

IUPAC100 Logo Competition

In 2019, the International Union of Pure and Applied Chemistry will celebrate its 100th anniversary. In anticipation of the anniversary celebrations, IUPAC is holding a logo design competition.

In 1919, in the wake of WWI, chemistry as a global enterprise needed a new start. The international chemistry community knew that a universally-accepted language will ultimately facilitate research and communication. The founders of IUPAC thought that such common language of chemistry should include all sorts of standards, terms, and nomenclature. Today, our common language of chemistry continues to evolve and is ever more necessary if Chemistry is to tackle the global challenges of sustainable development.

IUPAC is marking its centenary by embracing its founders' vision and engaging its global members' participation. IUPAC100 will have a special celebration at the World Chemistry Congress and IUPAC General Assembly in Paris in July 2019. All year long, member Organizations of IUPAC will be encouraged to celebrate, in their own way, their role and involvement in this international community.

Entries are invited for the design of a logo for the 100 Years of IUPAC. The deadline is **1 February 2017**.

Eligibility

The competition is open to three categories of students from all around the world.

For submission requirements and more details
www.iupac.org/iupac100-logo-competition

UNESCO/PhosAgro/IUPAC Green Chemistry for Life Program

In Venice on 5 September 2016, the United Nations Educational, Scientific, and Cultural Organization ("UNESCO"), in partnership with PhosAgro and IUPAC, presented leading young chemists from around the world with the latest round of grants for research in the field of green chemistry. The presentation took place during the opening of the 6th International IUPAC Conference on Green Chemistry, which will be followed by a symposium dedicated entirely to a discussion of the grant programme.

The five-year, global project called Green Chemistry for Life, with USD 1.4 million in funding, was launched

on 29 March 2013 at UNESCO's Paris headquarters. The initiative is aimed at providing support for talented young scientists from around the world that are conducting research in the field of green chemistry. Its goal is to protect the environment and human health through the development of energy-efficient and environmentally friendly technologies.

This programme is unique in that, for the first time in UNESCO's long history and in the entire UN system, this kind of initiative is being implemented with extra-budgetary funds provided by Russian business. PhosAgro, with assistance from Russia's Foreign Ministry and the Russian National Commission for UNESCO, offered to provide financial support for scientific research for young scientists from all around the world. The programme has proven to be a useful and effective way to support and promote promising projects developed by young scientists, as well as to attract attention of the public to the key role that chemistry plays in solving issues facing global civilisation.

In 2016, the international scientific jury selected the six best projects from among submissions from around the world for the PhosAgro/UNESCO/IUPAC grant. The winners included young scientists from Egypt, Ahmed Shebl Elsayed Sayed; Pakistan, Muhammad Ismail; Italy, Enrico Ravera; Russia, Alsu Akhmetshina; Kenya, Wycliffe Chisutia Wanyonyi; and Uruguay, Ignacio Carrera. The winners may use their prize money for research on topics that include ways to minimise the impact of pesticides on plants, fruits, and vegetables, and to ensure the safety of farmers and workers; to patent new wastewater treatment technologies; to

Awardees present at the ICGC in Venice: Ignacio Carrera (Uruguay), Alsu Akhmetshina (Russia), Wycliffe Chisutia Wanyonyi (Kenya), and Ahmed Shebl Elsayed Sayed (Egypt)

discover technologies for greener drug synthesis; or for the introduction of more environmentally friendly means of synthesising nano-fertilisers. A very interesting idea was proposed by the above-mentioned scientist from Kenya, Wycliffe Chisutia Wanyonyi, which is to use chicken feathers for the production of cosmetics, such as hair-care products, and even the production of fertilisers.

In her address to conference participants, IUPAC President Natalia Tarasova said, "Science today plays a leading role in addressing the challenges facing humanity, which is why it is especially important to support talented young people. We also believe in scientific diplomacy, in the notion that science knows no boundaries, since scientists from all around the world speak the same language. That is why it is important to develop support for young scientists at the international level."

Russian National Commission for UNESCO Member and PhosAgro CEO Andrey Guryev said, "The further progress of humankind while minimising our impact on the environment at the global level is possible only through the joint efforts of science, international organisations, and business. I hope that, in the future, this project will serve as an example of successful co-operation between science and industry in the formation of a new ethics of progress that envisages a great degree of responsibility for the prosperity of future generations on our planet."

Professor John Corish of the Trinity College Dublin School of Chemistry noted that, "There were no weak projects this year, and submissions were received from all around the world: from Asia, the Pacific, Latin America and the Caribbean, Western and Eastern Europe, North America, Africa and the Arab world. Making a selection from among the projects was very difficult, but I can say that all of this year's winners are very good. I have no doubt that some of these technologies will eventually be used everywhere and will change our world for the better."

Grant recipient Ignacio Carrera from Uruguay said, "Green Chemistry for Life is an excellent programme. It is very important, especially for young scientists, to receive funding and support for their research."

Grant recipient Alsu Akhmetshina, from the R. E. Alekseev Nizhgorod State Technical University in Russia, observed that, "The Green Chemistry for Life project represents a big step towards waste-free production, towards responsible and sustainable industry and agriculture."

Call for Applications Open

The call for the 4th round of grant applications is now open until **28 February 2017**.

See more details at www.unesco.org/new/en/natural-sciences/science-technology/basic-sciences/chemistry/green-chemistry-for-life/how-to-apply/

or

iupac.org/green-chemistry-life-grants-awarded-leading-young-scientists/

Hanwha Total IUPAC Young Scientist Award 2016

The 2016 Hanwha-Total IUPAC Young Scientist Award has been awarded to Moon Jeong Park and Brent Sumerlin.

The Hanwha-Total IUPAC Young Scientist Award (formerly Samsung-Total Petrochemicals—IUPAC Young Scientist Award) is dedicated to outstanding young scientists (younger than 40 years old) and is sponsored by a grant from the aforementioned company. The prize was first awarded during Macro2004, held in Paris, and is granted biennially at each IUPAC World Polymer Congress (WPC). Nominations are made by the chairs of WPC symposia, and the winner is then selected by a committee of the IUPAC Polymer Division. This year, the award was presented at Macro2016 in Istanbul over 17–21 July. There are two 2016 awardees (ex aequo), namely:

Prof. Moon Jeong Park, Pohang University of Science and Technology, Pohang, South Korea, and

Prof. Brent Sumerlin, University of Florida, Gainesville, USA.

Prof. Moon Jeong Park was born in 1977 in South Korea and studied Chemical Engineering at the Seoul National University (supervisor Prof. Kookheon Char). She spent 2006–2009 as post-doctoral scholar in the Department of Chemical Engineering, University of California—Berkeley (supervisor Prof. Nitash P. Balsara) before she started her independent career in the year 2009 at Pohang University of Science and Technology (POSTEC), Pohang, South Korea, where she has been an Associate Professor since 2013. Prof. Park's research focuses on understanding morphology, ion transport, and light-emitting properties of ionic polymers on the molecular scale, starting from fundamental thermodynamics of ion-conducting block copolymers and extending to micro-phase separation and ion conductivity