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Abstract: This paper reports on the state-of-the-art in application of multidi-
mensional scaling (MDS) techniques to create semantic maps in linguistic
research. MDS refers to a statistical technique that represents objects (lexical
items, linguistic contexts, languages, etc.) as points in a space so that close sim-
ilarity between the objects corresponds to close distances between the corre-
sponding points in the representation. We focus on the use of MDS in combination
with parallel corpus data as used in research on cross-linguistic variation. We first
introduce the mathematical foundations of MDS and then give an exhaustive
overview of past research that employs MDS techniques in combination with
parallel corpus data.Wepropose a set of terminology to succinctly describe the key
parameters of a particular MDS application.We then show that this computational
methodology is theory-neutral, i.e. it can be employed to answer research ques-
tions in a variety of linguistic theoretical frameworks. Finally, we show how this
leads to two lines of future developments for MDS research in linguistics.

Keywords: cross-linguistic variation; multidimensional scaling; parallel corpora;
semantic maps

1 Introduction

Multidimensional scaling (henceforth MDS) is a statistical technique that repre-
sents objects (lexical items, linguistic contexts, languages, etc.) in a dataset as
points in a multidimensional space so that close similarity between objects in the

*Corresponding author: Martijn van der Klis, UiL OTS, Utrecht University, Utrecht, The
Netherlands, E-mail: m.h.vanderklis@uu.nl. https://orcid.org/0000-0003-0008-9028
Jos Tellings, UiL OTS, Utrecht University, Utrecht, The Netherlands, E-mail: j.tellings@gmail.com.
https://orcid.org/0000-0002-4259-8202

Corpus Linguistics and Ling. Theory 2022; 18(3): 627–665

Open Access. © 2022 Martijn van der Klis and Jos Tellings, published by De Gruyter. This
work is licensed under the Creative Commons Attribution 4.0 International License.

https://doi.org/10.1515/cllt-2021-0018
mailto:m.h.vanderklis@uu.nl
https://orcid.org/0000-0003-0008-9028
mailto:j.tellings@gmail.com
https://orcid.org/0000-0002-4259-8202


dataset corresponds to close distances between the corresponding points in the
representation. Typically, MDS reduces a dataset that has variation in a large
number of dimensions, to a representation in only two or three dimensions. MDS
can therefore be seen as a dimensionality reduction technique, which facilitates
the graphical representation of a highly complex dataset as a 2D or 3D scatter plot.
We will call such a visualization obtained through MDS an MDS map.1

MDS as a statistical and visualization tool has been used in various fields of
science (see e.g. Ding 2018). Recently, researchers in linguistic typology have
started usingMDS as amethod to chart cross-linguistic variation in semantic maps
(see Cysouw 2001; Levinson et al. 2003 and especially Croft and Poole 2008 for
early work). Semantic maps visually represent interrelationships between mean-
ings expressed in languages. In Anderson’s (1982) typological work on the PERFECT

construction, the idea of a semanticmapwas introduced as amethod of visualizing
cross-linguistic variation. In Haspelmath’s (1997) work on indefinites, semantic
maps were formalized as graphs: nodes display functions (or meanings) in the
linguistic domain under investigation, while edges convey that at least one lan-
guage has a single form to express the functions of the nodes the edge connects.

As an example, Figure 1 displays the semantic map proposed by Haspelmath
for the functions of indefinite markers across languages. The map shows, for
example, that the functions of specific known and specific unknown are expressed

Figure 1: Semantic map for indefinite pronoun functions. Based on the map from Haspelmath
(1997, Figure 4.4).

1 Author names are in alphabetical order to reflect a shared responsibility for the content of the
paper. Van der Klis wrote Sections 1, 4.1, 4.2, and 5.2. Tellings wrote Sections 2, 3, 4.3, and 5.1. The
revising and structuring of the paper as a whole is a collective effort by both authors.
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by a single form in at least one language given the edge between these two nodes.
No such relation exists between the functions of direct negation and free choice: if a
lexical item exists that expresses these two functions, it should at least also express
the functions of indirect negation and comparative. The distribution of language-
specific items can then be mapped upon the semantic map in Figure 1 (cf. Fig-
ures 4.5–4.8 in Haspelmath 1997).

In current terminology, semantic maps as in Figure 1 are called classical
maps, while maps generated through MDS (or related methods) are generally
called proximity maps (van der Auwera 2013).2 Classical maps are lauded for their
neutral theoretical stance and the falsifiable predictions that they can generate
(i.e. possible and impossible polysemy patterns) and are widely used (see e.g.
Georgakopoulos and Polis 2018 and Georgakopoulos 2019 for an overview of
current research). Whereas classical maps are usually hand-crafted (but see
Regier et al. 2013 for an algorithm), MDS maps aim to advance the semantic map
method by generating maps directly from linguistic data, while at the same time
upholding the neutral perspective. However, interpreting MDS maps is not triv-
ial, as we will show in this paper.

Early work used MDS maps in an attempt to capture the insights of classical
maps in a more systematic or automated way. More recently, researchers have
started to employ MDS to map data from parallel corpora, intending to investigate
a certain linguistic phenomenon from a cross-linguistic perspective without pre-
scribing functional categories. In this paper, we focus on this latter trend in the use
of MDS in linguistics, although the link between MDS and classical maps will be
discussed in passing as we follow the chronological development of MDS maps in
Section 3.3

We stress that MDS as a statistical technique does not stand for a single
concept: MDS can be used to generate various kinds ofmaps, which show different
things and have different functions in the context of linguistic argumentation. To
explain what a given MDSmap represents, we discuss different sorts of MDSmaps
based on three parameters: input data (what sort of linguistic data have been used
as input for the MDS algorithm?), similarity measure (how is similarity between
primitives defined?), and output (what do the data points on the map represent?).
We advance these parameters as a conciseway to provide the essential information
for understanding how a given MDS map was constructed.

2 See Georgakopoulos (2019) for a comprehensive overview of related terms.
3 This paper is only concerned with MDS used as a method to create semantic maps. Other uses,
such as the creation of areal maps in dialectometry (Wieling and Nerbonne 2015) or modeling
diachronic change (Hilpert 2011) are not discussed. Moreover, this paper does not aim to provide a
practical user guide about software packages that implement MDS, see for instance Croft and
Timm (2013) or Borg and Groenen (2005, Appendix A) for this purpose.
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Before we proceed to discuss several MDS maps along these parameters, we
first describe the mathematical foundations of MDS in Section 2. This exposition
helps to understand the fundamental role of similarity in the construction of the
maps, and familiarizes the reader with some essential terminology (eigenvalues,
stress factors, dimensionality) that is needed to understand the central concepts of
multidimensional scaling. Then, in Section 3, we review various MDS maps that
can be found in the literature since Croft and Poole (2008). We look at the various
types of linguistic input data, and explain how these MDSmaps were constructed.
Section 4 covers howMDSmaps can be interpreted by analyzing the dimensions of
themap and the clustering of points, both by informal inspection andwith the help
of statistical tools. We also describe how this interpretation process links up to
linguistic theory, by reviewing the types of research questions thatMDSmaps have
been used to answer (Section 4.3). In Section 5, we indicate promising future
developments of MDS in the linguistic domain, as well as alternatives to MDS.
Section 6 concludes.

2 MDS: mathematical background

This section gently introduces some of the mathematical concepts behind MDS,
intended for readers who do not have a background in matrix algebra, but do
want to understand notions used in the linguistic MDS literature such as ‘eigen-
values’ and ‘stress factor’. Much more thorough expositions on the mathematics
behind MDS are available, for example Borg and Groenen (2005). Readers who
are primarily interested in linguistic applications of MDS may skip ahead, and
continue reading at Section 3. Section 2.4 highlights the main points of Section 2.

Although in the linguistic literature the label ‘multidimensional scaling’ is
typically used without further qualification, MDS actually stands for a family of
methods and procedures consisting of numerous variants that have been devel-
oped for different applications. Here, we introduce in some detail the version of
MDS that is usually known as classic scaling or classic MDS, or more fully as classic
metric Torgerson scaling, named after the work of Torgerson (1952). We opt for this
variant for expository reasons– it is the conceptually simplestmodel, and contains
the core concepts needed to understand multidimensional scaling and its related
technical concepts.

Classic scaling is one of threeMDS algorithms that have been used in linguistic
applications ofMDS, the other two being an iterative procedure known as SMACOF
and an algorithm known as optimal classification (OC) MDS (see Supplementary
materials for a brief discussion of these). For brevity of reference, we will continue
the terminological abuse by referring to classic scaling simply as ‘MDS’ in this
section.
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The main component of MDS is a process called eigendecomposition. This
process is also used in other statistical techniques, such as Principal Component
Analysis (Jolliffe and Cadima 2016). What is specific about MDS is that it uses as
input for eigendecomposition a set of similarity or dissimilarity data between
objects. We start our exposition at a general level and describe the mathematical
principles underlying eigendecomposition (§2.1), and then zoom in on some
mathematical specifics of MDS, and the similarity data used as input (§2.2).

2.1 Matrix algebra and eigendecomposition

MDS is based on matrix algebra. Matrices can be added and multiplied, just like
numbers can. Matrix addition and themultiplication of a matrix by a number (also
known as ‘scalar multiplication’) are straightforward, as the following (arbitrary)
examples illustrate:

( 4 1

−2 6
) + (−3 7

1 −1) = ( 1 8

−1 5
) [matrix  addition]

3( 3 −4
0 2

) = ( 9 −12
0 6

) [scalar  multiplication]

More important is how two matrices are multiplied. Matrix multiplication can be
interpreted geometrically. This is easiest when we multiply a n × n matrix by a
vector of length n. A vector is an arrow in n-dimensional space, so it has a length
and a direction. It can bewritten as amatrixwith n rows and 1 column (or 1 row and
n columns). An example ofmatrixmultiplication (with arbitrarily chosen numbers)
is given below:4

(−2 2
−3 5

)( 4
−2 ) = (−12

−22) (1)

Writing the matrix as A, and the input and output vectors as v and w, we can
represent the above equation as Av = w. We can understand the multiplication by
A as a geometric transformation such as rotation, scaling, reflection, etc. In other
words, the coordinates ofA can be chosen in such away thatA acts like a geometric
operator that maps an input vector v to an output vector w.

4 Matrixmultiplication is only possible if the twomatrices have suitable sizes: am × nmatrix can
be multiplied with a n × k matrix to yield a m × k matrix. The values in the resulting matrix are
determined by dot products of rows in the first matrix, and columns in the second matrix (see any
linear algebra textbook for definitions). In the example, the coordinates of the output vector are
found by −2 × 4 + 2 × −2 = −12 and −3 × 4 + 5 × −2 = −22.
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A special case arises when Av = λv, i.e. the result of applying A to v results in a
vectorwith the sameoropposite direction, only scaledbya factor λ (every coordinate
of v ismultiplied by thenumber λ). If this happens, v is calledan eigenvectorofA, and
λ its corresponding eigenvalue.5 Matrix A, as used in Equation (1), has eigenvalues

λ1 = 4 and λ2 = −1.6 The corresponding eigenvectors v1 = (1
2,

3
2) (Av1 = (2, 6) has the

same direction, but stretched by a factor 4) and v2 = (2, 1) (Av2 = ( −2, −1) has
opposite direction, and same length) are displayed in Figure 2.7

Eigenvectors and eigenvalues have many applications in mathematics and
statistics. For our (linguistic) purposes, the main motivation for using them is

Figure 2: Eigenvectors of A = (−2 2
−3 5

) with a positive eigenvalue λ1 = 4 and a negative
eigenvalue λ2 = −1.

5 For traditional reasons eigenvalues are denoted by λ. This has nothing to do with the lambda-
operator in semantics.
6 There is a computational procedure to find eigenvalues and eigenvectors for a givenmatrix. For
reasons of space, we do not outline this procedure here, but this can be found in any textbook on
linear algebra.
7 Note that there are infinitely many eigenvectors: all multiples of (1

2,
3
2), such as (1, 3), (2, 6),

(100, 300) etc. are eigenvectors for λ1 = 4. What is relevant is the number of eigenvectors
that are linearly independent (cannot be written as combinations of scalar multiples of each
other). For a n × n matrix, there are at most n linearly independent eigenvectors.
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that they can help reduce a complex dataset to one of lower dimensionality.
Suppose we write the dataset as a matrix (for example individuals for rows, and
observations for columns). Then the eigenvectors of thatmatrix can be informally
thought of as the dimensions along which most variation in the dataset occurs.8

The eigenvalue corresponding to an eigenvector indicates the relative signifi-
cance of that eigenvector’s dimension in describing the data.

Eigenvectors and eigenvalues have a further special property: for most
matrices A – and in particular symmetric matrices,9 which will show up in the
setting of MDS – it is possible to reconstruct the matrix A by only using the
eigenvectors/values. This process is called eigendecomposition, which is to say
that A can be written as a product of three matrices, as follows:

A = QΛQ−1

Here, Q contains the eigenvectors of A as its columns, and Λ (capital Greek letter
lambda) is a diagonalmatrix containing the eigenvalues ofA, whichmeans that all
its entries are 0 except for the ones on the diagonal, which contain the eigenvalues
λ1,…, λn of A:

Λ = ⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
λ1 0 0 0
0 λ2 ⋱ 0
0 ⋱ ⋱ 0
0 0 0 λn

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

Q−1 is the inverse of Q, which is to say that the product QQ−1 is the unit matrix, the
diagonal matrix with ones on its diagonal.10

For our example matrixA from Figure 2, the eigendecomposition is as follows:

A = ( 1 2
3 1

)( 4 0
0 −1)⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
−1
5

2
5

3
5

−1
5

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠ .

8 This is a bit of a simplification: technically, the eigenvectors are computed for the covariance
matrix, in a process called Principal Component Analysis (PCA). For reasons of space we leave out
visualizations of this, but see e.g. Jolliffe (2002: 2–3) for plots of principal components of a bivariate
dataset.
9 A matrix is symmetric if the value ai, j at row i and column j is the same as the value aj, i at row j
and column i, for any i and j. A real-valued symmetric matrix has the property that it always has
real-valued eigenvalues and eigenvectors.
10 The counterpart in the domain of numbers is that the ‘inverse’ of the number a is 1

a, because the
product a × 1

a is the unit number 1.
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In general, applying eigendecomposition to a data matrix reveals the most
important dimensions in the data (eigenvectors, from Q), and the relative impor-
tance of those dimensions (eigenvalues, from Λ).

2.2 Applying MDS

The input for MDS are (dis)similarity data. Similarity between two objects i and j is
represented as a numerical value ai, j. Because the similarity between i and j is
equal to the similarity between j and i (ai, j = aj, i), a (dis)similaritymatrix is always a
square symmetric matrix:

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
0 a1,2 a1,3 … a1, n

a2,1 0 a2,3 … a2, n

a3,1 a3,2 0
⋮ ⋮ ⋱
an, 1 an, 2 0

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
If the value ai, j increases as objects i and j become more similar, we speak of a
similarity matrix. If the value decreases as the objects become more similar, we
speak of a dissimilarity matrix. One can think of a matrix of driving distances
between cities as a natural example of a dissimilarity matrix.

To apply MDS to linguistic data, these data must come in the form of a (dis)
similarity matrix. It may at this point not be clear how linguistic data, such as
translations or native speaker judgments, can be represented in such a way.
Concrete examples of how linguistic data are turned into a similarity matrix are
discussed in Section 3.

The steps in the classic scaling algorithm are as follows (Borg and Groenen
2005, §12.1):
1. Start with a matrix of dissimilarities Δ.
2. Apply an operation of double centering to the matrix of squared dissimilarities

Δ2. This does not affect the relative dissimilarities, but results in a matrix B in
which the values are centered on the origin (the rows and columns add up to
zero).

3. Eigendecompose B as B = QΛQ′.
4. Select the largest n eigenvalues from Λ. Each of them corresponds with a

column inQ. The coordinates of the points in the reduced n-dimensional space
are then found by keeping the n columns corresponding to the chosen eigen-
values, and removing the other columns.11

11 For a small numerical example of this procedure, see Borg and Groenen (2005: 263).
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Because the matrix B is always symmetric (the original Δ, being a dissimilarity
matrix, was also symmetric), a mathematical result ensures that the eigende-
composition of B results in a matrix Q that is orthogonal. This means that the
inverse of Q is simply the transpose of Q (obtained by turning the columns into

rows), written here as Q′.

2.3 Stress and dimensionality selection

Stress is another frequently used term in linguistic MDS literature. Stress measures
the difference between the MDS output and the original dissimilarity data. As
larger stress values indicate aworse fit, stress is a badness-of-fit measure. Themost
commonly used measure, Kruskal’s stress, is based on the sum of squared de-
viations between the original dissimilarity data and the found coordinates in the
output representation.12

Step four in the above procedure involves dimensionality selection. MDS
is a dimensionality reduction technique, but the number of dimensions in the
final MDS output is something the researcher chooses. Stress can be used to
help determine the optimal dimensionality of the MDS output. One easy gen-
eral procedure is to generate MDS outputs of increasing dimensionality 2, 3,…, n,
and calculate the stress value corresponding to each one. By comparing these
(decreasing) stress values, the ‘optimal’ dimensionality k can be determined
as the one for which the stress value does not decrease much anymore for
higher dimensions than k. This method is known as the ‘elbowmethod’, after the
shape of the line plot in a graphic representation of stress values for different
dimensions (see Levshina 2016, Figure 4 for an example of such a plot). Borg
and Groenen (2005, §3.5) provide many more details on interpreting stress
values.

Next to computing a global stress value, stress can be used to detect potential
outliers in the dataset by focusing on the deviation of individual points, as in
Levshina (2022: 15). Hence, stress values are a more flexible method in analyzing
the fit of an MDS output than eigenvalues (recall §2.1), which are associated with a
dimension as a whole.

12 There are various other stress measures – see Borg and Groenen (2005, §11) for full mathe-
matical details of these and other fit measures, or Ding (2018) for a shorter exposition.

Generating semantic maps through multidimensional scaling 635



2.4 Short summary

The main points of this section are:
– Multidimensional scaling (MDS) stands for a set of statistical tools that use

matrix algebra to reduce a complex multidimensional dataset to a represen-
tation of lower dimensionality.

– The basic algorithm of classic scaling achieves this by using eigenvector
methods. In informal terms, eigenvectors represent the main axes of variation
in the dataset. The structure of eigenvalues is used to determine the optimal
number of dimensions in the solution.

– The input data for an MDS analysis consist of a matrix of (dis)similarity values
between (linguistic) objects.

See the Supplementary materials for some further reading suggestions.

3 A typology of MDS maps

We separate our discussion of MDS maps into two parts. This section is about the
construction of themaps:which input data andwhat parameters have beenused in
generating the MDSmap? In other words, we attempt to provide a typology of MDS
maps.Wepostpone interpretation ofMDSmaps, and how that links up to linguistic
theory, until Section 4.

The discussion in this section is chronological, startingwith a brief overview of
MDSmaps that aim to recreate classicalmaps (§3.1), and a related type ofMDSmap
in which the points represent sentence contexts (§3.2). Then, we cover in more
detail the recent trend of creating MDS maps based on parallel corpus data (§3.3
and §3.4).

3.1 Recreating classical maps

The first type ofMDSmap is one that aims to recreate classical semanticmaps. This
was one of the early motivations of applying MDS in the linguistic domain: MDS
was introduced because “the semantic map model is in need of a sound mathe-
matical basis” (Croft 2007: 83). This was a methodological advancement, because
MDS provided a way to automatize the process of building classical semantic
maps, and made it possible to deal with large-scale sets of data that could not be
analyzed manually.
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This type of MDSmap is often based on questionnaire data: sentence contexts
that have been selected or designed by the researcher to investigate a particular
domain (e.g. the tense/aspect questionnaire in Dahl 1985, or the performative
questionnaire in deWit et al. 2018). The questionnaire is applied bynative speakers
or fieldworkers in several languages, and the data obtained from these question-
naires serve as input for MDS.

In particular, the input data for thesemaps consist of specifications (Yes/No)
for forms in various languages about whether or not that form can convey an
abstract function. Two functions count as more similar when a higher number of
forms express both functions. An example is Figure 3, which displays an MDS
map for indefinites from Croft and Poole (2008), based on data from Haspelmath
(1997). The MDS map in Figure 3 reproduces the classical semantic map in
Figure 1 (§1). The construction of the MDS map in Figure 3 is summarized in the
box below it.Wewill use these boxes as away to summarize the key parameters of
an MDS study, as given in Section 1 above: the algorithm used, the type of input
data, how similarity was computed, and what the output map represents. The
boxes use generic terminology such as ‘functioni’, ‘constructionj’, etc., to give the
reader an understanding of how this type of MDS map works without specific
details of any particular study. For the Croft and Poole (2008) study, the functions

Figure 3: MDS map for indefinite pronoun functions. From Croft and Poole (2008, Figure 4).
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are the nine functions from Haspelmath (1997), and the forms are indefinite
pronouns from a variety of languages.

Figure 3 aimed to recreate Haspelmath’s (1997) classical semantic map of
indefinites. Unlike in classical semantic maps, the distance between points is
meaningful: points that are closer to each other are to be consideredmore similar.13

On the other hand, the dimensions have numerical values, but these do not have a
direct linguistic interpretation. The dots on the MDSmapmay be connected to add
the graph structure of the classical map (although this structure is not a result of
the MDS algorithm), see Croft and Poole (2008, Figure 6).

The similarity of this type of MDSmaps to classical semantic maps entails that
they are subject to some of the same shortcomings that classical maps have. For
example, the literature on classical maps debates whether the abstract functions
that are used as nodes in a classical map ought to be theory-neutral and compa-
rable across languages, i.e. should be comparative concepts (Haspelmath 2003,
2010). It is not always easy to make sure that data satisfy this property, and this
problem persists for MDS-based classical maps.

13 A reviewer notes that also in work on classical semantic maps, extensions were developed that
use distance between points as a way to display additional empirical generalizations. An example
is Nikitina (2009), who uses relative line length to represent differences in distance in conceptual
space.
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Note that the points on themap in Figure 3 aremultilingual abstractions, since
they represent abstract functions that are positioned in the two-dimensional space
based on how forms in various languages express these functions. However, a
monolingual map can be created by adding cutting lines to the map that indicate
how language-specific forms realize the functions on the map. In Figure 4, this is
illustrated for Romanian. For example, the cutting line that is labeled ori- separates
the functions (i.e. dots) on the map that the Romanian form ori- ‘any’ can convey
(i.e. free choice and comparative) from functions that it cannot convey (for example
specific known, etc.). Cutting lines work in this setting because of the binary nature
of the input data, but cannot be used for other types ofMDS input data (we refer the
reader to Poole 2005 and Croft and Poole 2008 for more details on cutting lines).

This way, this type of MDS maps allows for the same two perspectives as
classical semantic maps do, as described in Georgakopoulos and Polis (2018: 9):
translational equivalents are visible in the MDSmap as a whole, and designations
of a particular meaning intra-linguistically appear in language-specific maps.

Besides the work of Croft and Poole (2008), other domains for which MDS
maps of this type have been made include Slavic tense (Clancy 2006), person
marking (Cysouw 2007), and causatives (Levshina 2022, §2). The latter study is
noteworthy because it contains three-dimensional MDS maps that are construed
based on data from language grammars (Levshina 2022, Figures 4 and 5).

Figure 4: Figure 3 with cutting lines added for Romanian. From Croft and Poole (2008, Figure 5).
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3.2 Incorporating sentence contexts

A variant of the type of MDS map described above appears in Croft and Poole’s
(2008) reanalysis of data from Dahl (1985). While amap such as the one in Figure 3
is based on forms (indefinite pronouns) and abstract functions, it does not include
the data onwhich itwas decided that a certain formmay express a certain function.
These data typically come in the form of sentence contexts that purport to show
that form x can be used to express function y. Croft and Poole’s map of Dahl’s data
does include these underlying sentence contexts, but is otherwise conceptually
similar to the maps discussed above in that it also involves an interpretation of the
contexts in terms of abstract functions by the researcher.

Themap, displayed inFigure 5, is basedonDahl’s (1985) questionnaire on tense-
aspect constructions in various languages. In this questionnaire, informants were
asked to translate sentences in context (such as ‘He WRITE a letter’ in the context
where you saw someone engaging in an activity yesterday, Dahl 1985: 198). The
constructions cross-cut languages, and include for example ‘English simple present’,
‘French imparfait’, ‘Zulu narrative past’, etc. Croft and Poole assigned each of the 250
sentencecontexts to aprototype (‘perfective’, ‘habitual’, etc.). Thecontexts appearon
themapasdotswith a label for their prototype (suchas the labelV for ‘perfective’). As
a result, a single label appears several times on the map. This type of MDS map is
summarized in the box below, again presenting the input data in a generalized way.

Figure 5: MDS map of Dahl’s (1985) tense-aspect data, with interpretative lines added. From
Croft and Poole (2008, Figure 8).

640 van der Klis and Tellings



Lastly, the lines on the map in Figure 5 (past-future and imperfective–
perfective) are added post hoc by Croft and Poole as an interpretation of the two
dimensions of the MDS map. In Section 4.1, we return to the qualitative and
quantitative assessment of the significance of MDS dimensions in more detail.

MDSmaps of a similar nature include the ones in deWit et al. (2018), who use a
questionnaire on aspectual constructions in performative contexts. Hartmann
et al. (2014) apply MDS to map microroles (verb-specific semantic roles) from 25
languages. Similarity between two microroles is based on co-expression ten-
dencies between the two (see their p. 469 for details on the similarity measure).

3.3 Map coloring

In the sameway that cutting lineswere used to display information about a specific
language in a multilingual map (recall Figure 4, §3.1), MDS maps that represent
individual contexts can likewise display cross-linguistic variation. Language-
specific constructions can be indicated by changing the appearance of the dots on
themap (e.g. by using colors or symbols), a processwewill refer to asmap coloring.
Map coloring is used in manyMDS studies (e.g. Wälchli 2010; Wälchli and Cysouw
2012); here we illustrate with an example from Hartmann et al. (2014). Figure 6
shows the same map four times, but in each case the dots are represented differ-
ently, reflecting the constructions used in the four languages (the meaning of the
contour lines on the map are discussed in Section 4.2).

Map coloring is in important technique in MDS maps, as it allows to see
language-specific variation and cross-linguistic stability in the same visualization.
We return to map coloring in the next sections for other types of MDS maps.
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3.4 Maps of parallel corpus data

Besides questionnaire data, a second important source of data for linguistic MDS
analyses is texts that have been translated in various languages, forming a parallel
corpus. Wälchli and Cysouw (2012: 674) refer to this as primary data typology,
contrasting it with analyses based on higher-level sources such as reference
grammars. Parallel corpora overcome some issues of data collection with classical
maps: there is no dependency on existing comparative concepts, and using corpus
data also allows to include frequency as a factor. On the other hand, it has been
pointed out that a parallel corpus can be a limited source of data in that it may
only provide a genre-specific perspective, might lack specific forms, and overuse
prototypical forms (Levshina 2022).

Examples of parallel corpora that have been used in MDS analyses include
Bible corpora (Wälchli 2010, 2016, 2018; Wälchli and Cysouw 2012), translation
corpora of novels (Verkerk 2014; van der Klis et al. 2021), Europarl (translated
proceedings of the European parliament; de Swart, Tellings et al. 2021; van der
Klis et al. 2017), and a corpus of subtitles (Levshina 2015, 2022).

Once a suitable parallel corpus is selected, the construction of interest must be
extracted and annotated. For example, Wälchli and Cysouw (2012) extract 360
clauses describing motion events from translations of the Gospel of Mark in 101
languages (‘doculects’ in their terminology) (see Wälchli 2010 for a similar study

Figure 6: MDS maps with different map coloring per language, with contour lines added. From
Hartmann et al. (2014, Figure 5).

642 van der Klis and Tellings



with a different sample from the Gospel of Mark; see Wälchli 2016 for a study on
perception verbs based on data from the Gospel of Mark).

Unlike the maps in Section 3.2, in the setting of parallel corpora, a context
corresponds with a sequence of translations. A toy example would be 〈 book, libre,
Buch 〉 for the English, French, and German occurrences of that noun in a sentence
from a parallel corpus. Similarity between contexts is then measured by a distance
function applied to two such sequences. Typically, the (relative)Hamming distance
is used as a distance function: a context is represented as a sequence of trans-
lations, and the distance between two sequences of n objects is defined as the
number of objects that differ (compared pointwise) divided by n. For example, the
distance between 〈A,B,C,D,E〉 and 〈A,B,X,D, Z〉 is 2/5 because two of the five
positions differ (the 3rd and the 5th).

Other distance functions are possible, such as the Levenshtein distance that
has been used in several (non-MDS related) applications in linguistics (see e.g.
Greenhill 2011). Another plausible option is to define a distance function ad hoc, for
example one that weighs certain components heavier than others, as in Levshina
(2015) (see below for more details). However, we are unaware of work in the
linguistic MDS literature exploring different distance functions and their effect on
the resulting MDS output that leads to linguistic insights (but see Section 5.1).

In general terms, the input data for this type of MDS are summarized in the
box.14

14 There are variants of this set-up. For example, Levshina (2016) uses parallel corpus data, but
with binary values (Yes/No). For a concrete implementation of her data matrix in Excel, see
Levshina (2016, Figure 3).
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Thereare several recent studies inwhichMDShasbeenapplied toparallel corpus
data. Here, we give a short overview of which kind of datasets have been used. In
Section 4.3, we return to most of these studies in more detail, to show how they use
MDS maps in answering research questions in a variety of theoretical frameworks.

Wälchli (2018) investigates temporal adverbial clauses headed by words such
as UNTIL, BEFORE, and WHILE. Using a methodology similar to that of Wälchli and
Cysouw (2012), he builds an MDS map representing contexts from the New Tes-
tament (NT) parallel corpus from 72 languages.

Verkerk (2014) uses a parallel corpus built from translations of three different
novels in 16 Indo-European languages to investigate the encoding of motion
events. This results in a 3DMDSmap, but instead of computing Hamming distance
between contexts (as in Wälchli and Cysouw’s case above), distances are
computed between languages. Hence, the dots in Verkerk’s (2014: 349) MDS map
represent languages, and not individual contexts.

Dahl and Wälchli (2016) study perfects and the related category of iamitives
(forms like English already). They create anMDSmap inwhich the points represent
grams (a word, suffix, or construction in a particular language with a specific
meaning and/or function). They interpret the MDS space as a ‘grammatical space’.
Using NT Bible translations from 1,107 languages, the similarity between two
grams (for example English Present Perfect and Swahili -me-) is determined based
on how similar their distributions are across the text.

Beekhuizen et al. (2017) study indefinite pronouns. Whereas Haspelmath
(1997) uses data from grammars to build a classical semantic map, Beekhuizen
et al. use data from a parallel corpus of subtitles and an MDS analysis using the
optimal classification algorithm (see Section 3.1 above). They find a more fine-
grained pattern by showing that some of Haspelmath’s functions are infrequent,
while a cluster analysis (see also §4.2) finds a different grouping of semantic
functions than in Haspelmath’s map.

de Swart et al. (2012) applyMDS to occurrences of twoGreek prepositions, both
of which encode source as their main meaning, based on a four-language sample
of a parallel corpus of NT Gospels. The approach, including the similarity measure
used, is similar toWälchli (2010). They use a special variant of map coloring which
they call “semantic overlays”: they only display the points (i.e. occurrences of a
preposition) that correspond with a given semantic role, such as elative, ablative,
and partitive. This way they can interpret if the poles of a given dimension
correspond to these semantic roles.

Levshina (2015, 2016, 2022), in a series of papers, applies MDS by stress
majorization (see Supplementary materials) in the domain of causatives. Levshina
(2015) studies analytic causatives in 18 European languages with a constructed
parallel corpus of film subtitles. The procedure is similar to that of Wälchli
and Cysouw (2012), but the annotated features for each causative construction
are assigned different weights (Levshina 2015: 498). Levshina (2016) is a similar
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studywith the same corpus, but focuses on verbs of letting (e.g. English let, French
laisser) in 11 languages.

3.5 Translation mining

van der Klis et al. (2017) developed a variant of the basicmethodology fromWälchli
and Cysouw (2012), which they dub Translation Mining. Instead of comparing
translations by the lexical items thatwere chosen, they compare translations based
on a grammatical feature, namely the tense formused. So, forWälchli andCysouw,
when comparing two constructions w1 andw2 in the same language, they count as
equivalent if they are the same lexical item (w1 = w2). For van der Klis et al. (2017),
on the other hand, w1 and w2 count as equivalent if they use the same tense form
(Tense(w1) = Tense(w2)), but w1 and w2 need not be the same lexical item. In
both cases, similarity of contexts is determined through the relative Hamming
distance.15

A consequence of this methodological step is that after the relevant data are
extracted from the parallel corpus, they also need to be annotated for the gram-
matical feature in question, the step of ‘tense attribution’ in van der Klis et al.
(2017). These authors have developed a software tool TimeAlign16 to facilitate the
process of annotation of parallel corpus data.

In an extension of the 2017 study, van der Klis et al. (2021) investigate cross-
linguistic variation of the PERFECT in West-European languages, where small caps
indicate a cross-linguistic tense category comprising language-specific forms such
as the English Present Perfect, the French Passé Composé, etc. (these tense cate-
gories are defined purely based on form, e.g. auxiliary+participle). The parallel
corpus used in this work contains translations of the French novel L’Étranger by
Albert Camus (cf. de Swart 2007), and the MDS maps are created by the SMACOF
algorithm.

A slightly different version of map coloring is used in this line of work: colors
correspond to cross-linguistic tense categories, and not language-specific tense
forms (so, for example, blue represents PERFECT). With this method, differences in
tense use between languages can be identified. Figure 7 illustrates this: the same

15 As a reviewer points out, similarly, vonWaldenfels (2014) compares grammatical labels rather
than lexical forms. However, crucially, while van der Klis et al. (2017) calculates distances between
contexts, vonWaldenfels (2014) insteadmeasure the dissimilarity between languages. As a result,
he uses another paradigm for visualization, i.e. neighbor-nets. We briefly return to this method in
Section 4.2 below.
16 Source code for TimeAlign is available via https://github.com/UUDigitalHumanitieslab/
timealign.
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map is shown 7 times, but with colorings for the different languages in the corpus
(blue for PERFECT and green for PAST). The stepwise reduction of the blue area (i.e.
reduction of PERFECT use) is the visual representation of what van der Klis et al.
(2021) call a “subset relation” across western European languages’ use of the
PERFECT. There is a core use for which all languages use their counterpart of the
PERFECT (blue), and then there is a scale from languages that use the PERFECT in only
the core contexts (modern Greek) to languages that use it more widely (French,
Italian). Further interpretation of the cut-off points between pairs of languages
feeds a cross-linguistic semantic analysis of the PERFECT. Hence, MDS analysis
is used to reveal a richer cross-linguistic variation in the domain of the PERFECT

than was previously assumed in the literature (see van der Klis et al. 2021 for
further details).

Figure 7: MDS maps with different coloring per language, with added contour lines. The maps
signal a subset relation between PERFECT and PAST in western European languages. From van der
Klis et al. (2021, Figure 3).
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This study on the PERFECT gave rise to a line of (ongoing) work in which
Translation Mining is applied in other domains. Bremmers et al. (2021) study def-
inite determiners in German and Mandarin using a corpus of translations of Harry
Potter and the Philosopher’s Stone by J.K. Rowling. Tellings (2021) investigates
variation in the domain of conditionals (see Section 5.1 below).

Having provided a typology of MDS maps in this section, in the next section,
we turn to the interpretation of MDS maps.

4 Map interpretation and links to linguistic theory

Broadly speaking, there are two ways to analyze MDS maps. First, one can try to
assign a linguistic interpretation to the dimensions of the map. We will call this
processdimension interpretation, and discuss this in §4.1. Second, one can consider
groups of points that cluster together on the map, a strategy that we refer to as
cluster interpretation (§4.2). Note that dimension and cluster interpretation are not
completely independent, as typically, when two clusters are separated on a map,
they are also on opposing poles of one of the dimensions in the map. §4.3 closes
this section by linking interpretation of MDS maps to linguistic theory. We show
that the MDS methodology is theory-neutral and has been used with different
theoretical approaches, including classical typology and formal linguistics.

4.1 Dimension interpretation

Recall that the dimensions in an MDS solution do not have an intrinsic linguistic
meaning, but are the outcome of the algorithm.17 Still, a typical desideratum of
MDS studies is to interpret the dimensions so that the study assesses the distri-
bution of points on the map qualitatively. For example, in Figure 5 (§3.2) the two
dimensions are interpreted as a past-future axis and an imperfective–perfective
axis. According to Croft and Poole (2008), the first dimension displays cross-
linguistic variation in tense: we find sentence contexts expressing past reference
on the right side of the map, contexts expressing future reference on the left side,
and finally, contexts that are generally not marked by grammatical tense (e.g.
those expressing habituality) in the middle. The second dimension expresses

17 This relates to a general problem of visualizations that MDS maps are also subject to: they
always show some structure in the data, even if this structure is only an artefact of the method
applied (Cysouw 2008: 50). In this light, we should also view Zwarts’s (2008) comment that the
resulting dimensions in MDS maps do not necessarily reflect semantic distinctions.

Generating semantic maps through multidimensional scaling 647



aspect and has characteristically imperfective and perfective contexts on the ex-
tremes of the axis.

As another example, Wälchli and Cysouw (2012) use eigenvalue analysis to
find that at least 30 dimensions are relevant to describe theirmotion verb data. This
number is rather high for linguistic MDS studies, and is taken by the authors to be
illustrative of the high degree of complexity of the variation in the domain of
motion verbs (p. 689). Instead of assigning a single interpretative label to each
dimension, the authors separately interpret the negative and positive ‘pole’ of
a dimension. For example, dimension 1, having the highest eigenvalue and
thus relatively the most important one (see §2.1), is analyzed as distinguishing
come/arrive contexts (negative pole) from go/depart contexts (positive pole, see
their Table 4). As an example of how 2D maps are created for a high-dimensional
MDS analysis, Figure 8 shows 2D maps plotting dimension 1 (come vs. go) on the
x-axis and dimension 10, which distinguishes arrive contexts at the positive pole,
on the y-axis. This particular selection of dimensions allows Wälchli and Cysouw
to probe the cross-linguistic lexical variation in come, go, and arrive contexts. As
before, Figure 8 applies map coloring to indicate language-specific patterns on the
map (Figure 8a and b display the same distribution of dots, but the coloring reflects
Spanish and English, respectively). Labels are displayed in regions of the map
corresponding with the poles of dimension 1.18

Figure 8: MDS maps with different coloring per language, with interpretative labels added.
Based on the data from Wälchli and Cysouw (2012).

18 The labels in Figure 8 correspond to regions on the map, not clusters. SeeWälchli and Cysouw
(2012: 690) for details on this rather subtle distinction.
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One issue with the interpretation of dimensions is the potential occurrence of
horseshoe patterns. For example, in Figure 3 (§3.1), we find a pattern in which the
functions specific known and free choice form two ends of a horseshoe. No cutting
line in any language (cf. Figure 4, §3.1) includes these two ends (Croft and Poole
2008: 18). As a consequence, one should interpret the functions as displaying
only one dimension of variation, and not try to interpret the contribution of the
x- and y-axis individually. Such a one-dimensional model here actually corre-
sponds neatly with the hand-crafted classical map in Figure 1 (§1).

Dimension interpretation often proceeds through visual inspection of MDS
maps, but more rigorous approaches using statistical tools have also been pro-
posed. Levshina (2022) uses linear regression to identify which of the semantic
variables most strongly correlate with the placement of contexts in the MDSmap
(see also Levshina 2011). The procedure annotates the individual contexts of the
MDS map with binary classifications (e.g. in the domain of causatives, one could
annotate for contexts being intentional or not, or factitive or permissive).
Regression analysis then correlates these variables with the positioning of a
context on a single dimension. In other words, the method indicates which se-
mantic phenomena best explain the cross-linguistic variation modeled by the
MDS map.

(Multiple) Correspondence Analysis is amethod related toMDS, and facilitates
dimension interpretation through the addition of supplementary points on the
map. In the Supplementary materials, we briefly introduce Correspondence
Analysis.

In the next section, we move from the interpretation of individual dimensions
to the interpretation of clusters of data points on the MDS map.

4.2 Cluster interpretation and cluster analysis

Groups of points that appear clustered on an MDS map are analytically relevant,
because the proximity of the points indicates that the corresponding contexts are
similar in a linguistically relevant way, and contrast with points outside the
cluster. Clusters can be identified either by informal inspection of the map, or with
the help of statistical or algorithmic tools. For example, the contour lines in
Figure 6 (§3.2) are obtained from a probabilistic method, see Hartmann et al. (2014,
471ff.) for details. Once the clusters are identified, cluster interpretation is the
process of inspecting the contexts from the dataset corresponding to the points in
the cluster, and finding some linguistic commonality between them. For example,
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Hartmann et al. (2014: 470), in their MDSmap of semantic roles, recognize clusters
of agent-like roles and patient-like roles.

The procedure above consists of cluster identification and interpretation after
MDS has been applied to the dataset. An alternative is to identify clusters directly
from the original dataset, and runMDS parallel to it. Direct identification of clusters
from the distance matrix (or a transformation thereof) is known as cluster analysis.
The resulting attribution of clusters to individual points can then be fed back to the
MDS map as an additional layer of labelling. This procedure potentially facilitates
the interpretation of the semantic dimensions at stake. Below, we describe two
forms of cluster analysis that have been applied in combination with MDS.

4.2.1 k-means clustering

k-means clustering aims to partition observations into k clusters in which each
observation belongs to the cluster with the nearest mean serving as a prototype of
the cluster. k-means clustering can be applied to a distancematrix to find k clusters
consisting of similar data points. k-medoids clustering is a special case in which
the center of each cluster is an actual data point; in k-means clustering, this need
not necessarily be so.

InWälchli (2018), k-medoids clustering (in particular, the Partitioning Around
Medoids algorithm) is applied to cross-linguistic lexical variation in the expression
of adverbial clauses. With k set to 3, AS.LONG.AS, UNTIL, and BEFORE appear as three
different semantic clusters.19 This result confirms earlier typological analyses in
this domain, but without taking these functions as a point of departure, but rather
as a result of cross-linguistic lexical variation. With k = 5, two additional clusters
appear: WHILE and FÖRRÄN (fromModern Swedish förrän, that is somewhere between
before and until). Figure 9 showsMDSmapswith additional labels for the identified
clusters.

A post hoc analysis reveals that the optimal solution is with three clusters, and
thus disregards WHILE and FÖRRÄN as meaningful clusters. From this result, one can
infer that there are very few languages that have a separate lexical entry for FÖRRÄN

as Modern Swedish does. Instead, languages in general have the same marker for
FÖRRÄN and UNTIL. For English, the MDS map shows that there is a homogeneous
distribution of till and until in these two clusters. A similar point can be made for
WHILE, that has a separate lexical marker in English, but which is cross-
linguistically usually expressed with the same marker that expresses AS.LONG.AS.

19 Like in van der Klis et al. (2021) mentioned above, small caps indicate a cross-linguistic
category.
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4.2.2 Hierarchical cluster analysis

Hierarchical cluster analysis aims to build a hierarchy of clusters. The default,
agglomerative variant takes a bottom-up approach: each observation starts in its
own cluster, and pairs of clusters are iterativelymergedwhileminimizing distance.
The result is usually represented as a dendrogram.

In Levshina (2022), this type of cluster analysis is used to identify the semantic
functions of causative constructions. Levshina annotated a typologically diverse
sample of corpus subtitles and molded the parallel corpus data into the data
structure posed in Section 3.1 above. Hierarchical cluster analysis, as shown in
Figure 10 below, then allows her to find seven clusters, that serve as the input for a
semantic map. Using Regier et al.’s (2013) method to induce edges, Levshina ends
up with a fully data-driven classical semantic map.

Alternatively, not individual constructions, but rather languages as a whole
are used as starting nodes of the hierarchical cluster analysis (e.g. in Hartmann
et al. 2014: 475 and Levshina 2016: 106). This move allows to generate hypothe-
ses about genealogy or language contact, but crucially loses the possibility to drill
down to individual contexts. Recently, neighbor-nets has been put forward as a
related method that also operates on the language level and has similar aims
(Bryant and Moulton 2004), and has been successfully applied to parallel corpus
data (e.g. in Dahl 2014; Verkerk 2014, 2017; von Waldenfels 2014).

Figure 9: On the left: MDS map with coloring for English, with cluster analysis through the
Partitioning AroundMedoids algorithm added. On the right: assignment of clusters to individual
contexts by the Partitioning Around Medoids algorithm with k = 5. Adapted from Figure 2 in
Wälchli (2018: 157).
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Cluster analysis and dimension analysis are interpretation methods for the
map itself, but MDS studies in linguistics aim to answer some larger questions
relating to linguistic theory. We now move to describe which part MDS maps play
in the process of linguistic argumentation.

4.3 MDS and linguistic theory

In this section, we discuss how multidimensional scaling as a data reduction and
visualization technique stands in relation to theoretical approaches to the study of
language. Georgakopoulos and Polis (2018: 8) point out that the semantic map
method (in the broad sense as used in that work) is theory-neutral, and that this is
one of its advantages: MDS can be used in combination with a wide range of
descriptive and theoretical approaches of grammar, including formal and cogni-
tive ones. We argue here that, likewise, the methodology of using parallel corpus
data with an MDS analysis is theory-neutral. We illustrate this point by examining
the studies cited in Section 3 again, this time highlighting the theoretical contri-
bution the authors aimed for by using MDS.

To illustrate the methodology’s compatibility with a variety of theoretical
approaches, we zoom in on two approaches in particular, ‘classic typology’ and

Figure 10: Hierarchical cluster analysis on 18 causation contexts. The blue rectangles delimit
the seven identified clusters. Based on the data from Levshina (2022).
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‘formal linguistics’ (to be defined below).20 We choose these for two reasons, first
because most of the MDS studies we review can be positioned on a continuum
between classic typology and formal linguistics (but this does not mean that we
claim that no other frameworks are compatible with MDS). Second, the two ap-
proaches are sometimes perceived as contrastive or incompatible. For example,
Croft (2007: 85) writes that “typology starts with crosslinguistic comparison,
while the structuralist/generative [i.e. formal] approach proceeds ‘one language at
a time’ ”. Our reviewwill conclude that there is in fact no conflict, and that theMDS
methodology adds a multi-language empirical basis to formal studies of linguistic
phenomena.

4.3.1 MDS as a theory-neutral method

Wewill adopt the following idealized definitions of the two approaches. (Classical)
typology is a form of inquiry in which large-sample linguistic comparison is
applied to reveal limits of cross-linguistic variation in the form of (implicational,
restricted, biconditional, …) universals of language. Formal linguistics is an
approach that, based on data from a single or a small number of languages,
provides an in-depth abstract analysis of a given phenomenon that leads to an
account that is deductive in the sense that it makes falsifiable predictions. We do
not aim to review the debate here of how these two approaches relate to each other,
and to what extent there is a conflict between them (see e.g. Cinque 2007; Croft
2007; Haspelmath 2010; Newmeyer 2010 for differing opinions).

Several studies are primarily interested in research questions about language
classification, illustrating applications in classical typology. Verkerk (2014) is a
clear example of this, whose aim is to check the validity of the “strict dichotomy
between satellite-framed and verb-framed languages” (p. 326) proposed by Talmy
(2000). HerMDSmaps are unusual in comparison to the studies discussed above in
that they locate languages rather than semantic functions or linguistic contexts.
From her MDS analysis, she concludes that a strict dichotomy cannot predict the
attested variation, which gives rise to the potential identification of new language
classes (Verkerk 2014: 351).

Dahl and Wälchli (2016) is an example of a large-sample MDS study (1,107
languages). It addresses the question if two grams, perfects and iamitives, form
two distinct clusters, or rather a continuum. The conclusion is that although

20 The names of the two approaches are put in scare quotes to indicate that the labels neither do
justice to the large number of underlying assumptions that both approaches have (see e.g.
Hawkins 1988), nor to the various variant and intermediate positions that exist.
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certain areal groups can be identified as clusters in the MDS map, the distribution
of grams forms a continuum.

Hartmann et al. (2014) investigate the clustering of semantic microroles in a
classic scaling MDS map. Through this map, a metric is computed that classifies
languages based on pairwise similarity of microrole coding strategy. By this
means, a hierarchical typology is constructed of the 25 languages in the study.

More towards formal linguistics is de Wit et al. (2018), who aim to investigate
aspectual properties of performatives. They argue that, cross-linguistically, lan-
guages use the same aspectual category for performatives as they do for other
constructions that have a similar epistemic property (see their §2 for details). They
use an MDS study to show that aspectual categories indeed pattern this way. This
study can thus be argued to occupy somewhat of a middle ground: it is a typo-
logical study that investigates cross-linguistic patterns, but also aims to identify
epistemic properties of performative and other speech acts.

In a similar position is Wälchli and Cysouw (2012), who employ MDS maps to
represent the extent of variation in the domain of motion verbs (101 languages).
Besides various methodological points, the authors apply detailed dimension and
cluster interpretation on their MDSmap tomake typological and language-specific
claims about the cross-linguistic variation of motion verbs. By inspecting the lin-
guistic contexts behind themotion verbs, the authors propose a new category type
‘narrative come’ (p. 696), showing that the distribution of motion verbs also has a
discourse component.

The study by van der Klis et al. (2021) discussed in Section 3.4 looks at a much
smaller sample (seven European languages). However, this sample is sufficient to
identify a subset relation in the use of the PERFECT, rather than a hitherto assumed
dichotomy between strict and liberal PERFECT languages. This observation forms the
starting point for a formal linguistic analysis of the contexts in which pairs of
languages differ with respect to PERFECT use.

de Swart et al. (2012) represents a more radical departure from the typological
studies discussed above in that it is primarily interested in a phenomenon in a
single language – the semantics of the source prepositions ἀπó (apo) and ἐκ (ek) in
Ancient Greek. The authors use a parallel corpus MDS study to measure the se-
mantic similarity between the two prepositions, stating explicitly that they want to
investigate how the (broad-sample) MDS methodology “can be applied to a small
language sample” (p. 163). By an analysis of the semantic features of the clusters
on the map, they come to a better understanding of the semantic role of both
prepositions.

Similarly, Bremmers et al. (2021) are primarily interested in a phenomenon in a
single language: how is the formal distinction between weak and strong definites
operational in Mandarin? A small-sample MDS study, with only three languages
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(English, German, and Mandarin Chinese), shows that, contrary to earlier pre-
dictions, Mandarin bare nominals and demonstratives do not map directly on
German contracted (weak definites) and uncontracted forms (strong definites).
This discovery then forms the starting point of a formal linguistic analysis.

In sum, the MDS methodology does not commit the researcher to one partic-
ular theoretical framework, and has indeed been used with a variety of theoretical
frameworks. This includes classical typology as well as formal linguistics, indi-
cating that these two traditions need not be incompatible or conflicting, but are in
fact rather closely related when it comes to the study of cross-linguistic variation.

Some authors (e.g. Georgakopoulos and Polis 2018: 18) have claimed that
whereas classical semantic maps are an explanans (they constitute an explanation
as they are the result of preceding cross-linguistic analysis), MDSmaps can be seen
as an explanandum, i.e. they are visualizations of data that are not the end product,
but the starting point of further linguistic analysis. This suggests a dichotomy that
does not reflect the great diversity seen above of the types of applications that
employ MDS maps for linguistic analysis. This leads to a more nuanced view in
which MDS maps take up different intermediate positions in the explanatory
process. Some MDS maps are indeed the starting point of further analysis, in
particular in formal linguistic applications, as we detail in §4.3.2 below. In other
settings, such as in language classification or lexical semantics research, MDS
maps represent a classification of languages or forms. In that case, the maps
themselves–with interpretation of clusters and dimensions– form themain object
of analytic interest.

4.3.2 MDS and formal paradigms

Wewant to zoom in a bitmore on the situation inwhich parallel corpus data and an
MDS analysis are used to build a formal analysis of a linguistic phenomenon. The
general structure of a formal linguistic analysis starts with a body of empirical
data, followed by the building of a model in a formal language (e.g. a logical or
mathematical system of syntax or semantics) that can explain the observed data,
and make novel predictions. Parallel corpus data coupled with an MDS analysis
take the place of providing the empirical data that form the basis for the analysis.
The advantage of the methodology is that it allows the researcher to recognize
patterns in a large set of corpus data, which cannot be found by hand. As a result,
the subsequent analysis will have a more comprehensive empirical coverage.

Looking at it this way, the different approaches to applying MDS can be
appreciated by specifying the position that MDS maps take within the analytic
process or process of argumentation. The classic typological papers useMDSmaps
to visualize cross-linguistic variation itself, and the dimensional/clustering
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patterns in the maps are the main theoretical interest, as this provides information
about language classification. By contrast, the more formally oriented approaches
have MDSmaps in an earlier position within the analytic process: they use MDS to
identify empirical distinctions that are relevant for building an analysis of the
phenomenon in question. The MDS stage is then followed up by a formal analysis
that proceeds in a manner that is fairly typical for the approach of formal
linguistics.

One potential confusion that may arise relates to the distinction between the
theoretical basis for creating semantic maps and the theoretical paradigm for
subsequent formal analysis. Several MDS papers are explicit about their as-
sumptions regarding the theoretical basis of semantic map methodology. Starting
inWälchli (2010, §2) andWälchli and Cysouw (2012, §3), and later adopted in other
MDS studies (e.g. de Swart et al. 2012: 167), a combination of exemplar semantics
and similarity semanticshas beenproposed. Thismeans that exemplars (individual
occurrences) are compared instead of abstract concepts, and that similarity is a
more basic notion than identity. The two are linked by Haiman’s isomorphism
hypothesis (“recurrent identity of form will always reflect some perceived simi-
larity in communicative function”; Haiman 1985). This theoretical basis underlies
MDS maps in which points represent individual contexts (see §3.2).

The theoretical debate about similarity as a foundation for building semantic
maps should not be confused with theoretical assumptions that may be made
relating to a formal analysis that is constructed based on data from MDS maps.
Although MDS methodology and the resulting maps crucially rely on a notion of
similarity between linguistic objects, it does not follow that conclusions drawn
about the semantic content of these objectsmust be based on similarity rather than
identity.

A case in point is van der Klis et al. (2021), who argue that variation in the
domain of the PERFECT is to be described in terms of dynamic semantics, composi-
tional semantics, lexical semantics, and other constraints. So, for them, using a
similarity-based statistical technique to create maps does not prevent them from
an analysis in terms of well-established paradigms from the tradition of formal
linguistics.

In conclusion, this section addressed the theory-neutrality of theMDSmethod,
by raising the question ofwhetherMDS, in addition to ameans to reveal descriptive
patterns in complex multidimensional datasets, can be a valuable tool for theo-
retical linguists working in various paradigms. We have argued that this is the
case: cross-linguistic comparison can be the starting point to, and the empirical
core of, theoretical linguistic studies. Hence, multidimensional scaling on data
from parallel corpora should be part of the linguist’s toolkit. Within the area of
formal linguistics, discussed in this subsection, the use of parallel corpus data is
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still a fairly recent advance in need of further development. In the next section, we
discuss some potential directions of future work, which we hope will further
integrate the use of parallel corpus data in developing (formal) linguistic theory, as
well as point to alternatives for analysis through MDS.

5 Future directions

In this section, we point at two possible future directions for applying MDS in
linguistic research. First, we describe howwe can use MDS when compositionality
comes into play (§5.1). So far, we have seen applications of MDS that only compare
single lexical or grammatical features, but in most semantic domains, we see an
interplay of variables. A compositional approach is therefore necessitated.

Second, we cover some alternatives to MDS as a dimensionality reduction
method (§5.2). Recently, techniques have surfaced that assignmore weight to local
rather than global variation. We show how these methods can yield different
perspectives on the datasets at hand.

5.1 Lexical-compositional step

Inmost of theMDSwork reviewed in this paper, themethodology has been applied
to word-size or phrase-size units (motion verbs, tense forms, causatives, etc.), and
comparison has been made based on one parameter. As a next step in the appli-
cation of MDS techniques in semantic variation research, we envisage the appli-
cation of thismethod to larger constructions (multiple words, or sentence-size), for
which comparison would be made based on multiple parameters.

In abstract terms, consider a complex construction A whose meaning is
compositionally determined by component expressions B and C:

One can study variation for B and C separately, and then make predictions
for what variation for A looks like. Alternatively, one can take construction A as
primary data, and annotate various grammatical properties of A, including
properties that relate to B and C. Then, an MDS solution can be computed that
considers these various parameters. This can be done either by a distance
function that is a weighted average of distance measures for the various pa-
rameters (as described in Tellings 2021), or by multi-mode or multi-way MDS,
extensions of MDS that consider multiple similarity measures for each pair of
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objects (de Leeuw and Mair 2009). We are not aware of the use of these MDS
extensions in the linguistic domain, but they promise to provide a way to take
advantage of the MDS methodology for studying variation in the meaning of
complex constructions. In addition, they would allow for studying variation in
meaning composition, which is one of the aims of semantic cross-linguistic
research (von Fintel and Matthewson 2008).

Two ongoing research projects in which this approach has been taken are de
Swart et al. (2021) and Tellings (2021), both based on Europarl data. de Swart et al.
(2021) use MDS to study cross-linguistic variation in the compositional interaction
between negation and the lexical choice of connective inNPI constructions such as
English not…until. Tellings (2021) investigates variation in the interaction of tense
use and modal interpretations of conditional sentences.

5.2 Alternatives to MDS

Dimensionality reduction methods are usually subdivided into those that attempt
to retain global structure of the data, like MDS, and those that instead try to retain
local structure, like local linear embedding (LLE; Roweis and Saul 2000). Lastly,
some methods aim to operate at both the global and the local level, e.g.
t-distributed stochastic neighbor embedding (t-SNE; van der Maaten and Hinton
2008). In this section, we briefly compare these three kinds of algorithms and show
their applications in linguistics.

Generally, the difference between global-first (or full spectral) and local-first
(sparse spectral) methods is demonstrated using an artificial dataset called the
Swiss roll, pictured in Figure 11a below. In a true Swiss roll, a sponge cake is

Figure 11: Comparing Euclidean and geodesic distance through an artificial Swiss roll dataset.
Created with code available through https://github.com/time-in-translation/swissroll.
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rolled up to create a distinctive swirl effect. Similarly, the data in this set are
curved when taking a three-dimensional perspective, but flat from a two-
dimensional perspective.

Figure 11b shows two ways of measuring distance between points in a two-
dimensional rendering of the Swiss roll in Figure 11a. On a global level, points A
and Q are regarded close together, as their Euclidean distance is low. However, in
the original sponge cake, A and Qwould be rather far away, and only end up close
after rolling up. So, when reducing the three-dimensional manifold to two di-
mensions, one preferably arrives at a solution that retains the adjacency of the
points A, B, C, etc., rather than having A end up close to Q. Local-first algorithms
therefore attach more weight to geodesic distance instead: as a distance measure,
they use the shortest path in terms of nearby points. So, the shortest path from A to
Q goes via B, C, D, and so on. Hence, A and B end up close in the solution, while A
and Q are far apart.

For the dataset pictured in Figure 11a, MDS maps distant data points in the
three-dimensionalmanifold to nearby points in the Cartesian plane. Consequently,
as shown in Figure 12 below, MDS produces a rather similar two-dimensional
output to the three-dimensional input data. Consequently, MDS fails to identify the
underlying two-dimensional structure of the Swiss roll manifold.

LLE rather intends to retain local structure. As a result, LLE produces a low-
dimensional solution that preserves the neighborhood of the manifold. For the
Swiss roll dataset, the LLE output therefore resembles the two-dimensional
structure of the manifold, as shown in Figure 12 below. A drawback to LLE is that
the method has a general tendency to crowd points at the center of the map, which
prevents gaps from forming between potential clusters (van der Maaten and
Hinton 2008: 6–7).

Figure 12: Comparison of performance of three dimensionality reduction methods (MDS, LLE,
and t-SNE) on the artificial Swiss roll dataset displayed in Figure 11a. Createdwith code available
through https://github.com/time-in-translation/swissroll.
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In Figure 12, wefind that t-SNE also keepsmost of the local structure of the data
intact, butwe see some of the curvature of the original data aswell. However, t-SNE
additionally seems to have erroneously extracted two clusters, leading to dis-
playing the dark blue points separately from the green points. Notably, t-SNE has
parameters that require manual tuning, potentially hampering interpretation
(Wattenberg et al. 2016). Recently, Uniform Manifold Approximation and Projec-
tion (UMAP, McInnes et al. 2018) entered the scene, claiming to preserve more
global structure than t-SNE.

Figure 12 seems to suggest that retaining local structure, like with LLE and
t-SNE, yields better solutions regardless. However, whether the Swiss roll problem
is at stake verymuchdepends on the dataset at hand.Moreover, crucially,MDS can
capture the main sources of cross-linguistic variation by assigning a linguistic
interpretation to the resulting dimensions (see Section 4.1), while LLE and t-SNE
are more suitable to identify clusters (see Section 4.2). Finally, importantly, all
methods are susceptible to issues like the occurrence of horseshoe patterns as
exposed in Section 4.1 (Diaconis et al. 2008). Effective dimensionality reduction
hence requires an understanding of potential misinterpretations (Nguyen and
Holmes 2019).

While MDS prevails as the main method used in (typological) linguistics,
recent research has shown applications of t-SNE and UMAP. For example, Asgari
and Schütze (2017) apply t-SNE to cross-linguistic variation in tense markers. They
show how grammatical markers, e.g. past tense marking with ti in Seychellois
Creole, can function as pivots to find all past-referring contexts in the parallel
corpus of Bible translations. Iteratively selecting more pivots, e.g. Fijian qai, then
allows to discern sub-types of past-referring contexts: qai is used as a past tense
marker in narrative progression, but not in progressive or modal contexts.
Applying t-SNE on formal similarity in the parallel corpus as a whole then neatly
shows clustering of these aforementioned functions in the domain of past refer-
ence. Another example is Georgakopoulos et al. (2021), who apply UMAP in the
semantic domains of perception and cognition by comparing colexification pat-
terns across languages. They find that cross-linguistically, verbs almost never
colexify HEAR, SEE, THINK (BELIEVE), and LEARN with each other, as these meanings are
found in completely separate areas on the map generated through UMAP. On the
other hand, themeanings UNDERSTAND and KNOW (SOMETHING) are frequently colexified,
and as a result, verbs expressing these meanings are mostly found in the same
cluster on the resulting map.

While we are unaware of implementations of LLE to (re)generate semantic
maps, this section, along with Sections 4.1 and 4.2, shows that multiple visuali-
zations are often required to arrive at a full interpretation (cf. Cysouw 2008: 50,
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Georgakopoulos et al. 2021): we generally do not know the underlying structure of
our dataset.

6 Conclusions

This paper reviewed how multidimensional scaling is used to create semantic
maps in linguistic typology and cross-linguistic semantics. We have seen that MDS
stands for a collection of algorithms that can reduce the dimensionality of a highly
complex dataset, and represent this visually. Starting with a notion of similarity
between linguistic objects, applying MDS results in a visualization of both cross-
linguistic variation and single-language patterns, which then can be used to
answer a variety of linguistic research questions.

What makes reading the MDS literature in linguistics potentially difficult is
that there is so much variation with respect to various parameters of MDS imple-
mentations. These parameters include the particular MDS algorithm that is used,
the type of linguistic data used as input, the similaritymeasure between primitives,
what the points on the map represent, how clusters and dimensions are inter-
preted, and the place that MDS maps occupy in the process of linguistic argu-
mentation. By identifying and explaining these parameters in this paper, and
introducing useful terminology for describing MDS studies (map coloring, dimen-
sion interpretation, cluster interpretation, etc.), we hope to have provided the
means to make existing MDS-based work in linguistics more accessible.

At the same time, we hope this paper will prompt future MDS studies. We
suggested two directions for future work in particular. First, the use of MDS in a
setting in which multiple semantic features are at play in a compositional way, so
that the MDSmethodology can contribute to the study of cross-linguistic variation
of compositional structures. Second,wediscussed howMDS can be complemented
and compared with other dimensionality reduction techniques.
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