Guest Editors' Introduction

The Rise of Primary Research Data

by Leah McEwen and David Martinsen

s the scale of global commerce and opportunities for multidisciplinary collaboration increase, there is greater pressure on basic research to supply a quick return on investment (ROI). The emergence and development of digital information technologies in the new millennium have inspired a new look at how research outputs are managed and disseminated. The driving question in the minds of many research funders is this-will lowering the barriers for access increase the value of research for the greater society? This is a particularly interesting question to consider for measurement data, the greater amount of which are scattered across millions of separate, fixed publications (not to mention those never published and lingering in file drawers and on hard drives). Can the advent of cloud technologies, exchange standards, and provenance tracking facilitate improved access, evaluation, and use of data for both research and commerce? Can new value and discovery be realized through the greater aggregation of measured scientific data as "Big Data"?

The past five years has seen practical conversations among stakeholders increasingly focused on the publication of primary research data associated with journal articles. Data publication advocates have lobbied for the availability of data, funding agencies have issued mandates requiring funded researchers to publish their data, and repositories have been created to support researchers in fulfilling these requirements. The arguments put forth are many: it is important that science be as transparent as possible so that the community can properly assess the integrity of the research being published; it is valuable for interested scientists to have access to machine-readable data to more deeply examine and interact with the data described in a journal article; it is important that editors and reviewers have access to all of the available material to better understand the validity of the conclusions being presented, or consider whether the data themselves exhibit evidence of manipulation in a fraudulent manner.

This interest in the publication of research data, among other scholarly communication challenges, has spawned a number of new organizations (for example, FORCE11, [1] the Research Data Alliance), [2] which augment long-standing organizations (such as

The guest editors at the University of Tokyo.

CODATA [3] and ICSU [4]). In addition, repositories for depositing research datasets, such as Data Dryad, [5] figshare, [6] and Mendeley Data, [7] have appeared. In chemistry, these new services may, in some sense, augment traditional curated data collections, such as the former Beilstein and Gmelin Handbooks, the Cambridge Structural Database, [8] the Protein Data Bank, [9] the Powder Diffraction File, [10] the Spectral Database for Organic Compounds (SDBS), [11] Wiley and NIST's Mass Spectral Databases, [12,13] BioRad's Spectroscopy Databases, [14] and others.

As a result of the emerging expectations for researchers to publish data, scientific publishers and research libraries are beginning to offer support services to their communities in navigating this evolving land-scape. Balancing both sides of the time-cost equation for data generators and consumers will be key to how well new practices are established.

Taking a look at how the movement to publish research data more accessibly intersects the practice of research data dissemination in chemistry is the impetus behind a **Special Symposium on Research Data, Big Data, and Chemistry** at the 46th IUPAC World Congress, and the basis for this special issue of Chemistry International. The perspectives represented here examine a range of issues from coordinating global initiatives to workflows for publication, review, and evaluation to education to applications in industry and

The Rise of Primary Research Data

society. Also considered are some IUPAC digital initiatives for supporting chemistry data publication, including the International Chemical Identifier (InChI) [15] and the online Gold Book Compendium of Chemical Terminology. [16]

We hope you enjoy the reading, and look forward to meeting you at the Congress in São Paulo, Brazil, 9-14 July and the Special Symposium on 13 July 2017. [17]

References

- 1. www.force11.org
- 2. www.rd-alliance.org
- 3. www.codata.org
- 4. www.icsu.org
- 5. http://datadryad.org
- 6. https://figshare.com
- 7. https://data.mendeley.com
- 8. www.ccdc.cam.ac.uk
- 9. www.rcsb.org/pdb/home/home.do
- 10. www.icdd.com
- 11. http://sdbs.db.aist.go.jp

- 12. www.wiley.com/WileyCDA/WileyTitle/ productCd-1119171016.html
- 13. http://chemdata.nist.gov
- 14. www.bio-rad.com/en-us/spectroscopy
- 15. http://www.inchi-trust.org/
- 16. https://goldbook.iupac.org/
- 17. www.iupac2017.org/special-symposia.php#tab2

Leah McEwen <Irm1@cornell.edu> chemistry librarian at Cornell University, USA. She is a member of the IUPAC Committee on Publications and Cheminformatics Data Standards (CPCDS), and co-chair of the CPCDS Subcommittee on Cheminformatics Data Standards. ORCID.org/0000-0003-2968-1674

David Martinsen <dmartinsen@consultdpm.com>, formerly a Senior
Scientist at ACS Publications, consults in scholarly publishing at David
Martinsen Consulting in Rockville, MD, USA. He is co-chair of the CPCDS
Subcommittee on Cheminformatics Data Standards, and is also a co-chair
of the Research Data Alliance Chemistry Research Data Interest Group.
ORCID.org/0000-0002-8667-5855

(continued from page 2)

References

- www.isotopesmatter.com
- 2. www.inchi-trust.org
- N. G. Connelly, T. Damhus, R. M. Hartshorn, A. T. Hutton, *Nomenclature of Inorganic Chemistry*, Royal Society of Chemistry, ISBN 0-85404-438-8, 2005.
- J. Brecher, K. N. Degtyarenko, H, Gottlieb, R. M. Hartshorn, G. P. Moss, P. Murray-Rust, J. Nyitrai, W. Powell, A. Smith, S. Stein, K. Taylor, W. Town, A. Williams, A. Yerin, "Graphical Representation of Stereochemical Configuration", *Pure Appl. Chem.* 78(10):1897-1970, 2006. https://doi.org/10.1351/pac200678101897
- J. Brecher, K. N. Degtyarenko, H, Gottlieb, R. M. Hartshorn, K.-H. Hellwich, J. Kahovec, G. P. Moss, A. McNaught, J. Nyitrai, W. Powell, A. Smith, K. Taylor, W. Town, A. Williams, A. Yerin, "Graphical

- Representation Standards for Chemical Structure Diagrams", *Pure Appl. Chem.* **80**(2):277-410, 2008. https://doi.org/10.1351/pac200880020277
- 6. https://iupac.org/project/2015-019-2-800
- 7. https://iupac.org/project/2015-025-4-800

Richard Hartshorn <richard.hartshorn@canterbury.ac.nz> is a member of the chemistry faculty at the University of Canterbury, in Christchurch, New Zealand. So far, his involvement with IUPAC has been largely based in nomenclature, and dates from the late 1990s, when he was persuaded to join the group preparing a revision of the Red Book ("Nomenclature of Inorganic Chemistry, IUPAC Recommendations 2005", ISBN 0-85404-438-8). Since then he has been involved in numerous projects and has been a member of the Committee on Chemistry Education (since 2006). He was elected to positions of responsibility in the Division of Chemical Nomenclature and Structure Representation (Titular member 2003-07, Vice President 2008-09, President 2010-13) and the Bureau (2014-17), and took over as as IUPAC Secretary General in January 2016.