

in hard and soft matter. In particular, she has significantly contributed to the following areas:

- Ionic-liquid containing polymers
- Design of self-assembled polymer electrolytes
- Organic-inorganic nanohybrids for enhanced ion/charge transport
- Chemical sensors based on ionic polymers

Prof. Park has received a number of prestigious awards, for example:

- the Best Paper Award, IUPAC World Polymer Congress, Paris (2004)
- the Young Scientist Award Korea-Japan-China Young Researcher's Workshop (2010)
- the Asia Excellence Award Young Scientists, Soc. Polym. Sci. Japan (2011)
- the Chong-Am Science Fellowship, POSCO (formerly Pohang Iron and Steel Company), TJ Park Foundation (2011)
- the Young Scientist Award, John Wiley & Sons and the Korean Polym. Soc. (2013)

Prof. Park has published over 61 scientific papers, holds 24 domestic and 14 international patents, and is a member of several editorial boards of prominent scientific journals. There are presently over 1546 citations of her work, for which the h-index is 26.

Prof. Brent Sumerlin was born in the USA in 1976. He studied Polymer Science and Engineering at North Carolina State University (Raleigh) and the University of Southern Mississippi (Hattiesburg), where he obtained his PhD (Polymer Science and Engineering) in the year 2003, supervised by Prof. Charles L. McCormick. He was post-doctoral fellow (supervisor Prof. Kris Matyjaszewski) and Visiting Assistant Professor at Carnegie Mellon University (Pittsburg) until 2005, when he joined Southern Methodist University (Dallas) as Assistant Professor, as Harold Jeskey Trustee Assistant Professor in Chemistry, and finally as Harold Jeskey Trustee Associate Professor in Chemistry during the years 2005-2012. In 2012 he moved to the University of Florida (Gainesville) as Associate Professor in Chemistry, where he became full Professor of Chemistry in 2015. Prof. Sumerlin's research focuses on:

- Reversible-covalent polymeric materials, e.g., self-healing polymers without internal reservoirs of healing agent
- Stimuli-responsive polymers, e.g., block copolymers with responsive nanoscale assemblies, useful in, for example, in feedback-controlled drug delivery
- "Smart" polymer-protein conjugates, e.g., ones

stable under conditions that prevent protein denaturation.

Among other honors Prof. Sumerlin has received:

- the NSF Career Award
- the Alfred P. Sloan Research Fellowship
- the JPS Innovation Award
- the Biomacromolecules/Macromolecules Young Inventor Award.

He is Kavli Member of the National Academy of Science of the USA, and a Fellow of the Royal Society. Prof. Sumerlin is author/co-author of five books on reversible-deactivation radical polymerization and member of numerous editorial boards of prominent scientific journals. He has more than 200 scientific papers with more than 7000 citations and his h-index is 45.

The IUPAC Polymer Division is especially grateful to Prof. Jung-Il Jin for fostering the relationship with Hanwha Total, to Prof. Michael Hess for chairing the selection committee, and to Prof. Yusuf Yagci for so actively promoting this award at Macro2016.

[www.iupac.org/hanwha-total-iupac-young-scientist-award-2016](http://www.iupac.org/hanwha-total-iupac-young-scientist-award-2016)

## DSM Materials Sciences Award 2016 Goes to Professor Steven P. Armes

Royal DSM, a global science-based company active in health, nutrition, and materials, announced that Professor Steven P. Armes (54), Professor of Polymer and Colloid Chemistry at the University of Sheffield, UK, has been awarded the DSM Materials Science Award 2016. The Award recognizes his exceptional contribution to the advancement of macromolecular architecture, which is applied in many everyday situations, including the development of dirt-repellant coatings and lubricants that reduce wear and fuel consumption.

An international jury, chaired by Dr. Marcel Wubbolts, Chief Technology Officer of DSM, selected Professor Armes from among the candidates proposed in a public call for nominations. Professor Armes received the award, which carries a cash prize of EUR 50,000, from Dr. Wubbolts at a special ceremony at the University of Sheffield on Wednesday, 20 July 2016.

"I'm delighted to accept this Award on behalf of the past and current members of my research group, whose hard work and enthusiasm keep me motivated," said Prof. Armes. "I'd also like to thank Professor Tony Ryan

# IUPAC Wire

for nominating me and also my many academic and industrial collaborators across the world, including various current and former scientists at DSM. As a polymer chemist, I believe that the most interesting problems are best identified by working across academic disciplines, often in close partnership with industrial colleagues."

Dr. Marcel Wubbolts stated that "The jury recognizes the broad impact of Professor Armes' work, as is also exemplified by statements of experts in the field of Polymer Chemistry. The theme of this year's Award was Macromolecular Architecture for Brighter Living, and Prof. Armes' work resonates with all aspects of this theme. Professor Armes has also been actively involved in turning academic knowledge into societally relevant solutions to needs. I'm really looking forward to seeing the progress he will make during the rest of his career."

DSM bestows the Materials Sciences Award every two years in recognition of outstanding scientific work by an established scientist who has contributed significantly to the advancement of the Materials Sciences field. The Award forms part of DSM's Bright Science



(from left to right) Marcel Wubbolts, Steve Armes, and Rolf Benthem-van.

Awards Program, and is designed to recognize and reward lifetime achievement on the part of seasoned scientists from all over the world. Previous recipients include Professor Jiang Ping Gong of the Faculty of Advanced Life Science at Hokkaido University in Japan and Professor Geoff Coates of Cornell University (USA).

[www.iupac.org/dsm-materials-sciences-award-2016](http://www.iupac.org/dsm-materials-sciences-award-2016)

## WANTED:

### A Home for an Orphaned Chemical Database

LOGKOW—a databank of evaluated octanol-water partition coefficients

The octanol-water partition coefficient ( $\text{Log } K_{\text{ow}}$ ,  $\text{Log } P$ ) is a laboratory-measured property of a pure substance (gas, liquid or solid). Its importance for chemists is comparable to that of vapour pressure, solubility, Henry's law constant, melting and boiling points, etc. In particular, partition coefficients have been used extensively:

- in the design of new drugs and pharmaceuticals
- as a key parameter for modeling the fate of organic pollutants in soil, natural waters and the atmosphere
- as a quantitative measure of the hydrophilic/lipophilic balance of an organic compound
- in investigation of quantitative structure-activity relationships (QSAR) of organic compounds

The database was created in 1987 and has been continuously updated ever since. Currently it contains experimental data on about 29,000 organic and organometallic compounds. LOGKOW contains no calculated or estimated data.

Each compound is identified by molecular formula, IUPAC name, and Chemical Abstracts Registry Number. A  $\text{pK}_a$  value is given, where appropriate. Also included

is a S.M.I.L.E.S. string of characters which represents the three-dimensional structure (connectivity) of the molecule. For every numerical  $\text{Log } K_{\text{ow}}$  datum, a literature source reference is given, in Chemical Abstracts style. Also, experimental conditions of measurement are noted (temperature, equilibration method, analytical method, nature of the aqueous phase, and which phases were analyzed). If the original data source reference gave a reference describing the experimental method, this secondary reference was included. Where warranted, a Recommended  $\text{Log } K_{\text{ow}}$  value is indicated. The database can be searched by the molecular formula or Registry Number of the compound of interest.

The database, as a Java application, was hosted for 10 years by the National Research Council of Canada (Ottawa), with free access available via the Internet. The database, although it still exists, is no longer generally available for the use of chemists. The present communication is a call for an appropriate institution to restore LOGKOW to its rightful place on the Internet.

For further information, contact:

James Sangster, Sangster Research Laboratories  
P. O. Box 49562  
5122 Côte-des-Neiges  
Montreal, Quebec, Canada  
H3T 2A5  
Telephone: +1- 514-340-4711, #3922  
James.Sangster@polymtl.ca