, we would like to elaborate on this topic.

To explain why it is important to assess the quality of machine learning methods
on data that were not used for fitting the model, let’s first review how models are
compared and assessed in classical, parametric statistics. For example, imagine that
you want to use a linear regression model to predict a response variable from several
potential predictor variables, but do not know in advance which predictors are and
are not informative for predicting the response (or whether they work in linear main
effects, nonlinear or interaction effects). Imagine you estimated two regression
models for predicting the response variable: model 1, containing only predictors A
and B, and model 2, containing predictors A, B, C, D, E and F. How can you decide
which model is better? While, for example, the simple R statistic for linear regres-
sion tends to increase with the number of added variables, even if spurious effects
are added, the adjusted R? (but also F-tests or likelihood-ratio-tests for model com-
parisons in nested models) will account for the model complexity.® So in the world of
parametric statistics, there are clear-cut criteria for deciding whether model 2 is
better than model 1, which balance the explained variance against the model
complexity. But these clear-cut criteria are based on certain mathematical
assumptions.

Machine learning methods come with far fewer assumptions than classical
parametrical statistical approaches. This also means that we no longer have the
entire toolbox of statistical significance testing and confidence intervals available
for assessing machine learning solutions. Without this toolbox, the only information
we have about how good one machine learning model performed compared to
another one is their prediction accuracy (which for categorical response variables is
also termed classification accuracy).

Now, similarly to what would happen if you would compare the un-adjusted R of
two regression models, if you compared the prediction accuracies of two machine
learning models (again model 1 containing only predictors A and B, model 2 con-
taining A, B, C, D, E and F) on the original data, the more complex model will typically
perform better, just because it is more flexible. You can imagine this when you think
about predicting the scores of your students in an exam based on a few truly relevant

3 F- and likelihood-ratio-tests will even provide p-values, indicating whether the improvement of
one model over the other is significant, i.e., higher than expected merely due to random sampling
fluctuations.
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predictors (how long did they study for the exam — probably helpful for getting a high
score; did they attend a party the night before the exam — probably not so much). But
your data set may also contain other potential predictor variables (do your students
have a cat or dog; what is their shoe size; what is the shoe size of their grandmother;
... — you get our point, these variables are not informative for the students’ exam
performance). If you would use a regression or machine learning model containing
only the two truly influential predictors (study time and party attendance) the
model would show a decent prediction accuracy, but not a perfect one. Remaining
unexplained differences between the students’ exam scores could be due to other,
unobserved characteristics, such as their IQ or previous experience with the course
topic, but also how they feel that particular day, if they made any careless errors etc.
Still, this model would be very useful, because it does not only decently predict the
exam scores of this year’s students, but it will also decently predict the grades of
next year’s students, as long as the general mechanisms underlying your course and
exam don’t change.

If, however, in addition to the truly informative variables you included several
irrelevant variables in your model (such as pet ownership and shoe sizes), what
would happen is the following: The model would show a higher prediction accuracy
for this year’s students. The reason for this is that by means of the additional irrel-
evant variables, you can make more fine-grained predictions. In the extreme case
you would include so many irrelevant variables that only one particular student is
described by each combination. For example there might be only one student who
studied dozens of hours, did not attend a party the night before the exam, has two
cats, shoe size 38, a grandmother with very large feet, etc. A model that is extremely
flexible because it contains so many predictors will learn what exam score
this particular student achieved, and predict exactly that same exam score for all
students with the same values on these predictors. This is actually a very good
strategy for predicting the exam score of this particular student in the data set from
this particular year, and the model will achieve a very high prediction accuracy on
this year’s data this way. However, we would not expect this prediction to work very
well for next year’s students — or generally speaking, another sample from the same
population. When a model is too flexible and thus adheres too strongly to random
variations in the original sample it does not generalize well to other samples from the
same population. This is termed overfitting.

Due to the stabilizing effect of averaging over the individual trees, random
forests tend to be less affected by overfitting than other machine learning methods.
In Gries (2020) this point is correctly made. However, presumably for didactic rea-
sons, the terminology about predictions used by Gries (2020) is not the one common
in the statistics and machine learning literature. To avoid confusion, we would like
to point out that: (i) In the statistics and machine learning literature, the term
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prediction describes the process of entering the predictor variable values of a real or
hypothetical observation into a fitted model and receiving the model’s prediction of
the response variable for that observation. This can be done for individual or all
observations in a data set, and for the same data set that the model was fitted on
(termed training data or learning data) or new data (termed test data). (ii) The
prediction accuracy is computed by comparing the predicted and true values of
the response variable and aggregating over all observations. When the response
variable is categorical, the prediction accuracy is also termed classification accuracy.
It is typically described by the percentage of observations for which the predicted
class is equal to the true class.*

In contrast to these conventions, Gries (2020) calls the accuracy of out-of-bag
predictions of a random forest (which are based on different observations than
those the forest was fitted to, similar to a fresh test sample) “prediction accuracy”,
while he calls the prediction accuracy of a tree on the original learning data
“classification accuracy”. We fully agree that the prediction accuracy of out-of-bag
predictions of a random forest gives a better estimate of the prediction accuracy
that is to be expected for other samples from the same population. At the same time,
in order to avoid confusion for readers consulting articles or textbooks from sta-
tistics or machine learning, we would like to point out that the contrasting use of the
terms “prediction” versus “classification” accuracy in Gries (2020) is not in line with
how these terms are used in the statistics and machine learning literature.

2.3 Interpretability and stability

Coming back to the interpretability (or lack thereof) of random forests, we agree with
Gries (2021) that when the true pattern in the data is more complex, trying to
interpret a random forest by means of fitting an additional single tree to the data will
produce an oversimplification. Below, we will discuss more adequate means of
interpretable machine learning. However, we would also like to point out that when
the true pattern in the data is simple, a single tree may be all that it takes to capture
this pattern — and in this case, the interpretability of a single tree is a big advantage
over the black box property of a random forest. Whether a specific data set may
contain a pattern that is sufficiently described by a single tree can be explored by
means of the stability diagnostics available in the stablelearner package in R

4 Some classification algorithms are also able to return predicted class probabilities, rather than
predicted class memberships, but these can also be compared to the true class, for example by means
of the Brier score or by the area under a receiver operating characteristic (or ROC) curve. For metric
response variables, the prediction accuracy can be measured, e.g., by the mean squared distance
between predicted and true response values (termed mean squared error or MSE).
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(Philipp et al. 2016, 2018, 2023). In this framework, the variable and cutpoint selection
of the tree fit on the original data is compared to that of trees fit on hundreds of
samples from the same data (similar to a random forest, but here the original tree
has a special role). If the same variables and similar cutpoint locations as in the
original tree are selected by the majority of resampling-based trees, the results can
be considered as stable and it is safe to interpret the original tree. If not, the
complexity of the pattern in the data will be better captured by an ensemble method,
and in that case no single tree is suitable for describing the pattern.

2.4 Tuning and runtime

Random forests are often said to “work well off the shelf”, i.e., with the default
settings for the tuning parameters. Still, the user should always double check the
default settings of each random forest implementation they are using. In particular,
while in the randomForest (Liaw and Wiener 2022) function the default value of the
mtry argument is set to the default values suggested by Breiman for the original
implementation (for classification to the square root of the number of predictor
variables, for regression to one third of the number of predictor variables), in party
the mtry argument is an arbitrary fixed number. As correctly highlighted by Gries
(2021) for randomForest, it is often worthwhile to tune (i.e., to optimally select) the
value of mtry. The same holds for cforest. For cforest from the party package,
tuning based, e.g., on cross validation is available in the caret package (Kuhn 2008;
Kuhn et al. 2023).

Cross validation means that the sample is randomly split into k parts, of which
k - 1parts are used for fitting the model and the remaining part is held back to assess
the prediction accuracy on fresh data. This process is repeated k times until all
observations have been used in turn for fitting the model and for assessing the
prediction accuracy. The entire procedure is conducted for several different values
of the to-be-tuned parameter, and the value with the best cross-validated prediction
accuracy is chosen. The number of trees in the forest, ntree, is typically not tuned
this way, because, while for mtry values smaller or larger than the optimal value can
lead to suboptimal performance, increasing the number of trees will only make the
results more accurate and more stable — only the extent of the increase in accuracy
flattens after a certain point. However, when the number of trees is chosen too small,
one might not yet have reached the point where the results are sufficiently stable to,
e.g., interpret random forest variable importance scores. To check whether the
number of trees is sufficiently large, Strobl et al. (2009a) recommend to re-fit a
random forest and re-compute the variable importances using a different seed
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(which determines the status of the random number generator in R). If the results
vary notably, the number of trees was not yet sufficiently high.

Since for larger data sets runtime can be an issue, it may be worth mentioning
that in the partykit package the functions for fitting conditional inference trees
and forests were written entirely in R (while in party parts of their implementation
were outsourced to C). This makes partykit very flexible, but means that, at the
moment, fitting conditional inference trees and forests in the older package party is
actually faster than in the newer package partykit. For computing the conditional
permutation importance (see also below), the permimp package (Debeer et al. 2021)
provides a faster implementation.

2.5 Variable importance and functional form

Random forest variable importance measures can give a first impression which
variables were relevant for the prediction. They have been motivated rather heu-
ristically and their absolute values depend on various factors beyond the true effect
of a variable, so that they are not directly comparable between different data sets.
Variable importance scores should therefore merely be interpreted in a qualitative
fashion. For example, when a few variables show much higher importance
scores than the rest, it makes sense to concentrate on these variables in future
studies.’ However, researchers often desire clear-cut decisions which variables are
“significantly important”. Rothacher and Strobl (2023) review different heuristics for
significance tests for random forest variable importance measures. In particular,
they show that the rule of thumb suggested by Strobl et al. (2009b), that has been
erroneously communicated by some researchers as if it was a significance test, does
not possess the properties of a formal statistical test. This rule of thumb is based on
the idea that — in a sparse setting, where the number of potential predictors is large,
but only few are truly informative — the importance scores of the non-informative
predictors will randomly fluctuate around zero. In this kind of setting, which is
common, e.g., in genetics, but probably not so common in linguistics, the absolute
value of the strongest negative importance can serve as a rule-of-thumb lower
bound, in the sense that variables not even exceeding this bound can be considered
as noise variables. It is, however, not a formal significance test, and was not pre-
sented as one by Strobl et al. (2009b). When nevertheless used as such, Rothacher
and Strobl (2023) show that it has an inflated type I error rate. Interestingly, some

5 Asalways when using data to inform variable selection or model selection in general, the data used
for this exploratory step must not be re-used for any confirmatory modelling. This would lead to false
positive results.
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other, computationally much more intensive approaches show even worse statistical
properties.

In addition to the original permutation variable importance, a conditional
permutation variable importance is available (Debeer and Strobl 2020; Strobl
et al. 2008). As is very well explained by Gries (2021), the conditional permutation
scheme takes correlations between predictor variables into account and thus
avoids “exaggerating the importance of predictors that are correlated with other
[informative] predictors” (Gries 2021, p. 470, with our addition in square brackets).
However, the way the conditioning is implemented at the moment leads to
increased computation times and also overcorrects in the sense that the condi-
tional permutation importance of all correlated predictors is lowered compared
to that of uncorrelated predictors (Henninger et al. 2023a). While work is being
done currently to further investigate and improve the behavior of the conditional
permutation importance, we would like to point out that neither the unconditional
nor the conditional permutation importance should be considered as “the truth”,
but rather as different points on the marginal-to-partial continuum (Debeer and
Strobl 2020) and that the most information lies in their comparison rather than
either result alone.

Variable importance scores indicate descriptively, which variables — alone or in
interactions — contributed to the prediction of the random forest. For a more thor-
ough interpretation it would be desirable to learn more about which variables
contribute in main effects versus interactions and also in which functional form.
Here we would like to clarify two misconceptions, but first need to review a few
important terms and concepts. When you think of a linear or logistic regression
model, everything is very tidy, in the sense that there are individual coefficients
quantifying the linear, quadratic, or other curvilinear effect of a single variable or
the interaction effect of two or more variables. As was mentioned above, in a single
tree, the tree structure together with the predictions in the end nodes describe these
effects and the approximation of the functional form captured by the tree — at least to
the trained eye. In a random forest with hundreds or thousands of trees it is not
possible to visually captures these effects. There are, however, additional approaches
from the field of interpretable machine learning, that provide additional hints.
Partial dependence plots (Apley and Zhu 2020; Henninger et al. 2023a, for an intro-
duction) or other plots of the predicted responses for different values of the pre-
dictors, such as those suggested by Szmrecsanyi et al. (2016), Gries (2020) and Hundt
et al. (2020), are one possibility to illustrate the functional form of the association
between a single predictor variable and the prediction for the response variable,
typically averaging over the values of all other predictors. It is important to be aware
that the information about the functional form of the association between predictor
and response, that is approximated rather smoothly by a random forest and then
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graphically displayed in a partial dependence plot, is a valuable information,
because in exploratory modelling the functional form of the association between
predictors and response is learned from the data rather than pre-specified by the
user.

Still, a univariate partial dependence plot is an approximation of the functional
form of the main effect of only one predictor variable at a time. So while Gries (2021)
argues correctly that partial dependence plots contain more information than, say,
bivariate y*tests between each individual predictor and the response — namely the
information on the functional form - his statement on page 467 (“...it also makes no
sense to summarize a multifactorial forest with monofactorial tables — this is what
we use partial dependence plots for.”) should not be misinterpreted in the sense that
univariate partial dependence plots could capture interaction effects.

We would like to illustrate this with a simple example: Figure 1 shows partial
dependence plots for two predictors from a random forest. We see that the predicted
response is essentially the same over the range of the hypothetical numeric (left) and
the two values of the binary (right) predictor variable. If there was a strong main
effect, the predicted response values should show a visible monotone or non-
monotone pattern, but these two predictors seem to be irrelevant — when looking at
one of them at a time, marginalizing over all other predictors. We will come back to
this example soon, but first would like to provide a little more detail about how
partial dependence plots are constructed.

Partial dependence plots display the average predicted value of the response
variable (on the y-axis) as a function of the value of a predictor variable (on the
x-axis). In order to create a partial dependence plot, the average predicted value of
the response variable needs to be computed for different values of the predictor

-2 -24

-1.0 -0.5 0.0 0.5 1.0 Group 1 Group 2
Xq X2

Figure 1: Partial dependence plots for two predictor variables, x; (left) and x, (right).
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variable.® In order to compute the average predicted value, first a prediction for
each single observation in the dataset needs to made by the fitted random forest
(or another machine learning model) for each of the different values of the predictor
variable. The predictions for the single observations are then averaged over all
observations in a second step.

One observation here corresponds to one row in the dataset. In many machine
learning applications, every row in the dataset represents one person, and every
column represents one variable, such as age, gender, economic status or wellbeing.
Imagine that a random forest is used to predict the value of the response variable
wellbeing from the values of the predictor variables age, gender and economic
status. The partial dependence plot then has the following rationale: For making the
prediction for a single observation, the observed values of all other predictor vari-
ables for this observation are used — only for the variable of interest the value is
varied. For example, in order to create a partial dependence plot for the predictor
variable age, the prediction for a single person will use that person’s observed values
for gender and economic status, but try out different values for the person’s age. The
random forest’s predicted value of the response variable, wellbeing, is then
computed for each value of age. These predictions show the levels of wellbeing
predicted by the model for a certain person if we could hold all their other properties
constant but vary their age to make them younger or older.

For every value of age, the predictions are then averaged over all persons in the
second step to create the average prediction. In this sense, partial dependence plots
average or marginalize over all other predictor variables. The average prediction
(on the y-axis) is displayed in the partial dependence plot as a function of the
different values of age that were tried out for each person (on the x-axis, like for the
numeric variable at the x-axis of the left panel in Figure 1). If, for example, the
predicted wellbeing averaged over all persons decreased with age, we would see a
decreasing shape in the partial dependence plot. This would correspond to a
monotone main effect of the variable age. Due to the flexibility of random forests to
approximate functional forms, it would also be possible that we find a non-monotone
effect, such as a u-shaped effect where wellbeing is higher for middle aged and lower
for younger and elderly persons.

In corpus linguistics, the rows of a data set typically do not correspond to persons
but to linguistic instances, such as occurrences of a verb in a corpus of written or
transcribed text. The partial dependence plot is then created accordingly by varying
one property of the instance while leaving the other properties as they were

6 Often, these will be the different values of the predictor variable that were observed in the data, but
it can also be a grid of values over the range of the predictor variable.
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observed, computing the predictions for each instance and then averaging over all
instances.

Returning to Figure 1, we saw that the two predictors from this toy example
seem to be irrelevant when looking at one predictor at a time, like it is done in a
univariate partial dependence plot that marginalizes over all other predictor vari-
ables. There are, however, other plots from interpretable machine learning, that
can capture the effects of two variables at a time: bivariate partial dependence plots
and individual conditional expectation or ICE plots (Goldstein et al. 2015). We will
further discuss bivariate partial dependence plots below, but in the following
concentrate on introducing ICE plots, because they appear to be less widely known in
linguistics.

The main difference between univariate partial dependence plots and ICE plots
is that in ICE plots the predictions are not averaged over all observations, but dis-
played separately for each observation. Considering the above description of how
partial dependence plots are constructed, this means that the aggregation in the
second step of the procedure is left out, leaving one individual line of predicted
values for each observation (i.e., each person or each instance) over the range of the
predictor variable. These lines are displayed in Figure 2 for the toy example data
already used in Figure 1.

ICE plots thus display the predicted value of the response variable (on the y-axis)
as a function of the value of a predictor variable (on the x-axis) for each observation
separately. Accordingly, the partial dependence plots in Figure 1 are the averages
over the individual ICE curves in Figure 2. Through this, ICE plots can display more
detailed information than partial dependence plots. For more details on partial
dependence and ICE plots see Henninger et al. (2023a). We will now describe how ICE
plots may help detect interaction effects.

X2
Group 1

—— Group 2

10 05 0.0 05 1.0 -1.0 05 00 05 1.0
X1 Xq

Figure 2: ICE plot for x; (left) and ICE plot for x; colored w.r.t. x, (right).
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When we look at the left panel of Figure 2, there seem to be observations for
which the effect of the numeric predictor is positive, and others for which it is
negative. Moreover, if we color the lines for the individual observations according to
the second, binary predictor (see Figure 2, right), we see that the pattern actually
corresponds to a perfect interaction between the two predictors. This kind of
interaction cannot be detected by looking at one variable at a time (it is the XOR
problem mentioned earlier). So univariate partial dependence plots or plots
displaying the predicted response only for one predictor at a time are also mono-
factorial in the sense that they risk to miss interactions.

It is of course also possible to manually include the interaction between two
predictor variables as an additional predictor variable in the machine learning
model like Gries (2020), and create a partial dependence plot for this additional
predictor. The partial dependence plot will then capture the effect of the specified
interaction. However, all these approaches do not allow to detect any unexpected
and thus unspecified higher order interaction effects: Just like a univariate partial
dependence plot cannot capture a 2-factor interaction, a partial dependence plot for a
2-factor interaction, a bivariate partial dependence plot or an ICE plot colored w.r.t. a
second variable cannot capture a 3-factor interaction, etc. While we as humans tend
to think only in interactions of order two or three at the most, the real pattern in the
data may be more complex and contain interactions of higher order.

2.6 Detecting interactions

Gries (2020) suggests an approach based on random forest variable importances
that has raised the hope to be able to better identify interactions and has already
been picked up in the linguistics literature (Bernaisch and Funke 2024; Deshors
2021; Deshors and Gries 2020; Schmidt and Funke 2024): The first step of this approach
is to explicitly add interactions between the predictor variables as additional pre-
dictor variables, termed interaction predictors in parts of the literature. This
approach is perfectly legitimate and is also mentioned in Strobl et al. (2009b). It can
increase the prediction accuracy in settings like the XOR case, where predictors have
small or no main effects but may exhibit informative interactions, which are easier to
detect when explicitly included. However, Gries (2020) suggestion goes beyond this
first step and seems to imply that the resulting variable importance scores of the
interaction predictors could help identify whether a predictor variable contributes
to the prediction through a 2-factor interaction rather than through a main effect.
To illustrate this, Gries (2020) presents a case study with a toy data set. The
example has been formulated such that an interaction predictor alone is able to
perfectly predict the outcome. The interaction predictors are added and the finding is
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described this way (Gries 2020: 639): “Variable importance: every single forest
chooses P2:P3 as the by far most important predictor, but it is worth noting
that, because of the sampling, all other predictors’ variable importance scores are
also not 0.” This indicates that this result is what the author considers as the correct
behavior of the variable importance and to our understanding implies that the
approach of including interaction predictors and computing their importance is
promoted as a method for detecting truly relevant interaction effects.

Other papers seem to have interpreted Gries’ suggestion in the same way. For
example, Deshors and Gries (2020: 225) write “[...] we follow Gries’s (forthcoming)
recommendations: [...] the first step of our statistical analysis consisted of manually
creating a number of new predictors that essentially represent all two-way
interactions [...]. These were then added as predictors to a forest [...]. [...] Second,
we computed the version of variable importance scores proposed in Janitza et al.
(2013) [...].” Deshors and Gries (2020) use a linear surrogate model in addition to the
random forest analysis, but concentrate the interpretation on the four interaction
predictors that have shown the highest AUC’ variable importance scores (besides the
single variable variety; the variable importance scores for these four interaction
predictors are reported on p. 226, the importance scores for all predictors in
Appendix B of Deshors and Gries 2020), indicating that the authors consider these
interaction effects to be most relevant. A similar approach was followed by Deshors
(2021).

Schmidt and Funke (2024, p. 8 of online version) write “Following Gries (2020),
we explicitly included interaction variables of the two sociolinguistic variables
under investigation, namely GENDER and TIME, with each of the other variables.
[...]” and conclude (p. 9 of online version) “Figure 1 shows the variable importance
scores measured in mean decrease in accuracy. While the main effects of GENDER
and TIME rank among the least important variables, the plot highlights the high
importance of many of the interaction effects for the model’s accuracy. Especially the
interaction effects of GENDERXTRIGGER.LEMMA and TIMEXTRIGGER.LEMMA turn
out to be the most important variables in the random forest followed by the overall
effect of TRIGGER.LEMMA and the interaction of TIMEXNEWSPAPER.” The authors
then go on to focus the interpretation on these effects. A similar approach was
followed by Bernaisch and Funke (2024).

While it is correct to say that any (interaction) predictors with a high variable
importance have highly contributed to predicting the response variable in a random
forest, we would like to caution the readers against the idea that including

7 The AUC variable importance of Janitza et al. (2013) was not explicitly investigated in our following
simulation study, but is also permutation-based. We therefore expect a similar behavior w.r.t.
interaction predictors as for the original permutation importance.
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interaction predictors provided a reliable way of detecting whether interaction ef-
fects are truly relevant. The evidence from our simulation study, presented below,
shows that this is not the case. In particular, we will see that the importance of
interaction predictors can be higher than that of individual predictors even when the
corresponding interaction effect does not exist while the main effect of the individual
predictor does. This means that the practice of concluding from a high variable
importance ranking of interaction predictors that the corresponding interaction
effect was truly relevant is not justified.

Unlike our simulation study, the case study of Gries (2020) only looks at the
abhility of the suggested approach to identify an interaction that is actually in the
data (true positive finding).? In order to validate a new methodological approach,
however, it is important to look at different settings, also including ones that allow us
to check whether the approach may erroneously identify interactions that are not in
the data (false positive findings).

3 Simulation study

In order to more systematically explore these aspects, we have conducted a simu-
lation study. Here we will only present the main findings from this study. Further
details are provided in the Appendix A.

For systematically investigating the properties of a new methodological
approach, simulation studies have the advantage that one can systematically vary
different factors in the model used for generating the data (termed the data gener-
ating process) and see how they affect the results. In the simulation study reported
here, we varied the pattern of the true effects of the predictor variables and
compared the variable importance scores achieved through the approach suggested
by Gries (2020) to the true effects of the predictors. In particular, we used two
different settings in order to be able to assess both true positive and false positive
findings.

In condition A, there were no true interaction effects in the data. Only main
effects were simulated for the first three predictor variables (see Figure 3). An ideal

8 As a side note, Gries (2020) claims that the first predictor in his case study was not at all relevant.
One can argue against this statement because the first predictor is indeed associated with the
response variable, which makes it informative for the prediction from a marginal point of view. The
reason for this incongruence is that Gries (2020) seems to implicitly argue from a partial point of view,
where the first predictor does not add any information on top of the interaction of the other two
predictors. But this is not what the unconditional permutation importance expresses, cf. Debeer and
Strobl (2020).
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interaction detection method would show high variable importance for the main
effects of these predictors, but not for any interaction effects.

In condition B, there were both main effects and two-factor interactions in the
data. As can be seen from Figure 3, we included 2-factor interactions where both
predictors also have main effects, where only one of the two predictors has a main
effect, and where none of the two predictors has a main effect. An ideal interaction
detection method would show high variable importance for the true main effects of
the first three predictors and also high variable importance for each of the true
2-factor interaction effects.

The results are shown in Figure 4. The figure shows hoxplots of the uncondi-
tional permutation variable importance scores (over 1,000 simulation repetitions)
for each individual predictor (termed here: main effect predictors) and each

<
3 —& Existent effect
8 A ~~ Non-existent effect
g
§ 34 : €
T S
- L] L
E S Lo i
£ s ! ! ! °
g3 414 ; ;
s s 2 o
jr 44 —— 1
£: caEmEm Sanl N O Sanit B 30 0 NN
|
o R e A I e g e I N
3 T - - - — T T == == - -
T T T T T T T T T T T T T T T T T T
XX X X X X XiiXe XiXs XiXe XiXs XiXs XoXs XoXa XoXs XoXe XoXe XoXs XsiXs XuXs XeXe XsXe
Main effect predictors Interaction effect predictors
"
S B g —- Existent effect
g . _g_ i3 —{ Non-existent effect
@ s !
S 1 \ |
8 4 — i
c S
o
8 o
E e Bs,: 5, ¢
sc] 44 == i PR
£33 L4 RS T B S N 1
5 - + R R T S = .
> 54 -+ L i
81 T L.t = R R ==}
8 EL === I T L o ) e
s
T T T T T T T T T T T T T T T T T T T T T
XX X X X X XiXe XiXs XiXe XiXe XiXe XoXo XeXa XeXs XoXo XoXs XoXs XsXo XaXs XeXs XsiXe
Main effect predictors Interaction effect predictors

Figure 4: Results of the simulation study.



18 —— Strobletal. DE GRUYTER MOUTON

combination of two predictors (termed here: interaction effect predictors) included
in the random forest. The interaction effect predictors were included according to
Gries (2020, see Appendix for details).

The boxplots are drawn in black and filled when the respective effect is actually
present in the data generating process. So a high average importance in a boxplot
drawn in black indicates that the variable importance is a good criterion for iden-
tifying an effect that is actually present (true positives). Boxplots drawn in grey and
unfilled represent variables or combinations of variables that have no true effect in
the data generating process. A high average importance in a boxplot drawn in grey
thus indicates that the variable importance has also identified effects as important
that are not truly important (false positives).

In the top panel for condition A, we see that the variable importance is increased
for the first three variables, which do have main effects (true positives), and
centered at zero for the next three variables, which do not have any main effect in
condition A (true negatives).

However, the variable importance is also increased for any interaction effect
predictors containing one of the first three variables, and even more increased for
those containing two of the first three variables (false positives).

Please note that this does not mean that there is something wrong with the
variable importance. It actually behaves in the way that is to be expected: The
importance for any predictor (combination) containing a particular variable
expresses a conglomerate of the effect of that variable alone and in interactions.
What it does mean, however, is that comparing the variable importance of main
effect predictors and interaction effect predictors is not an appropriate means for
identifying true interactions in the data.

This result is further supported when we look at the bottom panel of Figure 4 for
condition B. Here we see that, again, the variable importance is increased for the
first three variables, which do have main effects (true positives). However, now it is
also somewhat increased for the next three variables, which do not have any effect in
condition B either (false positive). Again, note that we call this a false positive result
only while we investigate the variable importance as a method for distinguishing
main effects from interactions. The results show that it is not able to achieve this,
because the interaction effects that the next three variables x, through xg are
involved in (see again Figure 3) also carry over to the variable importance of the main
effect predictors. This is a legitimate behavior for the variable importance, but rules
it out as a method for distinguishing main effects from interactions. Finally, we can
see in the rest of the pattern that the variable importance is highest for the inter-
action effect predictor of the first two variables (which both have a main effect and
an interaction; true positive). However, it is second highest for the interaction effect
predictors of variables x; and x3, and x, and x3 (which all have main effects, but no
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true interaction effects, making them false positives). The interaction effect pre-
dictors of variables x3 and x, (true interaction, but only one main effect) and vari-
ables x5 and x; (true interaction, but no main effect) show a much lower importance
than the pairs with no true interactions but main effects. Again, this shows that
the variable importance is not an appropriate means for identifying true interactions
in the data.’

The variable importance is always a mix of the effects a single variable has in
main effects and interactions of different orders, and the same applies to the
importance of an interaction predictor. So unfortunately, as appealing as the idea
might seem, this is not a valid approach for identifying interactions. It is important
to remind ourselves: Random forest and other black box machine learning methods
are so good at making predictions because they are so flexible that they can
approximate any pattern in the data. If that pattern is complex, any attempt to
summarize it in an undercomplex way, such as summarizing a pattern containing
3- and 4-factor interactions with means for detecting main effects and 2-factor
interactions only, is bound to fail.

Other approaches that have been suggested for generically identifying
interactions in random forests are the approaches of Friedman and Popescu (2008);
Hornung and Boulesteix (2021); Ishwaran (2007). Friedman and Popescu (2008) sug-
gest a descriptive interaction statistic for 2- and more-factor interactions between a
predictor and any other predictors. Note, however, that this statistic shows false
positive results for predictors without main effects (Friedman and Popescu 2008;
Henninger et al. 2023a). (Hornung and Boulesteix 2021) suggest so called interaction
forests. This approach is quite similar in spirit to the suggestion of Gries (2020), and
did show some success detecting interaction effects in empirical data. Also similar to
the suggestion of Gries (2020) though, it can produce false positive results (Gitzi 2022).
Ishwaran (2007) proposes an approach for identifying 2-factor interactions by means
of subtracting the individual permutation importance from that of the joint per-
mutation of both predictors.’® The evidence from the simulation study of Ishwaran
(2007) is rather limited, so more research may be needed to further evaluate this
approach. What is conceptually clear, however, is the limitation of any method
explicitly specifying 2-factor interactions in the presence of higher order
interactions.

9 When assessing the differences between the importance of the interaction effect predictors and
the sums of the importance of the respective individual predictors, as suggested by one of the
reviewers of this manuscript, the results are inconclusive and do not allow to reliably indicate true
effects either.

10 Ishwaran (2007) uses random node assignment instead of random permutation as the basis for his
mathematical proofs, but argues that it has similar properties.
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So generally speaking, for the time being there is no ideal method for detecting
interactions with random forests. However, in corpus linguistics it often seems
to be the case that the number of predictor variables is not as high as in many
other application areas of random forests, and that many predictor variables are
categorical. In this case, it is very well possible to display the predicted responses of
one predictor variable separately for all combinations of levels of the other pre-
dictor variables to explore higher order interactions. This approach was taken by
Szmrecsanyi et al. (2016) (Fig. 3) and Hundt et al. (2020) (Fig. 8) for illustrating
3-factor interactions. This strategy for displaying random forest predictions pro-
vides much more information than any single monofactorial plot. It can also be
combined with colored ICE plots like those displayed in Figure 2 (right) for one
metric and one categorical predictor, or with bivariate partial dependence plots for
displaying 2-factor interactions between any two predictor variables. Bivariate
partial dependence and ICE plots can be generated, e.g., with the help of the R
packages iml (Casalicchio et al. 2024; Molnar et al. 2018) and pdp (Greenwell 2022,
2017). In order to avoid overinterpretations when visually interpreting multicol-
ored bivariate partial dependence plots, Henninger et al. (2023a) point out that
random patterns can be hard to distinguish from true interaction effects for the
human eye, and that this can be aggravated by a poor choice of the range of the
color scale.

When the number of predictors is too high to display the predicted responses
for all combinations of predictor variable levels, however, there is always the pos-
sibility that any 2-factor interactions, that can be explicitly specified and investi-
gated, do not tell the whole story, because higher order interactions are involved
but remain unspecified. Therefore, exploratory techniques that are able to identify
interactions of unknown order would be a valuable extension of our methodological
toolbox. A recent approach that looks promising in this regard is the one by Her-
binger et al. (2022). This approach searches for clusters of lines in ICE plots that can be
explained by one or more additional predictor variables, which corresponds to
searching for interactions of order two or higher. However, any approaches based on
the selection of variables into a tree or their position within a tree, such as those of
Herbinger et al. (2022) and Ishwaran (2007), may be affected by variable selection
bias when using traditional greedy search algorithms for tree building.

4 Conclusions

We hope to have been able to clarify a few aspects concerning the interpretation of
trees and random forests, as well as some of the technical and statistical aspects
surrounding them. We believe that the major strength of tree-based methods is their
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flexible, exploratory nature, but the price we pay for their flexibility is that their
results are harder to interpret than those of more restrictive, parametric models.
On the other hand, parametric models make such strong assumptions about the
properties and functional form of the association between predictors and response,
that if these assumptions are not correct, we will miss interesting new insights from
the data that tree-based methods could have discovered - if we use them in an
informed way.

Appendix A: Details on the simulation study

The simulation study was performed using the statistical software R (R Core Team
2023, v4.3.2). To fit random forests based on conditional inference trees, the cforest
function of the R package party (v1.3-13) was used. To calculate (unconditional)
permutation importance scores, the varimp function of the party package was used.
Random forests were always created using 1,000 trees (ntree =1,000). In each
node of a tree, 5 predictor variables were randomly selected to be evaluated for
splitting (mtry = 5) which corresponds to the commonly used default of settingmt ry
to the square root of the total number of predictors in a classification setting.
The following sections describe the structure of the generated artificial data, the
subsequent analysis with random forests and the obtained results of the simulation
study.

A.1 Data generating process

One observation of the simulated data always consisted of a (dummy coded) binary
response variable (y;) and six (dummy coded) binary predictor variables (x,;, with
p =1, 2, ..., 6). The predictor variables were independently sampled (with
P(X,;=1)=0.5) and were, therefore, not correlated with each other. The generation of
the response variable y; was based on a logistic regression model. The simulation
study included two conditions (A and B), which differed from each other in terms of
whether the logistic regression equation only included main effects of the predictor
variables, or whether interaction effects were included as well. Equation (1) shows
the logistic regression equation for condition A.

o <P(Yi =1lxy)

m) = by + bixai + biXgi + bixs; @

with: x; = (xy;, Xg4, ..., X1, bo = —2 and by = 1.
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As can be seen in Equation (1), only the first three of the six predictor variables
exhibited a main effect, while the other predictors did not contribute to the gener-
ation of y; and no interactions between predictors were present. In addition, the
three relevant predictors all exhibited a main effect with the same effect size (by).

In condition B, the logistic regression equation was extended with three inter-
action effects. The added effects were the two-way interactions of the variable pairs
(1, X2), (X3, X4) and (x5, Xg). Equation (2) shows the logistic regression equation for
condition B.

o <P(Yi =1x;)

m) = by + bixy + DXy + biXsi + DiXyiXo; + DiXsiXai + DiXsixg:  (2)

with: x; = (Xy3, X4 ..., Xei), bo = -2 and by = 1.

As shown in Equation (2), all main and interaction effects had the same effect size
(by. It is also evident from Equation (2) that the three added interactions differ in a
certain aspect: The first interaction term (byxyx,;) is composed of two predictors
which both exhibited a main effect as well. The second interaction term (biX3iX4;)
consists of two predictors of which one exhibited a main effect while the other did
not. And the third interaction term (b;Xs:xg;) consists of two predictors which both did
not exhibit a main effect. Figure 3 in the main text visualizes the patterns of the
present main and interaction effects in the two simulation conditions.

A.2 Random forest analysis

In each replication of the simulation study, an artificial data set consisting of 500
observations was created according to the data generating process described above.
According to the proposal by Gries (2020), the data set was extended by adding new
predictor variables, which are supposed to represent the combined effect of two
predictors. Specifically, each newly added variable was a four-level categorical
variable, representing the four possible combinations of two binary predictors." For
example, the newly added variable x;:x, represented the four possible combinations
of the two binary predictors x; and x, (see Table 1).

For the six predictor variables (xj, X, ..., Xg) in our artificial data, this approach
resulted in the addition of 15 new variables (xq:X,, X1:X3, ..., X5:Xg), one for each
predictor pair. The approach proposed by Gries (2020) then proceeded with fitting a

11 Including all four combinations of the two factor levels of two binary predictors is not how an
interaction is typically encoded in statistical models. In linear models, interaction effects are typically
encoded as products of two binary predictors. While the results presented here stick to the proposal
by Gries (2020) with four categories, a more extensive simulation study by Theiler (2021) has also
included the product encoding. The results show the same pattern as the results presented here.
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Table 1: Possible values of the categorical variable x;:x..

X Xz Xq1:X
0 0 0.0
0 1 0.1
1 0 1.0
1 1 1.1

random forest to the extended data, using both the original predictor variables and
the newly created variables. Then the (unconditional) permutation importance
scores were calculated for all predictor variables. In total, 1,000 replications were
run for each condition.

Given the intention of the approach proposed by Gries (2020) to use the variable
importances of the newly added predictors to identify interaction effects, we refer to
the binary predictors (x, Xz, ..., Xg) as “main effect predictors” and to the four-level
predictors (xi:Xy, X1:Xa, ..., X5:Xg) as “interaction effect predictors” in the following.

A.3 Results

Figure 4 in the main text shows the distribution of the variable importance scores
for each predictor over the simulation replications in the two conditions of the
simulation study. The respective boxplots are drawn in black and filled when an
effect is actually present in the data generating process. So a high average impor-
tance in a boxplot drawn in black indicates that the variable importance is a good
criterion for identifying an effect that is actually present (true positives). Boxplots
drawn in grey and unfilled represent variables or combinations of variables that
have no true effect in the data generating process. A high average importance in a
boxplot drawn in grey thus indicates that the variable importance has also identified
effects as important that are not truly important (false positives). For a more detailed
interpretation please refer to the main text.

The more extensive simulation study by Theiler (2021) also included a setting
with 3-factor interactions. The approach proposed by Gries (2020) also showed
false positive results in this setting. This further supports the conclusion in the main
text that random forest variable importance scores are a mix of the effects a pre-
dictor variable has in main effects and interactions of different orders and are thus
not suited for identifying interactions.
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