Research Article

Tahreer M. ALRaddadi*, Saleh O. Bahaffi, Lateefa A. Alkhateeb, Mohammad W. Sadaka

Analysis of bioactive compounds present in *Boerhavia elegans* seeds by GC-MS

https://doi.org/10.1515/chem-2024-0068 received December 25, 2023; accepted July 3, 2024

Abstract: Boerhavia elegans L. (Nyctaginaceae) is a tropical plant widely distributed in the eastern part of Yemen, Oman, and many other countries. B. elegans is used in traditional medicine to treat inflammation, anemia, and urinary tract disorders. The seeds, called Alhydawan, are used as food additives to prepare porridge, one of the most popular foods in Yemen. The present study aims to analyze the bioactive constituents of the methanolic extract of B. elegans seeds after fractionation on silica gel column chromatography. The methanolic extract was subjected to column chromatography and eluted with a hexane and hexane diethyl ether mixture of different compositions. The eluted fractions were tested with thin-layer chromatography. The gas chromatography-mass spectrometry analysis of fractions indicated some compounds such as dodecane, 2,6,11-trimethyl, butylated hydroxytoluene, 2,6,10-trimethyltridecane, hexadecane, 2,6,11,15-tetramethyl, nonadecane, 2-methyl, 7,9di-tert-butyl-1-oxaspiro(4,5) deca-6,9-diene-2,8-dione, *n*-hexadecenoic acid, octadecanoic acid, bis(2-ethylhexyl) phthalate, 13-docosenamide, (Z)-, and phenol,2,4-bis(1,1-dimethyl ethyl) phosphite (3:1). Hence, B. elegans may have antimicrobial, anticancer, antioxidant, and antidiabetic activities due to the presence of secondary metabolites in the extract.

Keywords: Boerhavia elegans seeds, GC-MS analysis, medicinal plants, bioactive compounds

Lateefa A. Alkhateeb: Chemistry Department, Faculty of Science, King Abdulaziz University, Jeddah, 21589, Saudi Arabia, e-mail: laalkhatib@kau.edu.sa

Mohammad W. Sadaka: College of Health Technology, Cihan University-Erbil, Kurdistan Region, Erbil, Iraq, e-mail: waleed.sadaka@gmail.com

1 Introduction

Herbs have been the primary source of practically all medical remedies from ancient times until the introduction of synthetic pharmaceuticals in the nineteenth century [1]. Because of their long history of medicinal use and minimal carcinogenic risk compared to synthetic alternatives, medicinal plants are highly esteemed in many cultures [2]. Researchers currently source many traditional drugs from natural sources [3]. Utilizing therapeutic plants in conventional medical practices has created opportunities for further investigation, and biodiversity preservation is now widely acknowledged [4]. The designated genus of Boerhavia is in honor of Hermann Boerhaave, an eighteenthcentury Dutch botanist affiliated with the University of Leiden in Germany. Scientists frequently mention the generic name Boerhaavia in scientific texts [5]. However, Linnaeus adapted Boerhaave's name to Boerhavius when establishing the genus; thus, Boerhavia is the correct spelling for the plant [6]. Boerhavia, often spelled as "Boerhaavia," is a diverse genus of Nyctaginaceae, commonly referred to as the four o'clock family because the majority of species in this genus bloom their flowers 4 h after noon, namely in the early evening or morning. The family Nyctaginaceae comprises 300-400 species classified into around 30 genera. These include trees, shrubs, and herbs found widely across tropical and subtropical regions of Asia, Africa, America, and Australia [7,8]. The genus Boerhavia within this family contains approximately 40 species, also distributed widely in the tropics and subtropics of these same continents [9,10]. Boerhavia is known for its unique alkaloid mix, including flavonoids, phenolic glycosides, phenolic acids, sterols, and organic acids [11]. Quinolizidine alkaloids like punarnavine are one example. India contains six major Boerhavia species: B. diffusa, B. repens, B. chinensis, B. erecta, B. elegans, and B. reniformis. The medicinal value of plants from the Boerhavia genus has long been acknowledged across various traditional medicine systems globally. Boerhavia species find therapeutic applications in Indian practices like Ayurveda, Siddha, and Unani medicine. They are also prominently featured in folk remedies, such as traditional

^{*} Corresponding author: Tahreer M. ALRaddadi, Chemistry
Department, Faculty of Science, King Abdulaziz University, Jeddah, 21589,
Saudi Arabia; Chemistry Department, Al-Qunfudah University College,
Umm Al-Qura University, Makkah, Saudi Arabia; King Fahd Center for
Medical Research, King Abdulaziz University, Jeddah, Saudi Arabia,
e-mail: tnalraddade@stu.kau.edu.sa, Tmradade@uqu.edu.sa
Saleh O. Bahaffi: Chemistry Department, Faculty of Science, King
Abdulaziz University, Jeddah, 21589, Saudi Arabia,
e-mail: sbahaffi@kau.edu.sa

2 — Tahreer M. ALRaddadi *et al.* DE GRUYTER

Chinese prescriptions and African herbalism. Moreover, B. elegans are recognized in the pharmacopeias of Brazil and India for their healing properties, classifying B. elegans as belonging to the Boerhavia genus, the Nyctaginaceae plant family. Botanists classify Choisy as belonging to the Nyctaginaceae family and place it under the genus Boerhavia, which includes a wide range of more than 100 species. The tropical and subtropical zones are the most common habitats for this blooming plant; it is also in West India, Iran, Pakistan, Oman, and Saudi Arabia [12-15]. In 2015, Al-Farga et al. examined the physicochemical properties, proximate composition, amino acid, mineral, vitamin concentrations, phenolic acids, and volatile oil components extracted from dry B. elegans seeds [15]. The edible herbaceous plant from which B. elegans seeds come is a member of a family that native tribes in southern Yemen frequently use in traditional dishes. They are a primary ingredient for making porridge and are also in bread and cake mixtures [16].

Nevertheless, there are many prepared traditional medicines and there are only a few chemical and pharmacological studies from Boerhavia genera, including *Boerhavia plumbaginea, Boerhavia chinensis, Boerhavia repens, Boerhavia diffusa, Boerhavia erecta* and *B. elegans*. Therefore, modern pharmacochemical research is needed to reveal the bioactivity claimed by traditional knowledge. Hence, this work aims to fractionate methanolic extract on a silica gel column to examine the chemical constituents of the seeds by separation and qualitative determination of *B. elegans* chemical constituents using gas chromatography-mass spectrometry (GC-MS) and identify the constituents responsible for any observed bioactivity.

1.1 Bioactivity of *Boerhavia* genus plants

Boerhavia has received growing attention from physiochemists because previous research has documented its diverse pharmacological and biological activities, indicating therapeutic potential. Research has shown that a methanolic extract of *B. diffusa* leaves has antibacterial properties and significant activity against *Staphylococcus aureus*, one of numerous harmful bacteria [17]. In their 2010 work, Ramazani et al. reported on the antimalarial effects of *B. elegans*, representing one of the initial studies to demonstrate this plant's effectiveness against malaria [18]. Traditional medicine practices have suggested that *B. elegans* can remedy numerous other health issues, such as painful menstruation, urinary tract problems, intestinal infections, inflammation, jaundice, and general weakness [19].

2 Materials and methods

2.1 Chemicals and reagents

The Direct-Q water purification system was utilized to acquire ultrapure water. The Milli- Q_{\odot} water purification system (Merck) used solvents such as methanol, chloroform, ethyl acetate, diethyl ether, and hexane obtained from Thermo Fisher Scientific (Waltham, MA, USA). p-Anisaldehyde-sulfuric acid and 50% sulfuric acid were used as spray chemicals to determine the terpenes, steroids, and phenols.

2.2 Thin-layer chromatography (TLC)

TLC was performed using pre-coated silica gel plates with a 0.2 mm layer (Merck 60F 254). TLC spot visualization was carried out under UV light at 254 and 366 nm. Then, the TLC plate was sprayed with a 50% sulfuric acid spray reagent prepared with 50% methanol, and 50% concentrated sulfuric acid was added slowly [20]. After that, the TLC plates were sprayed and heated at 150°C for 1 min, and the plates revealed color spots.

2.3 Plant material and extract preparation

Dried *B. elegans* seeds were originally imported from the Hadramout region of South Yemen. They were then milled into powder using an electric grinder. After that, the powder was passed through a 100-mesh sieve and stored in a refrigerator at 4°C until use. One kilogram of the *B. elegans* powder was extracted three times (once daily) over 3 days of maceration in 1.5 L MeOH at ambient temperature, followed by filtration using Whatman No. 41 filter paper to remove the solid residue. The extract was evaporated in a rotary evaporator (Stuart RE300 Rotary Evaporator) at 40°C, yielding 41.5 g of oily material.

2.4 Column chromatography

An open glass column 80 cm in length and 3.5 cm in diameter was manufactured in the glassware workshop of the Chemistry Department at King Abdulaziz University. First, a small amount of glass wool was placed at the bottom of the chromatography column, and then the column was filled 2/3 with silica gel 60 (70–230 mesh, Grade 60) by slurry packing using n-hexane. After homogenization

Table 1: Hexane diethyl ether column fraction

Hexane %	Diethyl ether %	Fractions obtained	Weight (mg)	Color
100	0	1–21 (F1)	924.9	Dark brown
90	10	22-38 (F2)	811.5	Light yellow
80	20	39-57 (F3)	782.3	Black
70	30	58-71 (F4)	386.2	Yellow
60	40	72-82 (F5)	842.6	Yellow
50	50	84-97 (F6)	355.1	Dark green

with an appropriate quantity of silica gel, the oily extract (41.5 g) was added to the top of the column [21]. The initial eluent was *n*-hexane, and then the polarity increased gradually using diethyl ether, ethyl acetate, and methanol. The volume of the collected fractions was 30 mL for each. The amount of solvent consumed varied depending on TLC observations. To follow the fractionation, TLC and UV light were used, and spray reagents were collected, as shown in Table 1.

2.5 GC-MS

The bioactive compounds from hexane and hexane diethyl ether extracts of *B. elegans* seeds were analyzed using GC-MS with a GC TRACE 1300-TSQ 8000 EVO mass spectrometer from Thermo Scientific equipped with a capillary non-polar-5%-phenyl-column (Thermo-17MS, 30 m in length, 0.25 mm id, 0.15 μ m film thickness). The GC-MS detection involved an electron ionization system (70 eV). Sampling split was performed with an injection volume of 1 μ L and a pulsed split less (pulse:

25 psi, unit 1 min). Helium was used as the carrier gas, with a purity of 99.9995% at a 1 mL/min flow rate. The injection temperature was 280°C, and the heated ion source was 250°C. The oven's initial temperature was at 70°C (held for 2 min), then raised to 150°C at 25°C/min (held for 2 min), then raised to 200°C (3°C/min) (held for 2 min), and the final temperature was 280°C (6.07°C/min) with a hold time of 10 min – the total run time for a 49.03-min measurement period. NIST library mass spectra were used to identify and interpret bioactive compounds' GC-MS mass spectra.

3 Results and discussion

3.1 Fractionation of the hexane extract

Approximately 2 L of 100% *n*-hex was used for the initial elution, and 2 L of hexane and diethyl ether mixtures were added in the following proportions: (*n*-hex 9: Et2O 1), (*n*-hex

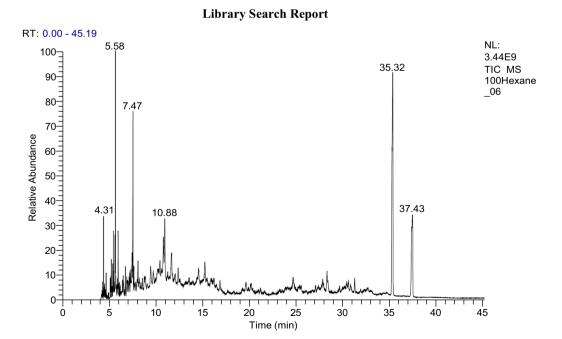


Figure 1: GC-MS chromatogram of methanolic crude extract fractionated with 100% hexane.

4 — Tahreer M. ALRaddadi *et al.* DE GRUYTER

Table 2: GC-MS components of the methanolic extract fractionated using 100% hexane

No.	tR*	Compound name	Molecular formula	Molecular weight	SI	RSI	Area %
1	4.31	Dodecane,2,6,11-trimethyl-	C ₁₅ H ₃₂	212	877	882	1.87
2	5.37	2,6,10-Trimethyltridecane	C ₁₆ H ₃₄	226	876	878	3.27
3	5.58	Tetradecane	C ₁₄ H ₃₀	198	848	856	9.88
4	5.88	Heptadecane,2,6,10,15-tetramethyl	C ₂₁ H ₄₄	269	854	856	2.11
5	7.47	Hexadecane,2,6,11,15-tetramethyl-	C ₂₀ H ₄₂	282	845	866	11.5
6	10.88	7,9-Di-tert-butyl-1-oxaspiro(4,5)deca-6,9-diene-2,8-dione	$C_{17}H_{24}O_3$	267	859	927	19.25
7	11.59	Phthalic acid, butyl tetradecyl ester	$C_{23}H_{36}O_4$	376	797	838	3.39
8	35.31	Phenol,2,4-bis(1,1-dimethylethyl)-phosphite(3:1)	$C_{42}H_{63}O_3P$	646	869	881	32.48
9	37.42	Tris(2,4-di-tert-butylphenyl)phosphate	$C_{42}H_{36}O_4P$	662	537	551	16.26

*tR: retention time.

8: Et2O 2), (*n*-hex 7: Et2O 3), (*n*-hex 6: Et2O 4), and (*n*-hex 5: Et2O 5). Using 10 ml of petroleum ether and EtOAc mixtures as the mobile phase, petroleum ether 9:EtOAc 1 was used for fractions F1, F2, and F3, while for fractions F5 and F6, petroleum ether 8:EtOAc 2 was used. The fractions whose retention factors were comparable to the gathered fractions were merged and analyzed by TLC. GC-MS was used to further examine the fractions F1, F2, F3, F4, F5, and F6. Table 1 summarizes all fractions.

3.2 GC-MS analysis

3.2.1 Hexane extract

Figure 1 shows the GC-MS chromatogram of the B. elegans seed eluted by 100% hexane and the probable bioactive compounds present in the extract with their retention time $t_{\rm R}$. Table 2 provides detailed information about the component's names, retention time, molecular formula,

Table 3: GC-MS components of the methanolic extract fractionated using hexane and diethyl ether

RT	Compound name	100% hexane	90% hexane	80% hexane	70% hexane	60% hexane	50% hexane
4.31	Dodecane,2,6,11-trimethyl-	√	√	√	√	ND	√
5.37	2,6,10-Trimethyltridecane	√	√	ND	ND	ND	√
5.58	Tetradecane	\checkmark	\checkmark	ND	ND	ND	\checkmark
5.77	Butylated hydroxytoluene	\checkmark	ND	ND	\checkmark	ND	ND
5.89	Hexadecane,2,6,11,15-tetramethyl	\checkmark	\checkmark	ND	\checkmark	ND	\checkmark
7.46	Nonadecane,2-methyl	\checkmark	\checkmark	\checkmark	ND	ND	\checkmark
7.53	Heptadecane,2,6,10,15-tetramethyl	\checkmark	\checkmark	\checkmark	\checkmark	ND	ND
11.02	7,9-Di-tert-butyl-1-oxaspiro (4,5) deca-6,9-	\checkmark	\checkmark	\checkmark	\checkmark	ND	\checkmark
	diene-2,8-dione						
12.37	n-Hexadecanoic acid	\checkmark	ND	\checkmark	ND	\checkmark	\checkmark
15.69	Oleic acid	ND	ND	\checkmark	ND	ND	ND
16.86	Octadecanoic acid	\checkmark	ND	\checkmark	ND	ND	\checkmark
24.67	Bis(2-ethylhexyl) phthalate	ND	ND	\checkmark	ND	ND	ND
28.33	13-Docosenamide, (Z)-	ND	ND	\checkmark	ND	\checkmark	\checkmark
35.31	Phenol,2,4-bis(1,1-dimethylethyl) phosphite (3:1)	√	✓	ND	ND	ND	ND
37.36	Tris(2,4-di-tert-butylphenyl) phosphate	\checkmark	\checkmark	\checkmark	\checkmark	ND	\checkmark

ND: not detected.

Table 4: SD and 95% confidence limit based on the retention time for isolated compounds from B. elegans seeds

Compound name	Mean	SD	95% confidence interval	Number of tests
Dodecane,2,6,11-trimethyl-	4.3140	0.0055	4.3140 ± 0.0048	5
2,6,10-Trimethyltridecane	5.3733	0.0058	5.3733 ± 0.0065	3
Tetradecane	5.6400	0.1039	5.6400 ± 0.1176	3
Butylated hydroxytoluene	5.7650	0.0071	5.7650 ± 0.0098	2
Hexadecane,2,6,11,15-tetramethyl	5.7400	0.1732	5.7400 ± 0.1697	4
Nonadecane,2-methyl	7.4850	0.0311	7.4850 ± 0.0305	4
Heptadecane,2,6,10,15-tetramethyl	6.2225	0.8827	6.2225 ± 0.8650	4
7,9-Di-tert-butyl-1-oxaspiro (4,5) deca-6,9-diene-2,8-dione	10.9620	0.0610	10.9620 ± 0.0535	5
n-Hexadecanoic acid	12.0100	0.7742	12.0100 ± 0.7587	4
Octadecanoic acid	16.4500	0.6589	16.4500 ± 0.7456	3
13-Docosenamide, (Z)-	28.2967	0.0071	28.2967 ± 0.0080	3
Phenol,2,4-bis(1,1-dimethylethyl) phosphite (3:1)	35.3350	0.0354	35.3350 ± 0.0490	2
Tris(2,4-di-tert-butylphenyl) phosphate	37.4880	0.0746	37.4880 ± 0.0654	5

molecular weight, match factor (SI), reversed match factor (RSI), and % peak area. The primary ingredients consisted of phenol, 2,4-bis(1,1-dimethylethyl)-phosphite (3:1) (32.48%), 7,9di-tert-butyl-1-oxaspiro (4,5) deca-6,9-diene-2,8-dione (19.25%), and tris(2,4-di-tert-butylphenyl) phosphate (16.26%). These three components represent 67.99%, while the other six components were 32.01%. A library spectrum search was conducted to yield three numerical values for each shown spectrum and a single value for the overall search. The three numbers consist of (1) a match factor (SI) between the unknown and the library spectrum, taking into account

all peaks; (2) a match factor (RSI) between the unknown and the library spectrum, disregarding any peaks in the unknown that are not present in the library spectrum; and (3) a probability value.

3.2.2 Hexane-diethyl ether extract

Diethyl ether was added to hexane in increments of 10, 20, 30, 40, and 50% to increase its polarity. The detected components in each extract are shown in Table 3, associated

Table 5: GC-MS bioactive components isolated using hexane and diethyl ether

No	Compound name	Nature of the compound	Activity	References
1	Dodecane,2,6,11-trimethyl-	Alkane	No activity reported	
2	2,6,10-Trimethyltridecane	Alkane	No activity reported	
3	Tetradecane	Hydrocarbons	Antimicrobial	[22]
4	Butylated hydroxytoluene	Phenols	Antioxidant	[23]
5	Hexadecane,2,6,11,15-tetramethyl	Alkane	Lipid biomarker, catalyst	[24]
6	Nonadecane,2-methyl	Volatile heterocyclic hydrocarbon	Antioxidant	[22,25]
7	Heptadecane,2,6,10,15-tetramethyl	Alkane	Dyeing, anti-HIV, anticancer	[24]
8	7,9-Di-tert-butyl-1-oxaspiro (4, 5) deca-6,9-diene-2,8-dione	Flavonoid	Antimicrobial, antifungal	[22,26]
9	<i>n</i> -Hexadecanoic acid	Palmitic acid (saturated fatty acid)	Anti-inflammatory, antiandrogenic, antioxidant, antibacterial, hypocholesterolemic, nematicide, pesticide, lubricant, antiandrogenic, hemolytic, 5-alpha reductase inhibitor, antipsychotic	[27,28]
10	Oleic acid	Primary amide	Antifungal	[29]
11	Octadecanoic acid	Fatty acid	Antifungal, antitumor activity, antibacterial	[30,31]
12	Bis(2-ethylhexyl) phthalate	Esters of phthalic acid	Antibacterial, larvicidal activity	[32]
13	13-Docosenamide, (Z)-	Amide compound	Antimicrobial, anti-nociceptive	[33]
14	Phenol,2,4-bis (1,1 dimethyl ethyl) phosphite (3:1)	Phenol	Anti-enterococcal, antioxidant, anticancer, antiviral, antifungal, additive	[24,34]
15	Tris (2,4-di-tert-butyl phenyl) phosphate	Phenol	Anti-enterococcal, antioxidant activities	[34]

with the corresponding retention period. Certain chemicals, such as oleic acid, were only in specific percentages. In contrast, primary chemicals persisted in all percentages despite increased polarity concentration, indicating much of it in *B. elegans*. Standard deviation (SD) and 95% confidence limit based on the retention time of chemical compounds identified in Table 3 are tabulated in Table 4, considering that oleic acid (RT = 15.69) has only one reading.

Table 5 shows the chemical compounds eluted with hexane diethyl ether and their biological activities. Phosphatene, 2,6,10,15-tetramethyl, 7,9-di-tert-butyl-1-oxaspiro (4, 5) DECA-6,9-diene-2,8-dione, *n*-hexadecenoic acid, oleic acid, octadecanoic acid, 13-docosenamide, (*Z*)-, phenol, 2,4-bis(1,1 dimethyl ethyl) phosphite (3:1), and Tris(2,4-di-tert-butylphenyl) phosphate are among these bioactive compounds, and categorized chemicals into various groups, including phenols, flavonoids, amides, and fatty acids.

4 Conclusions

GC-MS analysis of methanolic extracts of the seeds of *B. elegans* fractionated on column chromatography with hexane and hexane diethyl ether showed a composite profile of different natural compounds such as alkane hydrocarbons, phenols, flavonoids, phosphates, and fatty acids. Most of these compounds have biological activity. 2,4-Bis(1,1-dimethylethyl)-phosphite (3:1) had the highest peak area (32.48%), and heptadecane 2,6,10,15-tetramethyl had the lowest peak area (2.11%). Ethyl acetate and methanol extracts will be subject to further analysis and investigation. According to the literature survey, *B. elegans treats* inflammatory, anticancer, antiviral, antifungal, and antioxidant conditions due to the significant biological activity exhibited by these substances.

Acknowledgments: The authors would like to thank the Saudi Food and Drug Authority for the GC-MS analysis and the King Fahad Medical Research Center (KFMRC), Main Laboratory. They would also like to thank Abduh Alrabee, the technical director of the glassware workshop in the chemistry department at King Abdulaziz University.

Funding information: No funding was received for conducting this study.

Author contributions: All authors contributed equally as the main contributors to this manuscript. Tahreer M. AL-Raddadi: investigation, writing – original draft, and formal analysis, Mohammad W. Sadaka: formal analysis, Saleh O. Bahaffi: project supervision, writing review, and editing.

FLateefa ALkhateeb: project co-supervisor. All authors have read and agreed to the published version of the manuscript.

Conflict of interest: The authors declare no conflict of interest.

Data availability statement: The datasets generated during and/or analyzed during the current study are available from the corresponding author on reasonable request.

References

- [1] Williamson EM, Liu X, Izzo AA. Trends in use, pharmacology, and clinical applications of emerging herbal nutraceuticals. Br J Pharmacol. 2020 Mar;177(6):1227–40. doi: 10.1111/bph.14943.
- [2] Tungmunnithum D, Thongboonyou A, Pholboon A, Yangsabai A. Flavonoids and other phenolic compounds from medicinal plants for pharmaceutical and medical aspects. Medicines. 2018 Aug;5(3):93. doi: 10.3390/medicines5030093.
- [3] Vickers A, Zollman C, Lee R. Toolbox-herbal medicine. West J Med. 2001;175(2):125–8.
- [4] Uniyal SK, Singh KN, Jamwal P, Lal B. Traditional use of medicinal plants among the tribal communities of Chhota Bhangal, Western Himalaya. J Ethnobiol Ethnomed. 2006;2:1–8. doi: 10.1186/1746-4269-2-14.
- [5] Hiruma-Lima CA, Gracioso JS, Bighetti EJB, Germonsén Robineou L, Souza Brito ARM. The juice of fresh leaves of Boerhaavia diffusa L. (Nyctaginaceae) markedly reduces pain in mice. J Ethnopharmacol. 2000;71(1–2):267–74. doi: 10.1016/S0378-8741(00)00178-1.
- [6] Spellenberg R. Nyctaginaceae. Flora of North America. Vol. 4. New York: Oxford University Press; 2004.
- [7] Fosberg FR. Studies in the genus Boerhavia L. (Nyctaginaceae). Smithsonian Contributions to Botany. Washington: Smithsonian institution press; 1978.
- [8] Mabberley DJ. The plant-book. a portable dictionary of the vascular plants. Cambridge: Cambridge University Press; 1997.
- [9] Struwig M, Siebert S. A taxonomic revision of Boerhavia (Nyctaginaceae) in southern Africa. S Afr J Bot. 2013;86:116–34. doi: 10.1016/j.sajb.2013.02.172.
- [10] Nisha M, Vinod BN, Sunil C. Evaluation of Boerhavia erecta L. for potential antidiabetic and antihyperlipidemic activities in streptozotocin-induced diabetic Wistar rats. Futur J Pharm Sci. 2018;4(2):150–5. doi: 10.1016/j.fjps.2017.12.001.
- [11] Maroyi A. Ethnomedicinal uses, phytochemistry and pharmacological properties of the genus Boerhavia. Trop J Pharm Res. 2016;15(11):2507–16. doi: 10.4314/tjpr.v15i11.28.
- [12] Chopra GL. Angiosperms: Systematic and life-cycle. India: S. Nagin; 1977.
- [13] Rehman NU, Alsabahi JN, Alam T, Rafiq K, Khan A, Hidayatullah, et al. Chemical composition and biological activities of essential oil from aerial parts of frankenia pulverulenta L. and boerhavia elegans choisy from Northern Oman. J Essent Oil Bear Plants. 2021 Sep;24(5):1180–91. doi: 10.1080/0972060X.2021.1978870.
- [14] Sadeghi Z, Valizadeh J, Azyzian Shermeh O, Akaberi M. Antioxidant activity and total phenolic content of Boerhavia elegans (choisy) grown in Baluchestan, Iran. Avicenna J Phytomed. 2015;5(1):1–9.
- [15] Al-Farga A, Zhang H, Siddeeg A, Chamba MVM, Nabil Q. Physicochemical properties, phenolic acids and volatile compounds

- of oil extracted from dry alhydwan (Boerhavia elegana Choisy) seeds. Grasas Aceites. 2015;66(3):1-9. doi: 10.3989/gya.0944142.
- [16] Siddeeg A, Ammar A-F, Zhang H. In vitro antioxidant activity and total phenolic and flavonoid contents of alhydwan (boerhavia elegana choisy) seeds. J Food Nutr Res. 2014;2(5):215-20. doi: 10. 12691/jfnr-2-5-2.
- [17] Satish S, Girish HV. Antibacterial activity of important medicinal plants on human pathogenic bacteria-a comparative analysis. World Appl Sci J. 2008;5(3):267-71.
- [18] Ramazani A, Zakeri S, Sardari S, Khodakarim N, Djadidt ND. In vitro and in vivo anti-malarial activity of Boerhavia elegans and Solanum surattense. Malar J. 2010 Dec;9(1):124. doi: 10.1186/1475-2875-9-124.
- [19] Sadeghi Z, Kuhestani K, Abdollahi V, Mahmood A. Ethnopharmacological studies of indigenous medicinal plants of Saravan region. Baluchistan, Iran. | Ethnopharmacol. 2014;153(1):111-8. doi: 10. 1016/j.jep.2014.01.007.
- [20] Waldi D. Spray reagents for thin-layer chromatography. Thin-layer chromatography. Berlin, Heidelberg: Springer; 1965. p. 483-502. doi: 10.1017/S0960428600001700.
- [21] Megalla SE. Rapid, economical qualitative method for separation of aflatoxins B-1, B-2 & G-1, G-2 by dry column chromatography. Mycopathologia. 1983;84(1):45-7. doi: 10.1007/BF00436996.
- [22] Al-Ghanayem AA. Antifungal activity of cymbopogon flexuosus essential oil and its effect on biofilm formed by candida parapsilosis and candida tropicalis on polystyrene and polyvinyl plastic surfaces. Indian J Pharm Educ Res. 2023 Jan;57(1):113-9. doi: 10. 5530/001954641705.
- [23] Yehye WA, Rahman NA, Ariffin A, Abd Hamid SB, Alhadi AA, Kadir FA, et al. Understanding the chemistry behind the antioxidant activities of butylated hydroxytoluene (BHT): A review. Eur J Med Chem. 2015;101:295-312. doi: 10.1016/j.ejmech.2015.06.026.
- [24] Patil K, Singh DM. GC-MS Analysis of fresh water cylindrospermum sp. PCC518, cylindrospermum sp. PCC 567 ethanol and hexane extracts. Int J Herb Med. 2022;10(3):15-25.
- [25] Radhamani T, Britto SJ. GC-MeS analysis of polygala arillata Buch.-Ham ex D. Don. Ann Biol Res. 2013;4(11):70-5.

- [26] Monisha SI, Vimala JR. Extraction, identification and pharmacological evaluation of phyto-active compound in manilkara hexandra (Roxb.) dubard stem bark. Biosci Biotechnol Res Asia. 2018;15(3):687-98. doi: 10.13005/bbra/2677.
- Kumar D, Rajakumar R. Gc-Ms analysis of bioactive components from the ethanol extract of avicennia marina leaves. Innovare J Sci.
- [28] Joel EL. Bhimba V. Isolation and characterization of secondary metabolites from the mangrove plant Rhizophora mucronata. Asian Pac J Trop Med. 2010;3(8):602-4. doi: 10.1016/S1995-7645(10)
- [29] Alabi KA, Lajide L, Owolabi BJ. Biological activity of oleic acid and its primary amide: Experimental and computational studies. J Chem Soc Niger. 2018:43(2):9-18.
- Hsouna AB, Triqui M, Mansour RB, Jarraya RM, Damak M, Jaoua S. Chemical composition, cytotoxicity effect and antimicrobial activity of Ceratonia siliqua essential oil with preservative effects against Listeria inoculated in minced beef meat. Int | Food Microbiol. 2011;148(1):66-72. doi: 10.1016/j.ijfoodmicro.2011.04.028.
- Karthikeyan SC, Velmurugan S, Donio MBS, Michaelbabu M, Citarasu T. Studies on the antimicrobial potential and structural characterization of fatty acids extracted from Sydney rock oyster Saccostrea glomerata. Ann Clin Microbiol Antimicrob. 2014;13(1):1-11. doi: 10.1186/s12941-014-0057-x.
- Javed MR, Salman M, Tariq A, Tawab A, Zahoor MK, Naheed S, et al. The antibacterial and larvicidal potential of bis-(2-ethylhexyl) phthalate from lactiplantibacillus plantarum. Molecules. 2022;27(21):7220. doi: 10.3390/molecules27217220.
- [33] Khan S, Kaur H, Jhamta R. Evaluation of antioxidant potential and phytochemical characterization using GCMS analysis of bioactive compounds of Achillea filipendulina (L.) Leaves. J Pharmacogn Phytochem. 2019;8(3):258-65.
- [34] Hnbgu L, Tyagi S, Kunwar R, Prakash S. Anti-enterococcal and antioxidative potential of a thermophilic cyanobacterium, Leptolyngbya sp. HNBGU 003. Saudi J Biol Sci. 2021;28(7):4022-8. doi: 10.1016/j.sjbs.2021.04.003.