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Abstract: The present article aims to introduce structural equation modeling, in
particular measured variable path models, and discuss their great potential for
corpus linguists. Compared to other techniques commonly employed in the field
such as multiple regression, path models are highly flexible and enable testing a
priori hypotheses about causal relations between multiple independent and
dependent variables. In addition to increased methodological versatility, this
technique encourages big-picture, model-based reasoning, thus allowing corpus
linguists to move away from the, at times, somewhat overly simplified mindset
brought about by the more narrow null-hypothesis significance testing paradigm.
The article also includes commentary on corpus linguistics and its trajectory,
arguing in favor of increased cumulative knowledge building.

Keywords: corpus linguistic methodology, structural equation modeling, measured
variable path models, model-based reasoning, null-hypothesis significance testing

1 Introduction

Studies in corpus linguistics studies have seen a steady increase in the use of so-
phisticated statistical methods in recent years. Answering the call from corpus
methodologists for techniques better suited to the multivariate nature of corpus lin-
guistic data (e.g., Gries 2015a), the field has gone from relying heavily on descriptive
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statistics and monofactorial methods to using techniques such as different forms of
regression analyses and classification trees (Larsson et al. under review). Despite
these recent advancements, however, there are still questions pertaining to the
complex nature of language that our current methods cannot easily address.
Furthermore, the lack of familiarity with appropriate techniques may even constrain
the types of questions researchers pose. In an effort to expand our analytic repertoire,
this article seeks to introduce structural equation modeling (SEM) and discuss its
great potential for corpus linguistic analysis in a nontechnical manner; specifically,
we focus on measured variable path models, a fundamental building block of SEM
(for an overview of other techniques within this framework relevant to applied lin-
guists, seeHancock andSchoonen 2015). The article also includes commentary on the
field of corpus linguistics with regard to cumulative knowledge building. No prior
knowledge of SEM techniques is assumed; instead, we will build on readers’
knowledge of a related technique, namely multiple regression.

SEM is a powerful analytical framework that encompasses a large array of sta-
tistical techniques (e.g., path analysis, confirmatory factor analysis). These techniques
are commonly used in other social and behavioral sciences (including neighboring
fields such as Second Language Acquisition) to investigate theories involving causal
effects of one ormore independent variables on one ormore dependent variables, and
even among those dependent variables themselves. Despite the many strengths and
versatility of SEM, however, its techniques remain practically unknown in corpus
linguistics (with the notable exception of Gries 2003; and studies using confirmatory
factoranalysis, e.g., Biber 2001;Huetal. 2019). Tobeclear, our intent isnot to introduce
techniques that addunnecessary complexity (see thediscussionofminimally sufficient
statistical methods in Egbert et al. 2020). Rather, we aim to introduce tools that allow
corpus linguists to answer research questions that are otherwise beyond reach given
current statistical methods, thereby helping the field move forward.

The article is structured as follows: Section 2 offers a conceptual overview of
benefits of measured variable path models compared to multiple regression. After
having outlined the reasons why corpus linguists may want to add path models to
their toolbox, we provide a more concrete introduction to measured variable path
models in Section 3. Section 4 presents a worked example that serves to illustrate
how this technique can be applied to corpus data; it also offers an outlook on two
other techniques for readers interested in further expanding their SEM repertoire.
Section 5 provides a concluding discussion.

2 Benefits of using path models

This section highlights some of the advantages of measured variable path models
to show why the field would benefit from adopting them. Section 2.1 outlines

684 T. Larsson et al.



general advantages compared to multiple regression, whereas Section 2.2 dis-
cusses benefits specific to corpus linguists, and how these techniques may
encourage certain paradigm changes in the field.

2.1 Why use measured variable path models?

Measured variable path models belong to the class of covariance structure models,
which also includes confirmatory factor analysis and latent variable path models,
among others (see Section 4.3). Measured variable path models (henceforth path
models) are, like other covariance structure models, designed to help us under-
stand why and how variables relate, that is, covary. As such, they aid in a task that
is foundational to most linguistic inquiry: understanding what underlying mech-
anisms are associatedwith one ormore given outcomes. Pathmodels are proposed
on theoretical grounds; that is, the overall design of the model and the direction of
the causal relations specified in amodel should be based on theory and/or findings
of previous studies. Although there is no denying that SEM techniques, including
path models, are more advanced and thus perhaps more time-consuming to learn
than multiple regression, we will argue that this is a worthwhile investment, as
compared to other, more commonly used techniques in corpus linguistics, path
models have numerous advantages. We will focus here on two main ones: they
(i) offer greater flexibility and (ii) enable researchers to move toward large-picture,
model-based reasoning.

First, like multiple regression, path models offer regression-type coefficients,
R2 values, and allow us to carry out hypothesis testing procedures; indeed,
multiple regression models are a special case of path models. Unlike multiple
regression, however, pathmodels are highly flexible in terms of the specification of
hypothesized relations among variables andwith regard to variable structure, thus
enabling a broader range of research questions to be addressed, as outlined below.

In addition, even in cases where variables’ relations could be investigated
using multiple regression (several independent variables and one dependent
variable; e.g., gender and age as they relate to the frequency of hedges per clause),
path models offer a way to investigate these relations with greater control. For
instance, while the independent variables in a multiple regression are free to
covary whether or not we have reason to believe that they do based on theory, path
models enable us to specify such relations among independent variables as we see
fit to address specific research questions (e.g., they can be estimated freely, set to
zero, constrained equal to each other). In the example above, we arguably have no
reason to believe that the values for gender and age should be related in any way;
within a path model we have the ability to more accurately represent the
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hypothesized population, in this case, by constraining the covariance of gender
and age to zero.

When it comes to overall model structure, path models (unlike traditional
multiple regression) allow for inclusion of multiple dependent variables, and
investigation of both mediating variables (mediators) and moderating variables
(moderators). In brief, mediators help to explain the mechanism governing a
causal relation between two other variables (Pearl 2012). To use an example from a
published study, Fong and Ho (2017) looked at the extent to which factors such as
working memory and vocabulary skills affect listening comprehension, hypothesiz-
ing based on theory and previous studies that working memory affects vocabulary
skills, which in turn affects listening comprehension. Here, vocabulary skills is
a mediator that is hypothesized to help explain the relation between the inde-
pendent variable working memory and the dependent variable listening compre-
hension: working memory → vocabulary skills → listening comprehension.

Mediators are not to be confused with moderators. A moderator (often
assessed through an interaction term formed from the independent variable and
the moderator) explains when a relation holds between variables and the strength
of that relation. For example, the difference in relative frequency of usage of -ise
versus -ize (e.g., organise vs. organize) across regional background of the partici-
pants (British English vs. American English)might vary depending on speaker age.
That is, without taking age into consideration, the regional background is likely to
have a clear effect on the distribution of the spelling variants, such that overall, -ise
is preferred in British English whereas users of American English prefer -ize.
However, with age (the moderator) added, the picture might look different: For
example, while older users of British English may still show a marked preference
for the -ise spelling variant, the preference for this spelling variant for younger
users of British English may be very minor or completely lacking.

In addition to the ability to include mediators and moderators, path models
offer additional flexibility in that they enable researchers to compare paths within
models, evaluate longitudinal relations including themutual relations of variables
on each other as they develop over time, and compare models across multiple
groups. Moreover, path models can be expanded to accommodate latent variables
(see Section 4.3) to counteract the attenuating effects of measurement error in
observed variables (see, e.g., Hancock and Schoonen 2015).

Second, path models provide a framework for moving away from overreliance
on the somewhat simplified mindset associated with null-hypothesis significance
testing (NHST), toward model-based reasoning (i.e., a mindset where relations
between variables are viewed as part of a larger explanatory system, one which is
evaluated as such). As will be familiar to readers, in the NHST epistemological
system, differences or relations found in a sample are compared with a null
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hypothesis stating that in the population there is some specific (typically zero)
difference or relation. If there is sufficient evidence to reject this null hypothesis,
usually operationalized by some p-value below a target α level (typically p < 0.05),
the difference or relation is deemed ‘statistically significant’ and a difference/
relation other than that specified in the null hypothesis (specifically lower or
higher) is assumed to exist in the population from which the sample was drawn;
otherwise the null hypothesized value is retained. As a result, for example,
p =0.049 leads to a different inference about a population than p =0.051, although
differing in probability by a mere two thousandths.

NHST has been criticized on several accounts, including its overly rigid di-
chotomy between the two inferential outcomes, and some of its critics have even
suggested that we should stop relying on this framework altogether (see, e.g.,
Koplenig 2019; Plonsky 2015). With the rise of a new generation of accessible
software packages, Bayesian statistics has gained ground as an alternative
approach, one that instead allows us to express a degree of belief in an event while
incorporating prior knowledge (see, e.g., Lee 2012; Levy and Mislevy 2016; Wallis
2020 for an introduction). While SEM models can be analyzed using a Bayesian
framework (see Levy and Choi 2013), we will here limit our discussion to SEM, and
specifically path models, as carried out within the far more customary frequentist
framework, which includes NHST as pertains to specific model parameters. Such
tests, however, are embedded within a broader path model, thus having the
defining advantage of being part of a framework of model-based reasoning for
understanding a system as a whole. Although able to complement each other,
traditional NHST and modern model-based reasoning are based on very different
epistemologies:

To fully appreciate the import of this shift [toward model-based reasoning], we must recog-
nize that the epistemological focal point has completely shifted. Within the epistemological
tradition emerging from NHST, the focus is the null hypothesis, H0, which we assume until it
can be rejected in favor of a reasonable (but broad and relatively unspecified) alternative. […]
The postrevolution focal point is no longer the null hypothesis; it is the current model. This is
exactly where the researcher—the scientist—should be focusing his or her concern. […] The
null hypothesis has alwaysbeen a creation of the statistician. But for the scientist–researcher,
his or her own research hypothesis is the natural focus. (Rodgers 2010: 4–5)

Put differently, instead of hoping that we can reject the null in favor of a crudely
articulated alternative hypothesis (e.g., the population correlation ρ ≠ 0), path
models enable us to pose and assess the fit of a very specific but generally more
comprehensive hypothesis (the system that we have built based on theory and/or
previous research, viz. our model). If our proposed model does not exhibit a suf-
ficiently good fit (meaning there is insufficient consonance between that specific
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model and our data), then the model—as a whole or in part—can be rejected. That
is, assuming beliefs about relations among variables are proposed on theoretical
grounds, path models enable those relations to be evaluated, providing informa-
tion about the sign andmagnitude of the connections hypothesized within a larger
interdependent causal system.

2.2 Benefits of path models for corpus linguists specifically

In the same way path models have helped other fields improve and expand their
respective analytical repertoire, corpus linguistics stands to benefit greatly from
the advantages of these methods as well. The possibility of investigating multiple
dependent variables and mediating variables (and latent variables in the broader
scope of SEM) would lead to more accurate descriptions of linguistic and
contextual features and how they relate to one another. For example, we might be
interested in the variables months spent in an English-speaking country, frequency
of filled pauses, and test scores on an oral proficiency test, hypothesizing that
frequency of filled pauses serves as a mediator between the other two variables
(i.e., months spent in an English-speaking country could be hypothesized to influ-
ence frequency of filled pauses, which in turn might influence test scores on an oral
proficiency test). Indeed, for corpus linguists specifically, wewould submit that the
advantages of SEM techniques go beyond the advantages outlined in Section 2.1: If
we take these methods onboard, it could encourage additional, more far-reaching
changes for the field at large.

For example, at a general level, wishing to apply thesemethods could serve as
an incentive to move more toward theory and hypothesis-driven research, thus
leading to an increased focus on cumulative knowledge building in the field.1 As
mentioned in Section 2.1, the direction of the causal relations within path models
have to be supported by theory and/or findings of previous studies. Path models
are not intended to be an exploratory data analysis procedure.2 While several
competingmodels can be compared in whatmay seem an exploratorymanner, the

1 It should be noted right from the start, however, that our intention with this article is not to
introduce new techniques and encourage their “tail wagging the dog”-type of use. On the contrary,
we believe that moving toward cumulative knowledge building and the big-picture thinking that
goes along with model-based reasoning would greatly benefit the field. The fact that doing so
would also allow us to use SEM techniques to answer questions that commonly used methods in
corpus linguistics have rendered unanswerable is merely an added bonus.
2 There are, nonetheless, techniques that fall under the SEM umbrella that are often practiced in a
more exploratory manner, such as mixture models in which numbers of latent classes might be
explored.
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competingmodels are always proposed on theoretical grounds.What follows from
this is that in order for us to be able to use pathmodels on our data, our study has to
explicitly follow on other, similar studies in the field and/or relevant theory. This
means, for example, that if wewant tomodel a causal relation between register and
frequency of extraposed clauses per text in a path model, we must have reason to
believe based on strong theory and/or previous studies that there is such a
mechanism between the two such that register (e.g., academic writing vs. news)
affects the frequency of extraposed clauses per text.

Due perhaps to the relatively short history of our field and recent technical
advancements that have made massive amounts of data available to us, a large
proportion of corpus linguistics research has been exploratory in nature (Biber
2020), at times without particularly strong ties to theory or findings of previous
studies. While exploratory work serves several important functions, it is our
conviction that we have accumulated enough knowledge on several topics that we
can move further toward theory and hypothesis-driven research and cumulative
knowledge buildingwherewe use the findings of previous studies to form testable,
detailed hypotheses about our topic.3

Additionally, in encouraging broad, model-based reasoning, SEM techniques
allow corpus linguists to be less dependent on the more narrow NHST paradigm.
As discussed in the previous subsection, the NHST epistemological tradition has
been heavily criticized on general accounts. For corpus data specifically, if
p-values for individual variables are our primary tool for model selection, a quest
for statistical significance is especially problematic given the fact that corpus
linguists tend to work with samples that often are large enough to be overpowered,
meaning that almost any measurable difference will come out as statistically
significant, even if the effect size is small enough that the difference or relation
completely lacks practical significance. Put differently, given a non-null differ-
ence/relation, a large enough sample will always yield statistically significant
results (Kilgarriff 2005; see also Gries 2005 for a discussion of effect size in corpus
linguistics). Thus, if we rely solely on statistical significance to help us decide
which variables are useful predictors as part of the model-selection process for a
regression model, a larger or smaller data set would likely result in different
conclusions being drawn based on our results.

3 However, it is worth noting that in order to be able to move in this direction, some general,
additional changesmight be needed, including rigorous and transparent reporting practices (e.g.,
Paquot and Plonsky 2017) andmore unity with regard to definitions and operationalizations of key
concepts and constructs (e.g., Gries 2008), both of which are necessary if we are to be able to build
on other researchers’ work in a systematic manner. Increasing options for coding schemes, code,
and even data that have been coded for linguistic features to be made available online through
initiatives such as the IRIS database (www.iris-database.org) are likely to facilitate this process.
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While path models do not solve the problem of overpowered samples per se,
the problem is greatly ameliorated in that they enable us to move away from heavy
reliance on the NHST paradigm towardmore global, model-based reasoning.4 That
is, instead of focusing on rejecting the null hypothesis, whichwe knowwe are likely
to be able to do given a large enough sample and which we almost always know to
be false, we focus on the model as a system, and we assess whether or not to reject
or retain this particular model—as a whole or in part.

With this conceptual groundwork in place, and given the advantages of path
models in general and to corpus linguists specifically, we will move on to a more
detailed introduction to path models.

3 An introduction to path models

Path models are related to multiple regression models in that they are both linear
models relating independent and dependent variables. Nonetheless, there are
crucial differences; we will here give a more in-depth treatment to two of these key
differences, byway of introducing pathmodels and their use. First, unlikemultiple
regression, path models allow for investigations of hypothesized causal links5

within complex variable structures in models with multiple dependent variables;
second, under the right circumstances, path models are rejectable (Hancock and
Schoonen 2015: 163). These features of path models will be addressed and illus-
trated in turn below. Before doing so, however, some general concepts and ter-
minology will be introduced.

To enable us to represent causal links among variables, path diagrams are used.
These serveasapictorial depictionof the theoretical part of themodel. Somestandard
annotation conventionsused for path diagrams canbe found inFigure 1. As is shown,
observed variables are enclosed by rectangles, while latent variables (i.e., constructs
that cannot be measured directly) are enclosed by ovals; latent variables will be
discussed in Section 4.3. Direct effects (i.e., the direct influences of one variable on

4 In fact, in pathmodels, larger samples can even be advantageous in that they not only enable us
to model and detect very fine-grained relations between variables that would not have been
noticeable in smaller samples, but also allow us carry out more complex moderation and multi-
group models.
5 Regression technically is about prediction irrespective of causal mechanism, specifying a
conditional mean of the outcome based on the predictors. Path models, by contrast, are rooted in
beliefs about causal processes, specifically that each independent variable has a direct causal
bearing on the outcome. Regression can be, and has been, used for such models, but it is typically
restricted to only single-dependent-variablemodels (see Breiman and Friedman 1997; Variath and
Brobbey 2020 for exceptions).
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another) are indicated by a unidirectional arrow, where the direction of the arrow
specifies the direction of the hypothesized causality. Double-headed arrows (often
curved) denote covariance/correlation between two independent variables6 typically
arising due to one or more mutual causes outside the scope of the model.

A term often used for the process of postulating hypothesized links among
variables is model specification. The process, which is an essential part of SEM
modeling, involves the application of previous research and theory to justify the
variables and their connections in a theoretical path model. As pointed out by
Schumacker and Lomax (2016: 71), “[p]ath analysis does not provide a way to
specify the model, but rather estimates the effects of the variables once the model
has been specified by the researcher on the basis of theoretical considerations”.
That is, pathmodeling is not in and of itself a causal modeling technique; rather, it
is a method used to test “theoretical models that depict relations amongst vari-
ables” (Schumacker and Lomax 2016: 69). In order to be able to draw conclusions
about causality, the following four conditions have to be met by the variables and
their relations specified in themodel: (i) there is temporal ordering of variables; (ii)
there is covariation or correlation among variables; (iii) other possible causes have
been controlled for; and (iv) if X is manipulated, it causes a change in Y (Schu-
macker and Lomax 2016: 69).

By way of illustration and as a way of bridging the conceptual gap between
multiple regression and path models, Figure 2 shows what a multiple regression
model would look like in a path diagram, assuming the aforementioned criteria for
causality are in fact met. The variables come from Kyle and Crossley’s (2018) study
of writing quality as operationalized by the dependent variable holistic TOEFL

Figure 1: Examples of path model diagram symbols.

6 Or between two dependent variables’ residual/error terms, each of which represents external
influences on a dependent variable other than those explicitly contained within the model.
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scores; the authors consider more independent variables in their regression model
than what are listed here, but the ones included here are some of the ones found to
be of key importance, namely nominal subjects per clause, dependents per direct
object, and dependents per nominal subject. The epsilon term to the right of the
model collectively represents all other elements having a causal bearing on the
dependent variable that are independent of the three depicted causal variables.

With these concepts introduced, the first difference between path models and
multiple regression that wewill discuss here is that pathmodels allow for different
configurations of multiple dependent variables, as they include several regression
equations (Schumacker and Lomax 2016: 69), thus providing more flexibility in
terms of hypothesized variable relations than multiple regression. For example,
Figure 3 displays models with three variables in different configurations.

Figure 2: Multiple regression as a path diagram (variables from Kyle and Crossley 2018).

Figure 3: Some possible three-variable models (adapted from Schumacker and Lomax 2016: 72).
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In model A, X1 and X2 are hypothesized to covary (for reasons outside the
model) and to each have a direct effect on X3. In model B, X1 has a total effect on X3

that includes both a direct effect and an indirect effect, with the latter mediated by
X2. In model C, however, the effect of X1 on X3 is hypothesized to be completely
mediated by X2; there is thus no additional direct effect of X1 on X3. We can also
note that pathmodels A and B are just-identified, meaning that the variables are all
linked to one another with either single- or double-headed arrows, thus leaving a
model with zero degrees of freedom. Such models will always have perfect fit, that
is, be able to find best-fit values for its parameters that perfectly reproduce the
variances and covariances observed in the sample of data. Model C, by contrast, is
not just-identified, as there is no direct path from X1 to X3. This is an over-identified
model, which means that it is likely the case that the best-fit parameters will not
perfectly reproduce the sample information. For these kinds of models, one or
more restrictions have been imposed, meaning that they enable us to test a
particular hypothesis resulting from previous research and/or theory. That is, in
imposing a restriction, we can assess the model’s fit to the data, in order to
determine whether we should retain or reject this model as a reasonable explan-
atory system for these variables.

This leads us to the second key difference between path models and multiple
regression to be discussed here, namely that (over-identified) path models are
rejectable: “[I]f the pattern of relations among the measured variables is suffi-
ciently inconsistent with the hypothesized connections specified in the model,
then the model as a whole may be rejected as an explanatory system” (Hancock
and Schoonen 2015: 163). That is, if the data are sufficiently inconsistent with the
model, the model as a whole can be deemed implausible enough that it should not
be retained. For corpus linguists, this would enable us to (also) view models as
systematic wholes.7

To know whether to accept or reject a hypothesized model, data-model fit
indices are examined; these indices should also be reported in the study. Aswill be
discussed further in Section 4.2 below, it is generally recommended that re-
searchers check and report indices of different types: absolute (e.g., standardized
root mean-square residual, SRMR), parsimonious (e.g., root mean-square error of
approximation, RMSEA), and incremental (e.g., comparative fit index, CFI; see,
e.g., Hu and Bentler 1999; Kline 2005 for a more detailed account of model fit).
Many researchers also use and report a chi-square value for the model as a whole;
however, this test is very conservative (Hancock and Schoonen 2015: 176) and

7 Nonetheless, assuming the path models are deemed acceptable, they detail the coefficients for
each variable, which allows for conclusions about the relative importance/impact of individual
variables to be drawn.
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perhaps more useful in order to compare models differing in one or more pa-
rameters (e.g., models B and C in Figure 3) (e.g., Schoonen et al. 2011). An example
of how these indices can be used to assess the model fit is provided in the next
section, where we will use empirical data in a worked example in an attempt to
move away from the more abstract realm toward the concrete.

4 A worked example using empirical data

As mentioned above, in order to be able to make causal inferences from the path
model, we have to make sure that it is specified based on previous research and/or
theory. At times, previous research may offer somewhat different—and even
contradictory—structures that could each be modeled. A common next step in the
SEM framework for such cases is to fit competing models and then compare them
using fit indices; this is illustrated in Section 4.1. Section 4.2 illustrates how pre-
vious research may lead us to specify such competing models, the fit of which will
subsequently be tested and discussed. Finally, Section 4.3 broadens the scope and
offers some suggestions for other, related techniques that readers interested in
expanding their repertoire might want to look into: confirmatory factor analysis
and latent variable path analysis.

4.1 Specifying the models

The current section presents the results of a reanalysis of some data from a study of
syntactic complexity (Larsson and Kaatari 2020) to illustrate, through a worked
example, how path models can be used for corpus linguistic inquiries. As dis-
cussed above, while path models can be used to model fairly large systems of
variables, wewill start herewith some relatively simplemodels in order to hit some
key points without adding unnecessary complication to this introductory account
of path models.

Syntactic complexity (i.e., the grammatical sophistication exhibited in lan-
guage production) has been studied extensively in recent years, using other
methods such as multiple regression, multidimensional analysis, and random
forests. For the purpose of the present analysis, we will use path models to take a
closer look at noun phrase (NP) complexity. Specifically, we are interested in the
hypothesized effect that register (in our case, academic prose vs. popular science)
and disciplinary group (here, social sciences vs. natural sciences) have on different
measures of NP complexity. The corpus data come from BNC-15 (Kaatari 2017),
which is a carefully sampled subcorpus of the British National Corpus (BNC)
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(Burnard 2007). The subset used for the present study comprises 20 texts from each
register and disciplinary group; each text is sampled to be approximately 10,000
words, making the total size of our sample 80 texts and just over 800,000 words.8

The three measures of syntactic complexity were extracted using the Tool for the
Automatic Analysis of Syntactic Sophistication and Complexity (TAASSC; Kyle 2016),
and the output is provided in mean frequency of each measure per NP.

We know from previous studies that certain syntactic features vary with reg-
ister (e.g., Biber and Gray 2016; Biber et al. 2020). That is, we have good reason to
believe that there is a causal relation between register and syntactic complexity,
such that the situational circumstances under which a text was produced (e.g.,
expected expertise of the audience) affect the written output. In particular, mea-
sures of NP complexity have been found to clearly differ across register (Biber and
Gray 2010; Biber et al. 2020; Larsson and Kaatari 2020). Biber et al. (2020, based on
Biber and Gray 2010) highlight three types of NP modification that have all been
found to be more frequent in formal registers: adjectival, prepositional, and
nominal modification. We will therefore focus on these three types in our study.
Example (1) illustrates adjectival and prepositional modification; the NPs are in
square brackets, the attributive adjectives are bolded, and the (nested) preposi-
tional phrases are underlined. Nominal modification is exemplified in Example (2)
(bolded and underlined along with the head noun); the postmodifying preposi-
tional phrase is underlined.

(1) [themain difficulty] is [the complete lack of [any defence of [the conclusion]]
(ACAD_SS.CMN.sampled.txt)

(2) [The function of [this behaviour]] is probably [a defence system]
(ACAD_NS.FU0.sampled.txt)

Based on the aforementioned findings, we can hypothesize that register has a
causal effect on all three of these types of modification.

However, in addition to register, differences regarding the patterning of syn-
tactic features have also been found across disciplinary groups (e.g., social sci-
ences vs. natural sciences; Staples et al. 2016). Writing differs across discipline in
terms of both style and conventions. Therefore, it is not unreasonable to expect
that the disciplinary group also might have an impact on syntactic complexity,
such that the conventions of the field in which the text was produced affect the
written output of its scholars. In particular, the use of nominal and adjectival

8 The structure of these data is hierarchical/nested, as is that of data used in virtually all corpus
linguistics studies (Gries 2015b). Although design-based corrections to parameter standard errors
exist within the path analysis framework, these will be ignored here for simplicity of illustration.
For more information, the reader is referred to Stapleton (2013).
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modification (but less so prepositional modification) has been found to differ
across disciplines (Staples et al. 2016). Based on this, we hypothesize that disci-
plinary conventions affect adjectival and nominal modification, but not preposi-
tional modification (our hypothesis is thus that there is no direct path between
discipline and prepositional modification).

So far,wehave amodelwith two independent variables (henceforth referred to
as register and discipline) and three dependent variables (nominal, adjectival, and
prepositional modification) that is built to test our a priori beliefs that both register
and discipline are part of an explanatory system that can help us understand
changes in the threemeasures of complexity investigated.9Wewill now turn to the
question of how (or whether) the independent variables, as well as the dependent
variables, relate among themselves.

To start, due to the completely balanced manner in which the sampling of
register and discipline was conducted, there is no reason that our independent
variables should covary; therefore, we are constraining their covariance to zero.
Further, even if sampling of texts were not conducted in a balanced manner, we
would have no theoretical reason to suspect that register and discipline covary,
and would have likewise constrained their relation to zero. Having the option of
choosing whether or not independent variables should be allowed to covary is an
important strength of path models relative to multiple regression, the latter of
which offers no such mechanism to impose one’s theoretical beliefs.

With regard to the dependent variables, we also have complete control within
the model, all the way down to the behavior of their residual error terms. To elab-
orate briefly, without any changes to the variable structure, our theoretical specu-
lations above imply that the three measures of syntactic complexity should covary
among themselves because, andonly because, they share the common causal forces
of register and/or discipline. However, to make a decision about this part of the
model, we have to consider whether there are other reasons that these three vari-
ables should covary above and beyond their twomutual causal inputs in the model
(i.e., whether there are other shared influential forces outside the model).

Here, we have two competing hypotheses. On the one hand, all three depen-
dent variables are measures of NP complexity (the higher the value, the more
complex the NP); as such, all three contribute to textual density and can be ex-
pected to be found, for example, in texts with set word limits. This suggests that
some of the causal forces outside the model that are relegated to those dependent
variables’ error terms may, in fact, be shared among the variables, which means

9 Although path models can be used for investigations of moderating and/or mediating relations
between variables (cf. Section 2.1), our hypotheses do not predict any such relations, and no
relations of this kind are modeled in this article.
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that those error termswould covary (and should be allowed to do so in our model).
On the other hand, while the measures have been found to covary in different
registers and disciplines, it is not a given that they will do so outside those con-
texts. That is, just because writers make frequent use of adjectival modification, it
does not automatically mean that they will use nominal modification. This sug-
gests that the common causal forces of register and/or discipline alone are the key
reasons these NP complexity measures are likely to covary, and as such the error
terms would not covary (and we should not allow them to do so in our model).
Thus, these competing explanations lead us to two different hypothesized variable
structures, illustrated in Figures 4 and 5, each of which will be tested in a separate
model. Some descriptive statistics for the three measures are shown in Table 1.

The proposed models enable us to (i) evaluate the overall consistency of each
with the data, (ii) compare the models’ relative fit to each other to choose between

Table : Descriptive statistics for the frequency of the measures per NP and text.

Adjectival modification Prepositional modification Nominal modification

Min; Max .; . .; . .; .
Mean (SD) . (.) . (.) . (.)
Median (IQR) . (.) . (.) . (.)

Figure 4: Path diagram for a Model 1.
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them, and in the model selected thus (iii) test the relative impact of register and
discipline on three measures of NP complexity. The following research questions
were used to guide the analysis:

– Can the hypothesized relations among the measures of complexity be
explained solely by register and discipline or are there external factors at play
that cause these to covary? That is, what are the relative strengths of the two
competing models?

– What is the relative importance of register and discipline on the measures of
NP complexity?

4.2 Comparing the models and interpreting the results

WeusedR (R Core Team 2020) and the package lavaan (version 0.6-7; Rosseel 2012)
to fit the models using maximum likelihood estimation. The code and full model
output can be found in the Appendix. Table 2 summarizes the fit indicesmost often
reported for SEM models, and what some of the recommended ranges are for
acceptable fit.10 The fit indices for the two models from our analysis are summa-
rized in Table 3. It is worth noting, however, that the recommended values for good
fit are not to be seen as cutoff points (the way p-values are commonly used in a

Figure 5: Path diagram for a Model 2.

10 The values come primarily from work by Hu and Bentler (1999), which are understood to be
rough guidelines and in no way universally applicable standards.
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NHST framework), but rather as recommendations to help researchers evaluate
theirmodels. This is especially important to keep inmind in cases where themodel
fit values provide somewhat contradictory recommendations (see also see McNe-
ish and Wolf in press for a dynamic model of model fit).

Table : Fit indices and their recommended values for acceptable fit.

Test Reports: Guidelines

χ (Chi square) A statistical test of the overall fit
and discrepancy between the hy-
pothesized model and the data.
H: the model fits perfectly. Sen-
sitive to sample size.

p > . ideally, but becausemodels
are expected to contain trivial mis-
specifications that become signifi-
cant with increased sample size,
this is typically ignored.

AIC (Akaike Information
Criterion)

A measure incorporating fit and
parsimony.

Lower values indicate a bettermodel
fit. Useful for comparingmodels, not
assessing individual models.

CFI (Comparative Fit
Index)

“absolute or parsimonious fit
relative to a baseline model,
usually the null/independence
model that specifies no relations
among observed variables”
(Hancock and Schoonen :
).

>. (>. historically)

RMSEA (Root Mean
Square Error of
Approximation)

“the overall discrepancy between
observed and implied covariance
matrices while taking into ac-
count a model’s complexity; fit
improves as more parameters are
added to the model as long as
those parameters are making a
useful contribution” (Hancock
and Schoonen : ).

<.(<. historically)

SRMR (Standardized
Root Mean Square
Residuals)

“the overall [standardized]
discrepancybetweenanobserved
covariance matrix and the covari-
ance matrix suggested by the
parameter estimates from the
hypothesized model specifica-
tion; fit improves as more pa-
rameters are added to the model”
(Hancock and Schoonen :
)

<. (<. historically)
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The fit indices for our models unanimously suggest that Model 1 is a better fit
for our data: the chi-square, CFI, RMSEA, and SRMRall indicate a good fit forModel
1, but not for Model 2, and the AIC is lower for Model 1 than for Model 2.11 A chi-
square difference test confirms that the models are significantly different
(p < 0.001, chi-square difference 29.159 with three df). We will therefore reject
Model 2 and retainModel 1, andmove to interpreting the results contained therein.

The model output (see the Appendix; summarized in Figure 6) provides the
kind of information about effect sizes and p-values that we are accustomed to from
the typical output of multiple regression.12 For example, we can see that the dif-
ference between the registers for the nominal modifiers is not statistically signif-
icant (p =0.218). Other than that, all other specified paths are significant at the 0.05
level, as marked in the figure.13 While not pictured, the model output further
provides separate R2 values for the three dependent variables: 0.369 for adjectival
modification, 0.093 for nominal modification, and 0.256 for prepositional
modification.

Similarly to (unstandardized) coefficients in a multiple regression, with all
other variables kept constant, the path coefficients in the present models show the
predicted change when discipline changes from natural sciences (coded as 0) to

Table : Fit indices for Models  and  in the present study.

Test Model  Model 

χ (df) . ( df); p = . . ( df); p = .
AIC −. −.
CFI . .
RMSEA [% CI] . [.; .] . [.; .]
SRMR . .

11 It can also be noted that the modification indices for Model 2 (see the Appendix) suggest that
allowing for error covariance (in particular between ADJ and PP) would improve the model fit
considerably.
12 Although not illustrated here, we can test whether the paths are different from one another
either by running a competing model in which the paths are constrained to be equal and
comparing the fit to our proposed model, or by creating an additional parameter in our current
model whose value is set to the difference between the paths of interest and then seeing whether
this parameter’s estimate comes out as statistically significantly different from zero.
13 Note, however, that while p-values offer useful information for specific paths, any decisions
pertaining to whether to reject or retain a givenmodel are based on the other indices we report (cf.
our discussion about NHST in Sections 2.1 and 2.2).
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social sciences (coded as 1) or when register changes from academic prose (coded
as 0) to popular science (coded as 1). As the path coefficients are negative, it predicts,
for example, that the social science texts contain 0.036 adjectival modifiers fewer
per NP than the natural science texts, and that the popular science texts include
0.063 adjectival modifiers fewer per NP than the academic prose texts, which
(given the range found in the data; see Table 1) are not immaterial. As can further be
seen, the path coefficients for the effects of discipline on adjectival and nominal
modification are −0.036 and −0.037, respectively, indicating almost identical
effect size.

Returning to our research questions, we can conclude that Model 1 fit the data
better than our competingmodel, Model 2. For the latter model, the fit indices and
the modification indices suggested that there were relations in the data that the
model did not capture, whereas themodel fit indices forModel 1 indicated good fit.
The retained model, Model 1, showed that there was evidence to support the
hypotheses based on previous studies stating that both discipline and register
have an impact on NP complexity. Discipline has a statistically significant effect
on both adjectival and nominal modification. Specifically, the texts from the
social sciences have a lower average per NP for adjectival and nominal modifi-
cation than the texts from the natural sciences. Regarding register, the less formal

Figure 6: Path diagram for Model 1.
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popular science texts had a lower average per NP for all three measures compared
to themore formal academic texts. At amore global level, we can note that register
has a comparatively strong effect on adjectival and prepositional modification,
and only a very minor, nonsignificant effect on nominal modification. This sug-
gests that the nominal modification patterns in the data are better explained by
discipline than by register. A closer look at the data suggests that a possible
explanation for this is that nominal modification is often used for technical terms
and thus a common feature of technical descriptions, which aremore typical of the
natural sciences than the social sciences; an example of such a use is provided in
Example (3).

(3) This is particularly true if an emission spectrum can be observed: ab-
sorption spectra arise mainly from the vibrational ground-state
(Acad_natural_sci.H9R.sampled.txt).

Lastly, the error covariances estimated were statistically significant. The values in
Figure 6 are in an unstandardized metric, and as they carry the units of their
associated variables are hard to interpret. Standardized values for these relations,
that is, error correlations, are available in a standardized solution. They are 0.456
for adjectival and prepositional modification, 0.334 for adjectival and nominal
modification, and 0.263 for prepositional and nominal modification. This suggests
that there are causal forces outside the model that exert similar influence on all
three measures, which means that the measures do not vary independently from
one another. Adjectival and prepositional modification exhibited particularly
similar behavior in the data.

Although this study is included for illustrative purposes, and thus not
necessarily expected to yield results of particular linguistic significance, we can
still take note that the weak causal effect of register on nominal modification
might suggest that future studies should focus exclusively on adjectival and
prepositionalmodification in relation to register to further investigate theways in
which these covary. Moreover, as we found evidence to support the hypothesis
stating that the measures of complexity do not vary independently of one
another, a natural next step would be to look more closely into what factors—
linguistic or extralinguistic—other than discipline and register may have an
impact on NP complexity and extend the model to include these as well. We
might also want to compare other registers and/or disciplines get a more com-
plete picture.

So far, as an introduction to SEM, we have opted for an in-depth discussion of
(measured) path models, rather than a more superficial treatment of several
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different techniques from the broader SEM family. Nonetheless, to help interested
readers know what they might want to turn their attention to next, we will briefly
introduce two techniques related to path models: confirmatory factor analysis and
latent path models.14

4.3 Branching out: Other covariance structure models

Measured pathmodels, confirmatory factor analysis (CFA), and latent pathmodels
are different, but interrelated, types of covariance structure models, designed to
help us learn why and how variables relate. One important difference between
path models of the kind that we have discussed above and the two other tech-
niques is that the latter incorporate so-called latent variables.

Latent variables are variables hypothesized to exist but which have no
observed realizations and instead need to be measured via observable variables
(see, e.g., Bollen 2002). In corpus linguistics, we often talk about how we “oper-
ationalized a given variable as/through measures X, Y, and Z;” for example, “we
operationalized L2 proficiency through scores from speaking, listening, reading,
and writing tests.” However, in many cases, such variables could instead be
conceptualized as latent variables and modeled as such. Doing so is advanta-
geous in that it reduces the dimensionality of the data and in that the resulting
model captures “relations among the constructs of interest rather than among
their error-prone measured indicators” (Hancock and Schoonen 2015: 165).
Although not always labeled as such, latent variables are included and discussed
in corpus linguistics studies employing Multidimensional Analysis (e.g., Biber
1988) which employs exploratory factor analysis (EFA) to identify potential latent
variables.

EFA differs from CFA in that in EFA, the latent variables are unknown, and the
factors that emerge from the analysis are believed to be the latent variables
(i.e., the underlying sources of covariation among the measured variables). As the
statistical analysis is not constrained by theory in EFA, it can therefore “build on
chance correlations among features as well as theoretically significant correla-
tions” (Biber 2001: 220). By contrast, the type of factor analysis that we focus on
here, CFA, does not involve data exploration in search of such underlying sources.

14 While not covered in this introductory account of path models, readers familiar with mixed-
effectsmodelsmight be interested in also looking intomultilevel path/structuralmodels (see, e.g.,
Stapleton 2013 for a didactic treatment).
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Instead, measured variables are selected a priori with the purpose of serving as
indicators of a hypothesized latent variable (Bollen 2002: 624). The model is an
analytical framework that is used to “gather support for, or to refute, hypothesized
constructs’ existence and the relations to their observed indicators” (Hancock and
Schoonen 2015: 164). An example of a study that has used CFA in corpus linguistics
is Biber (2001) where the patterning of linguistic markers of complexity across
register was modeled.

Latent path models combine CFA’s ability to model latent variables with the
structural goals of measured path models. This typically yields models with hy-
pothesized structural relations among the latent variables rather than among the
measured operationalizations of those latent variables. Latent path models thus
have the added benefits of

(1) directly representing the construct relations that are typically of interest to the researcher;
(2) estimating those relations without attenuation and with increased statistical power; and
(3) being rejectable, that is, allowing for the assessment of consistency or inconsistency with
the pattern of covariation in the data to determine whether or not the model as a whole is
viable. (Hancock and Schoonen 2015: 165)

Elaborating upon point (2) in the above quote, such models allow for dis-
attenuation; that is, they account for measurement error. It is well-known that
there is error in everything we measure. Measurement error can, for example,
result from imprecise measures, tagging errors, and manual coding (see Larsson
et al. in press for more examples and a discussion of measurement error in Learner
Corpus Research). If we do not account for the fact that measured operationali-
zations of our latent constructs contain error, we are forced to ignore the attenu-
ating and oftenmisleading effects ofmeasurement error; this is highly problematic
given that doing so ultimately leads to less precise (and sometimes even
erroneous) results (Grewal et al. 2004).

Application of latent path models would be beneficial to a broad range of
corpus linguistic studies. For example, it would allow researchers working on
learner data to more accurately model concepts such as L2 proficiency and for-
mality. In addition, historical linguists can use this framework to better under-
stand social causes of language change. Moreover, researchers interested in
sociolinguistic inquiries would greatly benefit frommodeling causes of linguistic
variation. For examples of applications of latent path models in Second Lan-
guage Acquisition research, readers are referred to Hancock and Schoonen
(2015).
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5 Conclusion

The present article has sought to introduce onemember of the SEM family thought
to be particularly useful to corpus linguists, namely path models. It has outlined
general advantages of path models vis-à-vis another, more commonly employed
techniques (multiple regression analysis), as well as discussed benefits of moving
toward model-based reasoning. A number of advantages of path models were
reviewed. For example, pathmodels enable us to draw conclusions about causality
in model structures with multiple dependent and independent variables, which,
whether expressed overtly in our articles or not, underlie many corpus linguistic
inquiries. That is, we oftentimes have a confirmatory mindset in study designs
involving multiple independent and dependent variables (“do q and w affect x, y,
and z?”), but the commonly employed analytical tools do not allow us to directly
address such questions.

Furthermore, using SEM techniques such as path models would enable a
change in perspective, where we canmove away from almost complete reliance on
the more narrow NHST paradigm toward model-based reasoning, cumulative
knowledge building and big-picture thinking, all of which seem to be, to varying
degrees, missing in the field. However, that is not to say that we should replace
careful linguistic analysis with model-based thinking; quite the opposite: these
techniques should always be preceded by (and their accuracy crucially rely on)
rigorous linguistic analysis and in-depth knowledge of the literature, followed by
linguistic interpretation. We are in no way suggesting that SEM techniques are a
solution in themselves; they merely aid the corpus analyst in understanding the
linguistic phenomena of interest. Nor are we saying that we should abandon all
other statistical techniques used in the field; this is not a matter of finding “one
technique to rule them all.”

We would posit, however, that adding SEM techniques to our toolbox would
enable greater flexibility in terms of study design, thus moving the borders for what
can and cannot be concludedusing statisticalmethods on corpus data.We therefore
hope to have inspired readers to start exploring the great potential path models and
other members of the SEM family has for studies in corpus linguistics.

Acknowledgments: We are grateful to the editorial team and the anonymous
reviewers for their helpful comments and feedback.
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Appendix
R code used for the analysis, along with the model output.

> ## Loading lavaan package

> library(lavaan)

> ## Fitting the models

> # Model 1

>

> model.1 <-

+ 'ADJ ~ DISCIPLINE

+ NN ~ DISCIPLINE

+ ADJ ~ REGISTER

+ PP ~ REGISTER

+ NN ~ REGISTER

+ DISCIPLINE ~~ 0*REGISTER #discipline and register are not allowed to

covary

+ PP ~~ ADJ

+ NN ~~ ADJ

+ NN ~~ PP’

>

> ## Fitting the model to an object

> model.1 <- sem(model.1, data = data_SEM)

> ## Writing out the model summary and the fit measures

> summary(model.1, fit.measures = TRUE, standardized = TRUE,

rsquare = TRUE, modindices = TRUE)

> ## Model summary and fit measures:

lavaan 0.6-7 ended normally after 81 iterations

Estimator ML

Optimization method NLMINB

Number of free parameters 13

Number of observations 80

Model Test User Model:

Test statistic 1.446

Degrees of freedom 2

P-value (Chi-square) 0.485
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Model Test Baseline Model:

Test statistic 95.433

Degrees of freedom 10

P-value 0.000

User Model versus Baseline Model:

Comparative Fit Index (CFI) 1.000

Tucker-Lewis Index (TLI) 1.032

Loglikelihood and Information Criteria:

Loglikelihood user model (H0) 277.982

Loglikelihood unrestricted model (H1) 278.705

Akaike (AIC) −529.965

Bayesian (BIC) −498.999

Sample-size adjusted Bayesian (BIC) −539.992

Root Mean Square Error of Approximation:

RMSEA 0.000

90 Percent confidence interval - lower 0.000

90 Percent confidence interval - upper 0.201

P-value RMSEA <= 0.05 0.551

Standardized Root Mean Square Residual:

SRMR 0.037

Parameter Estimates:

Standard errors Standard

Information Expected

Information saturated (h1) model Structured

Regressions:

Estimate Std.Err z-value P(>|z|) Std.lv Std.all

ADJ ~

DISCIPLINE −0.036 0.009 −3.824 0.000 −0.036 −0.302

NN ~

DISCIPLINE −0.037 0.014 −2.674 0.007 −0.037 −0.275

ADJ ~

REGISTER −0.063 0.011 −5.931 0.000 −0.063 −0.527

PP ~

REGISTER −0.048 0.009 −5.252 0.000 −0.048 −0.506

NN ~

REGISTER −0.018 0.014 −1.232 0.218 −0.018 −0.131
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Covariances:

Estimate Std.Err z-value P(>|z|) Std.lv Std.all

DISCIPLINE ~~

REGISTER 0.000 0.000 0.000

.ADJ ~~

.PP 0.001 0.000 3.714 0.000 0.001 0.456

.NN 0.001 0.000 2.833 0.005 0.001 0.334

.NN ~~

.PP 0.001 0.000 2.276 0.023 0.001 0.263

Variances:

Estimate Std.Err z-value P(>|z|) Std.lv Std.all

.ADJ 0.002 0.000 6.325 0.000 0.002 0.631

.NN 0.004 0.001 6.325 0.000 0.004 0.907

.PP 0.002 0.000 6.325 0.000 0.002 0.744

DISCIPLINE 0.250 0.040 6.325 0.000 0.250 1.000

REGISTER 0.250 0.040 6.325 0.000 0.250 1.000

R-Square:

Estimate

ADJ 0.369

NN 0.093

PP 0.256

Modification Indices:

lhs op rhs mi epc sepc.lv sepc.all sepc.nox

6 DISCIPLINE ~~ REGISTER 0.000 0.000 0.000 0.000 0.000

19 PP ~~ DISCIPLINE 1.433 0.003 0.003 0.134 0.134

25 PP ~ ADJ 1.433 −0.301 −0.301 −0.382 −0.382

26 PP ~ NN 1.433 −0.296 −0.296 −0.420 −0.420

27 PP ~ DISCIPLINE 1.433 0.011 0.011 0.115 0.115

28 DISCIPLINE ~ ADJ 0.461 0.990 0.990 0.119 0.119

29 DISCIPLINE ~ ~ NN 1.125 3.127 3.127 0.419 0.419

30 DISCIPLINE ~ PP 1.065 1.223 1.223 0.115 0.115

31 DISCIPLINE~~ REGISTER 0.000 0.000 0.000 0.000 0.000

32 REGISTER ~ ADJ 0.000 0.000 0.000 0.000 0.000

33 REGISTER ~ NN 0.000 0.000 0.000 0.000 0.000

35 REGISTER ~ DISCIPLINE 0.000 0.000 0.000 0.000 0.000

> ## Model 2

>
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> model.2 <-

+ 'ADJ ~ DISCIPLINE

+ NN ~ DISCIPLINE

+ ADJ ~ REGISTER

+ PP ~ REGISTER

+ NN ~ REGISTER

+ DISCIPLINE ~~ 0*REGISTER

+ PP ~~ 0*ADJ

+ NN ~~ 0*ADJ

+ NN ~~ 0*PP’

>

> ## Fitting the model to an object

> model.2 <- sem(model.2, data = data_SEM)

> ## Writing out the model summary and the fit measures

> summary(model.2, fit.measures = TRUE, standardized = TRUE,

rsquare = TRUE, modindices = TRUE)

> ## Model summary and fit measures:

lavaan 0.6-7 ended normally after 50 iterations

Estimator ML

Optimization method NLMINB

Number of free parameters 10

Number of observations 80

Model Test User Model:

Test statistic 30.605

Degrees of freedom 5

P-value (Chi-square) 0.000

Model Test Baseline Model:

Test statistic 95.433

Degrees of freedom 10

P-value 0.000

User Model versus Baseline Model:

Comparative Fit Index (CFI) 0.700

Tucker-Lewis Index (TLI) 0.401

Loglikelihood and Information Criteria:

Loglikelihood user model (H0) 263.403

Loglikelihood unrestricted model (H1) 278.705

Akaike (AIC) −506.806

On the benefits of SEM for corpus linguists 709



Bayesian (BIC) −482.985

Sample-size adjusted Bayesian (BIC) −514.519

Root Mean Square Error of Approximation:

RMSEA 0.253

90 Percent confidence interval – lower 0.171

90 Percent confidence interval – upper 0.343

P-value RMSEA ≤ 0.05 0.000

Standardized Root Mean Square Residual:

SRMR 0.114

Parameter Estimates:

Standard errors Standard

Information Expected

Information saturated (h1) model Structured

Regressions:

Estimate Std.Err z-value P(>|z|) Std.lv Std.all

ADJ ~

DISCIPLINE −0.030 0.011 −2.861 0.004 −0.030 −0.257

NN ~

DISCIPLINE −0.032 0.014 −2.266 0.023 −0.032 −0.243

ADJ ~

REGISTER −0.063 0.011 −5.942 0.000 −0.063 −0.535

PP ~

REGISTER −0.048 0.009 −5.252 0.000 −0.048 −0.506

NN ~

REGISTER −0.018 0.014 −1.232 0.218 −0.018 −0.132

Covariances:

Estimate Std.Err z-value P(>|z|) Std.lv Std.all

DISCIPLINE ~~

REGISTER 0.000 0.000 0.000

.ADJ ~~

.PP 0.000 0.000 0.000

.NN 0.000 0.000 0.000

.NN ~~

.PP 0.000 0.000 0.000

Variances:

Estimate Std.Err z-value P(>|z|) Std.lv Std.all

.ADJ 0.002 0.000 6.325 0.000 0.002 0.648

.NN 0.004 0.001 6.325 0.000 0.004 0.923

.PP 0.002 0.000 6.325 0.000 0.002 0.744

DISCIPLINE 0.250 0.040 6.325 0.000 0.250 1.000
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REGISTER 0.250 0.040 6.325 0.000 0.250 1.000

R-Square:

Estimate

ADJ 0.352

NN 0.077

PP 0.256

Modification Indices:

lhs op rhs mi epc sepc.lv sepc.all sepc.nox

6 DISCIPLINE ~~ REGISTER 0.000 0.000 0.000 0.000 0.000

7 ADJ ~~ PP 16.136 0.001 0.001 0.449 0.449

8 ADJ ~~ NN 8.852 0.001 0.001 0.333 0.333

9 NN ~~ PP 5.350 0.001 0.001 0.259 0.259

19 PP ~~ DISCIPLINE 1.433 0.003 0.003 0.134 0.134

21 ADJ ~ NN 8.852 0.248 0.248 0.279 0.279

22 ADJ ~ PP 16.136 0.525 0.525 0.419 0.419

23 NN ~ ADJ 8.852 0.447 0.447 0.397 0.397

24 NN ~ PP 5.350 0.406 0.406 0.288 0.288

25 PP ~ ADJ 11.981 0.315 0.315 0.395 0.395

26 PP ~ NN 3.796 0.135 0.135 0.189 0.189

27 PP ~ DISCIPLINE 1.433 0.011 0.011 0.115 0.115

28 DISCIPLINE ~ ADJ 0.000 0.000 0.000 0.000 0.000

29 DISCIPLINE ~ NN 0.000 0.000 0.000 0.000 0.000

30 DISCIPLINE ~ PP 1.065 1.223 1.223 0.115 0.115

31 DISCIPLINE ~ REGISTER 0.000 0.000 0.000 0.000 0.000

32 REGISTER ~ ADJ 0.000 0.000 0.000 0.000 0.000

33 REGISTER ~ NN 0.000 0.000 0.000 0.000 0.000

35 REGISTER ~ DISCIPLINE 0.000 0.000 0.000 0.000 0.000

> ## Model comparison

> anova(model.1, model.2)

Chi-Squared Difference Test

Df AIC BIC Chisq Chisq diff Df diff Pr(>Chisq)

model.1 2 −529.96–499.00 1.4457

model.2 5 −506.81–482.99 30.6049 29.159 3 2.073e−06 ***

---

Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1
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