The Project Place

Recommended Values of the Viscosity of Molten Iron and Aluminum

The widely different data obtained for the viscosity of molten iron and aluminum will be critically reviewed via an interlaboratory comparison and recommended values will be proposed. Wide ranges of values of viscosity of both molten iron and aluminum are reported in the literature. The most widely used method is some form of oscillating vessel. For the oscillating cup a number of analytical techniques have been used to convert the measurements (logarithmic decrement and time period) to viscosity. The Roscoe equation (1958) was recommended as providing the most accurate data for molten metals. Ferriss et al (2002) have pointed out there is a missing numerator in one of the expansions and a number of workers and standard texts have quoted " $\frac{1}{2}$ " but expansion shows it to be " $\frac{3}{2}$ ".

In a parallel development, chemical engineers have adopted a set of equations for oscillating cup viscometers by Kestin and Newell, which have been rarely used for molten metals. There are two challenges: 1) Agreement about the equations used to determine the viscosity by the oscillating cup method. At present the modified Roscoe equation by Ferriss and the Kestin and Newell appear to give similar results with one laboratory's data. 2) The widely different data obtained for the viscosity of aluminum and iron need to be critically reviewed and recommended values suggested. This may result in the need for an interlaboratory comparison. The project should lead to a consistent, internationally approved set of values for the viscosity of these two metals, as an exemplar for the field.

References

Roscoe, R (1958), Proc. Phys. Soc. 72, 576 Ferriss, D H; Quested, P N; Chapman, L A; and Day, A P (2002) "The Choice of Equations for the Measurement of Viscosity by the Oscillating Cylinder Method." Presented at ECTP, London. Kestin, J and Newell, GF (1957) ZAMP VIII, 433

For more information, contact the Task Group Chairman W. A. Wakeham <w.a.wakeham@soton.ac.uk>.

www.jupac.org/projects/2003/2003-005-1-100.html

Postgraduate Course in **Polymer Science**

Since 1996, the Institute of Macromolecular Chemistry of the Academy of Sciences of the Czech Republic in Prague, Czech Republic, has been organizing the annual Postgraduate Course in Polymer Science under the auspices of UNESCO and IUPAC. The course is intended primarily for young graduates from countries with limited facilities for research who have a M.S. or Ph.D. degree in polymer science or a related discipline. The Course lasts 10 months and comprises about 50 hours of lectures in modern polymer science, and a few hours of the basics of chemical English and principles of macromolecular nomenclature according to IUPAC recommendations. Most of the time is devoted to work on topical research projects under the supervision of senior scientists. The participants use all modern experimental facilities of the institute. The results of their work are published in international technical journals and presented at technical meetings.

For more information, contact the Task Group Chairman Pavel Kratochvil <krat@imc.cas.cz>.

www.iupac.org/projects/2002/2002-047-1-400.html

Impact of Transgenic Crops on the Use of Agrochemicals and the **Environment**

Large-scale cultivation of transgenic (genetically modified) crops started in 1996 and has experienced rapid adoption ever since, amounting to a globally cultivated area of 58.7 million hectares of arable land in 2002. Most of these crops have been modified with new traits that are linked with pest management, such as resistance against damaging insects and tolerance towards application of broad-spectrum herbicides. The focus of this project is to collect data on changes in pesticide use on genetically modified crops.

It has already become evident from a number of studies that genetically modified crops have an impact on pesticide use, both in terms of grower's choice for a specific pesticide as well as in terms of quantities used. Within the project, these data will serve as input for the prediction of the potential environmental and health effects associated with the

The Project Place

changed pesticide-use pattern. The ecotoxicological and toxicological effects linked with the various scenarios of pesticide use will be compared quantitatively with the aid of "environmental indicators." In addition, other effects of the altered pesticide use. including ecology and biodiversity will be taken into account.

The final goal is to provide a comprehensive overview of the effects associated with altered pesticide use in genetically modified crops. Such an overview may serve as a tool for policy makers in their risk-benefit analysis for the introduction of genetically modified crops in the environment.

For more information, contact the Task Group Chairman Gijs A. Kleter <g.a.kleter@rikilt.dlo.nl>.

www.iupac.org/projects/2001/2001-024-2-600.html

Provisional Recommendations

IUPAC Seeks Your Comments

Provisional recommendations are drafts of IUPAC recommendations on terminology, nomenclature, and symbols made widely available to allow interested parties to comment before the recommendations are finally revised and published in Pure and Applied Chemistry.

Recommendation for the Naming of **Element of Atomic Number 110**

A joint IUPAC-IUPAP Working Party (JWP) has confirmed the discovery of element number 110 with the collaboration of Hofmann et al from the Gesellschaft für Schwerionenforschung mbH (GSI) in Darmstadt, Germany. In accord with IUPAC procedures, the discoverers have proposed a name and symbol for the element. The Inorganic Chemistry Division Committee now recommends this proposal for acceptance. The proposed name is darmstadtium with symbol Ds. This proposal lies within the long established tradition of naming an element after the place of its discovery. The full text is available online, see link below.

Comments by 30 June 2003 to:

Prof. John Corish University of Dublin Chemistry Department, Trinity College Dublin 2, Ireland Tel.: +[353] (1) 6081776

E-mail: jcorish@tcd.ie

www.iupac.org/reports/provisional/abstract03/corish_300603.html

Definitions of Terms Relating to Reactions of Polymers and to **Functional Polymeric Materials**

This document defines the terms most commonly encountered in the field of polymer reactions and functional polymers. The scope has been limited to terms that are specific to polymer systems. The document is organized into three sections. The first defines the terms relating to reactions involving and specific to polymers. Names of individual chemical reactions are omitted from the document, even in cases where the reactions are important in the field of polymer reactions. The second section defines the terms relating to polymer reactants and reactive polymeric materials. The third section defines terms describing functional polymeric materials.

Comments by 31 July 2003 to:

Prof. Máximo Barón Universidad de Belgrano Facultad de Ciências Exactas y Naturales Villanueva 1324 Buenos Aires, 1426 Argentina

Tel.: +[54] 11 4511 4700 Fax: +[54] 11 4821 4887 E-mail: baron@ub.edu.ar

www.iupac.org/reports/provisional/abstract03/horie_310703.html