IUPAC Wire

Sounds amazing but also scary. You have access to so many sensors, what do you monitor on yourself?

Oh, mainly my steps and sometimes my blood pressure.

What do you like most about IUPAC and what do you think could be different?

IUPAC is responsible for somehow standardizing everything. That is very good. Even in electrochemistry, we have different nomenclatures. Sometimes we use different names for the same techniques or present results in different ways. There was also a lot of confusion in the beginning about what exactly a biosensor is. In my opinion, they did a good job in defining it.

It's also extremely important to take a global perspective. In materials, we have MRS as the global conference for material science; Pittcon is the biggest international conference in analytical chemistry. IUPAC needs to have more visibility. I would like to see IUPAC take a leading role in the top sciences. Merging IUPAC's analytical topics and sessions with Pittcon would mean more visibility for analytical chemistry.

Read full interview in ChemistryViews: https://doi.org/10.1002/chemv.202100077

ChemistryViews is the online science news magazine of Chemistry Europe, an organization of 16 European chemical societies. It informs about what is happening in the global chemistry community and has a strong focus on the people behind the science. It covers new ideas, educates, and entertains.

In Memoriam

Gus Somsen

23 July 1932-12 June 2021

Gus Somsen passed away peacefully in Hoogeveen, Netherlands, while having struggled with Alzheimer's for some time. Gus often said that he enjoyed his work for IUPAC, and his former colleagues on IUPAC Bureau and Executive Committee remember his optimistic outlook on life and his problem solving ability. He was energetic and creative in his thinking and made significant contributions to the IUPAC organization as his records show.

Prof. Somsen graduated in chemistry in 1956 after studying at Vrije Universiteit (VU) in Amsterdam. He received his Ph.D. in physical chemistry after working with Jan Coops. After military service as an officer in the field artillery, in 1958 he joined the faculty of the Department of Chemistry at VU as an instructor and was subsequently promoted to associate professor

Gus Somsen (left) accepts the IUPAC service award from IUPAC President Bryan Henry in 2007 at the General Assembly opening held in the Aula Magna /Rektorat located on the Piazza Castello, in the center of the old city of Torino.

(1964), senior lecturer (1971), and then to professor of physical chemistry in 1980. Somsen served as head of the Department of Chemistry (1980–1983 and 1993–1997), vice rrector of the university (1983–1985), dean of the faculty of Natural Sciences (1985–1987), and member of the University Council (1988–1990) at VU. He became emeritus professor in 1997.

Prof. Somsen's research interests were in experimental chemical thermodynamics, physical chemistry of solutions, and liquids and liquid structures. He authored about 120 publications on thermochemistry and physical chemistry of solutions. He held memberships in the Chemistry Committee of the Royal Netherlands Academy of Arts and Sciences (KNAW), the Royal Dutch Chemical Society (KNCV) and the Royal Society of Chemistry (UK), and served as a member of the editorial advisory boards on several journals.

In IUPAC Prof. Somsen served in numerous positions, starting as a Member (1977-1985) and Chair (1985-1989) of the Commission on Thermodynamics (I.2); Member (1990-1991), Secretary (1992-1993), Vice President (1994-1995), President (1996-1997), Past President (1998-1999), and Associate Member

of the Physical (and Biophysical) Chemistry Division (I) Committee (2000-2001). Following his service in Division I, he was elected on the IUPAC Bureau (1998-2003); in 1998, he chaired the Ad Hoc Committee on Project Evaluation Criteria, and continued as member on the then newly created Project Committee, which he ended up by chairing from 2004 to 2007.

Somsen won numerous awards and in 1995 he was designated an Officer in the Order of Orange Nassau from Her Majesty, the Queen of the Netherlands. He completed his IUPAC tenure in 2007 and was presented his service award by IUPAC President Bryan Henry during the opening ceremony of the General Assembly in Torino.

Wij zijn verdrietig maar dankbaar voor alles wat hij voor IUPAC en anaderen betekend heeft.

He is survived by his wife, Elly, four children, several grandchildren and great-grandchildren.

Aubrey Dennis Jenkins 6 September 1927-25 April 2021

A tribute by Dick Jones and Claudio dos Santos

Former friends and colleagues were deeply saddened to learn of the death of Emeritus Professor Aubrey Jenkins on 25 April 2021. Aubrey grew to be a distinguished figure within the IUPAC Polymer Division after joining its forerunner, the Macromolecular Division, as a member in 1975. His distinction was equally recognised within both industry and academia by the international polymer community.

Born in London in 1927, he attended Dartford Grammar School from where he matriculated to the University of London in 1943. However, this being at the height of WWII, he needed to take a job, but undeterred he also enrolled as a part-time student at the University's Sir John Cass Technical Institute from where he progressed to King's College, graduating B.Sc. in Special Chemistry with 1st Class Honours in 1948. Awarded the University of London Studentship in Chemistry for 1948, by 1950 he had gained his PhD.

From 1950 to 1964, Aubrey was an industrial chemist, firstly with Courtaulds Ltd. at its Fundamental Research Laboratory at Maidenhead in Berkshire and thereafter with Gillette Industries Ltd at Reading. At Courtaulds he was under the direction of C.H. Bamford. For a year, 'Bam' had him investigate the dimerization of methyl ketene before urging a move into the polymer field as it was clear that this was where the company's future would lie if it was to compete with other chemical giants such as DuPont. His first task was to determine the kinetics of the polymerization of acrylonitrile, the

monomer that was predicted to constitute 95 % of a future marketable product. Polyacrylonitrile, however, is one of a very few vinyl addition polymers that are insoluble in their own monomer and this work led to what Aubrey told me whilst holidaying together in the south of France in 2011, that he considered to be the most scientifically significant discovery of his career, kinetic evidence of 'trapped' radicals, the existence of which were later to be indisputably proven by EPR.

Between 1956 and '62, the team of Bamford, Jenkins and Johnston also published about ten papers on the reaction between polymer radicals and transition metal salts and determinations of rates of initiation in vinyl polymerization based on the same chemistry. It is worth pausing to reflect that were it not for a temperature difference of about 80 °C, atom transfer radical polymerization might have hit the billboards many years earlier.

In 1960, the parting of the ways of Bamford and Jenkins was inevitable when Aubrey accepted a long-standing offer to become Head of Chemistry at Gillette Industries. This was a managerial role and although while at Courtaulds he had already travelled widely in Europe, particularly Eastern Europe during the communist era, and in 1959 had accepted an invitation to lecture at a Gordon Conference (his first visit to the USA), he now had to make many transatlantic trips. Typically, these were 'Gillette-focussed' visits to Boston, Chicago and ultimately Washington DC where he was eventually to be seconded for a year. While he was able to recruit excellent scientists of his own choosing he missed the days of open scientific discussion. Secrecy attached to all his team's research but at least it led him into legal work which was to become a source of enjoyment throughout his later career.

To Aubrey, Washington was the most beautiful city in the US and there is no doubting that Gillette hoped that he would resettle there. However, from Colin Eaborn (later Sir Colin) he received an offer he had no wish to refuse: to join the staff of the new University of Sussex as a Senior Lecturer in Chemistry. He took up his new post in 1964 and remained at Sussex throughout the rest of his career, ascending to Reader (1968), Professor of Polymer Science (1971) and serving as Dean of the School of Molecular Science from 1973–78 before eventually retiring in 1992.

At Sussex, again he built a thriving research team and thereby consolidated his already notable international research reputation. Free radical polymerization mechanisms remained a lifelong dominating interest and even after retirement, he picked up on what he and Bam had started, the "Patterns of Reactivity