#### Research Article

Rashed N. Herqash\*, Abdullah R. Alanzi, Syed Rizwan Ahamad, Md. Tabish Rehman, Mohammed S. Alharbi, Sami A. Alsufyani, Abdullah A. Al-Mishari, Ali S. Alqahtani\*

# Exploring the phytochemical profile and antioxidant evaluation: Molecular docking and ADMET analysis of main compounds from three *Solanum* species in Saudi Arabia

https://doi.org/10.1515/chem-2024-0063 received February 14, 2024; accepted June 17, 2024

Abstract: This study aimed to comprehensively assess the phytochemical composition, employing gas chromatography-mass spectrometry (GC-MS) and reverse-phase highperformance liquid chromatography (RP-HPLC) analyses, molecular docking, ADMET analysis, and antioxidant activity evaluation, of three Solanum species (Solanum forsskalii [SF], Solanum villosum [SV], and Solanum incanum [SI]) from the diverse flora of Saudi Arabia. Two solvents, hydro-methanolic (HME) and hydro-acetonic extract, were utilized for extraction, finding HME more efficient, especially for SV. GC-MS analysis identified diverse compounds, with palmitic acid, linoleic acid, methyl palmitate, cis-13-octadecenoic acid, and oleic acid as the main constituents. RP-HPLC quantified 12 phenolic compounds, identifying chlorogenic acid, rutin, and p-coumaric acid as abundant. Antioxidant assays showed HME extracts to be more effective in both diphenyl 1-picrylhydrazyl and ABTS assays, with SV exhibiting the strongest antioxidant effect, followed by SF and SI. Pearson correlation analysis indicated a positive correlation between phenolic content and antioxidant activity (r = 0.6067-0.8927). Molecular docking simulations demonstrated robust binding energies between predominant compounds and Cyt-c, underscoring

**Keywords:** GC, MS, RP-HPLC, *Solanum* species, phytochemicals, antioxidant, molecular docking: ADMET analysis

#### 1 Introduction

Solanum, a plant genus belonging to the Solanaceae family, is known for its vast diversity, encompassing over 2,000 species, many of which are reputed to possess medicinal qualities and have been acknowledged for their therapeutic attributes [1-3]. The investigation of naturally occurring bioactive compounds and their secure and precise implementation in the food and pharmaceutical sectors is a relevant and significant scientific area today. Solanum spp., characterized by their abundant and varied biochemical composition, have emerged as an appealing research focus to explore their potential advantages across multiple domains. Traditional medicine incorporates the use of various Solanum species, while some species serve as a source of drugs for medicine, pharmacology, and drug therapy [4]. Numerous pharmacological investigations have been conducted to authenticate the traditional therapeutic uses of various plants within this genus. The examined pharmacological properties encompass a wide range of effects, such as analgesic, anthelminthic, antibacterial, anti-cancer, antidepressant, anti-diabetic, anti-fungal, antihypertensive, antiinflammatory, antileishmanial, antinociceptive, anti-psoriatic, anti-plasmodial, anti-protozoa, diuretic, hepatoprotective, spasmolytic, and vasorelaxant activities [5]. Saudi Arabia is home to

Abdullah R. Alanzi, Md. Tabish Rehman, Mohammed S. Alharbi, Sami A. Alsufyani, Abdullah A. Al-Mishari: Department of Pharmacognosy, College of Pharmacy, King Saud University, Riyadh, 11451, Saudi Arabia Syed Rizwan Ahamad: Department of Pharmaceutical Chemistry, College of Pharmacy, King Saud University, Riyadh, 11451, Saudi Arabia

their potential as effective antioxidants. ADMET analysis showcased varied profiles, suggesting promising pharmaceutical prospects. This study explores the phytochemical profiles of these *Solanum* species, emphasizing their strong antioxidant capacity as natural sources of phenolic compounds, advancing our understanding of their promising medicinal applicability.

<sup>\*</sup> Corresponding author: Rashed N. Herqash, Department of Pharmacognosy, College of Pharmacy, King Saud University, Riyadh, 11451, Saudi Arabia, e-mail: rherqash@ksu.edu.sa, tel: +966-14670742

<sup>\*</sup> Corresponding author: Ali S. Alqahtani, Department of Pharmacognosy, College of Pharmacy, King Saud University, Riyadh, 11451, Saudi Arabia, e-mail: alalqahtani@ksu.edu.sa

2 — Rashed N. Hergash et al. DE GRUYTER

around 16 species of the *Solanum* genus, which can be found primarily in the western and southwestern parts of the country [6].

The significance of phytochemicals, including antioxidants, in neutralizing harmful free radicals and combating life-threatening illnesses like cancer, stroke, and heart-related ailments, is widely acknowledged today. Polyphenols, including phenolic acids, flavonoids, flavanols, flavones, and isoflavones, are well-known for their significant antioxidant properties and potential health benefits [7,8]. The antioxidant capacity of plant phenolic extracts is influenced by their concentration, as well as their distribution patterns within plant tissues [9,10]. Environmental conditions, age, and phenological stage all have an impact on the concentration of phenolic constituents [11].

Numerous investigations have been conducted to analyze the phenolic composition and antioxidant properties of various Solanum species. Among them are Solanum betaceum [12], Solanum erianthum, Solanum torvum [1], Solanum xanthocarpum, Solanum violaceum [13], Solanum aethiopicum, Solanum macrocarpon [14], Solanum indicum, Solanum surattense [15], Solanum ferrugineum [16], Solanum melanocerasum, Solanum nigrum, Solanum villosum [SV], and Solanum retroflexum [17], as well as Solanum scabrum and Solanum burbankii [18]. This study aimed to evaluate the abundance and diversity of phenolic compounds and their antioxidant properties in three Solanum species (Solanum forsskalii [SF], SV, and Solanum incanum [SI]) collected from the southern region of Saudi Arabia. The primary goal was to explore the potential utilization of a specific species from Saudi Arabia as a natural source of antioxidants. To accomplish this, we conducted an evaluation of the total phenolic content (TPC) and total flavonoid content (TFC). Additionally, we employed gas chromatography-mass spectrometry (GC-MS) analysis and high-performance liquid chromatography (HPLC) to detect and analyze the variability in the phytochemical composition. Moreover, we investigated the variations in antioxidant activity among tested species through the implementation of spectrometric methods, including the diphenyl 1-picrylhydrazyl (DPPH) and ABTS assays. Furthermore, we conducted Pearson correlation analysis to examine the relationship between TPC and antioxidant activity, providing valuable insights into the contribution of phenolic compounds to antioxidant properties.

It is worth noting that previous studies assessing the phytochemical composition in SF have been limited. Moreover, the three species analyzed in this study were exclusively sourced from Saudi Arabia, shedding light on the environmental effects on the phenolic constituents and adding a unique aspect to the research.

#### 2 Materials and methods

#### 2.1 Plant material

The fruiting aerial parts of three Solanum species were harvested in Al Azizah (end of March 2021), Abha Region (South West Region of Saudi Arabia; harvesting coordinates 18°12′28.8″N, 42°26′24.0″E). During plant collection, sustainable harvesting practices were employed, including timing the harvest during optimal growth periods, utilizing proper techniques to minimize damage, consulting local experts for adaptive management, and adhering to local regulations for documentation and site selection. These specimens underwent authentication by Prof. Abdelaaty A. Shahat of the Department of Pharmacognosy at King Saud University, Saudi Arabia. The process involved macroscopic examination and comparison with authenticated reference specimens [6]. They were subsequently deposited in the departmental herbarium for further reference. The collected samples underwent washing, were then dried in a ventilated oven at 40°C within a controlled environment to prevent contamination or degradation, and closely monitored to avoid overheating. Afterward, they were ground using a domestic blender.

The resulting dry and ground tissues were then preserved in paper bags at room temperature, in a dark environment, until further examination.

#### 2.2 Chemicals, reagents, and standards

Analytical grade reagents and solvents, such as methanol, acetonitrile, ethanol, and acetic acid, were used for extraction and chromatographic separation. These solvents were purchased from VWR International Ltd. (Le Périgares-Bâtiment, France). Standards of polyphenolic compounds, including caffeic acid, myricetin, (+)-catechin, p-coumaric acid (PCA), (-)-epicatechin, ferulic acid, and chlorogenic acid (CLA), were obtained from Tokyo Chemical Industry Co., Ltd (Kita-Ku, Tokyo, Japan). Analytical standards of other phenolics (gallic acid, quercetin, rosmarinic acid, rutin (RUT), apigenin, and kaempferol were obtained from Sigma-Aldrich (St. Louis, MO, USA). The Folin–Ciocalteu reagent and ascorbic acid were acquired from Sigma-Aldrich (St. Louis, MO, USA), while deionized water was obtained from the Purelab Flex purification system (Veolia Ltd., High Wycombe, UK).

#### 2.3 Preparation of extracts

The powdered plant materials of the three species were utilized to create two types of extracts: hydro-methanolic

extract (HME) and hydro-acetonic extract (HAE). To obtain the HME, 50 g of dried plant samples were mixed with 800 mL of methanol and 200 mL of distilled water. For the HAE, 700 mL of acetone and 300 mL of distilled water were combined with the powdered plant materials. A consistent extraction ratio of 1:20 (plant material to solvent) was maintained for all samples, informed by prior studies that have validated its efficacy in extracting phenolic, flavonoid, and other phytochemical compounds from plants [1,12]. The extracts were filtered after undergoing a 72-h maceration process. Previous studies indicate that this timeframe is effective for extracting phenolic and other phytochemical compounds from plant materials [19-21]. After the extraction, the samples were filtered through Whatman No. 1 filter paper (Whatman TM 1001-150, Merck KGaA, Darmstadt, Germany). The extracts were then dried using a rotary evaporator (BUCHI Labortechnik AG, Flawil, Switzerland) set at 45 rpm and 40°C to obtain a dry HME and HAE extracts. To prevent light effects, the dried extracts were stored in amber glass bottles and then kept in a dried and cooled place in the refrigerator. This dried extract was subsequently used directly for the analysis of phytochemical content and evaluation of antioxidant capacity. The percentage extraction yield was calculated based on the weight of the powdered plant material used, as specified in the formula:

Extraction yeield (%) = 
$$\frac{EQ}{PQ} \times 100$$
,

where EQ represents the weight of the extract and PQ represents the weight of the powdered plant.

#### 2.4 TPC

The TPCs of the extracts (HEE and HAE) were assessed using the Folin-Ciocalteu reagent, following a method described in the study by Algahtani et al. [22] with slight modifications. For the experiment, each plant sample (0.5 mL containing 1 mg of dry extract) was mixed with 125 µL of 1 N Folin-Ciocalteu reagent and stirred for 5 min. Subsequently, 375 μL of a 20% (w/v) anhydrous Na<sub>2</sub>CO<sub>3</sub> solution was added. The mixture was then incubated at room temperature for 30 min, followed by measuring the absorbance at 765 nm using a UV-1650pc UV-VIS spectrophotometer from Shimadzu Corporation (Nishinokyo Kuwabara-cho, Kyoto, Japan). A gallic acid standard curve (5–500 µg/mL in ethanol) was used to calculate the TPC. The regression equation obtained was y = 12.624x-1.0824 ( $R^2 = 0.9962$ ), and the outcomes are presented in milligrams of gallic acid equivalent per 10 g of dry extract (mg GAE/10 g DW).

#### 2.5 TFC

The flavonoid content in the extracts (HME and HAE) from each species was assessed using the aluminum trichloride colorimetric assay. In summary, each extract (1 mL) was diluted with 5 mL of distilled water. To this solution, 0.3 mL of 5% NaNO2 was added, followed by 0.3 mL of 10% AlCl3 after 5 min of incubation at room temperature. Subsequently, 2 mL of 1 M NaOH was added, and the total volume was adjusted to 10 mL with distilled water. After preparation, the mixture underwent incubation in a shaded area at room temperature for a duration of 30 min. Following this incubation period, the absorbance of the solution was measured at a wavelength of 510 nm using a UV-visible spectrophotometer. Flavonoid levels were determined by assessing various quercetin concentrations, resulting in a regression equation of y = 6.425x + $0.4125 (R^2 = 0.9931)$ . The flavonoid content was expressed as milligrams of quercetin equivalents per 10 g of dry extract (mg QE/10 g DW) [23].

#### 2.6 Determination of polyphenolic compounds using HPLC

To effectively identify and quantify the polyphenolic compounds in the extracts of the three species, it was logical to employ a reverse-phase high-performance liquid chromatography (RP-HPLC) system. This choice was made considering the different polarities of the individual compounds. The method utilized a gradient elution system and UV detection at a wavelength of 280 nm, which was optimized due to the UV-absorbent characteristics of the compounds. For the analysis of individual phenolic compounds, an Alliance chromatographic system from Waters Instruments, Inc. equipped with a quaternary pump and dual wavelength absorbance detectors was used. Reverse phase analyses were conducted using a Pinnacle™ II C18 column (4.6 mm × 250 mm, 5 µm particle size). Throughout the experiment, the column temperature was held at 24°C. The mobile phase consisted of two solutions: solution A, composed of 1% acetic acid in deionized water, and solution B, consisting of a 75:25 ratio of methanol to acetonitrile. A gradient flow rate of 0.8 mL/min was achieved by following the profile set as described in Table 1. The HPLC analysis was based on the following 12 standard polyphenolic compounds: CLA, (+)-catechin, caffeic acid, PCA, (-)-epicatechin, ferulic acid, RUT, rosmarinic acid, myricetin, quercetin, apigenin, and kaempferol. To create a calibration curve, a methanol solution containing a standard stock solution (500 µg/mL) was prepared for each standard compound. The calibration concentrations were then generated using this stock solution. Prior to HPLC analysis,

4 — Rashed N. Herqash et al. DE GRUYTER

**Table 1:** RP-HPLC gradient conditions for polyphenolic compounds analysis of *Solanum* species

| Time (min) | Solution A (%) | Solution B (%) |
|------------|----------------|----------------|
| 0.00       | 90             | 10             |
| 9.00       | 75             | 25             |
| 43.00      | 49             | 51             |
| 53.00      | 5              | 95             |
| 61.00      | 5              | 95             |
| 68.00      | 90             | 10             |
|            |                |                |

solutions of each extract (10 mg/mL) were prepared in methanol. To ensure purity, all solutions, including mixed standards and samples, were filtered through a 0.20  $\mu m$  membrane filter from Millipore using an injection volume of 20  $\mu L$  for each sample. Data acquisition, peak integration, and calibrations were performed using Empower 3 software. The identification of the compounds was achieved by comparing their retention times (RT) to those of authentic reference standards [24].

#### 2.7 Phytochemical analysis using GC-MS

A PerkinElmer Clarus GC System, manufactured by PerkinElmer, Inc. in Waltham, MA, USA, was utilized to perform the GC-MS analysis of HME from the three Solanum species. The temperature program followed a specific protocol that had been previously described [25]. The initial program began at 40°C and stayed constant for 2 min. It was then slowly raised to 200°C. increasing by 5°C per minute, and maintained for another 2 min. Afterward, the temperature was incrementally increased from 200 to 300°C, progressing at a rate of 5°C per minute, and then maintained at 300°C for an additional 2 min. The flow rate was set at 1 mL/min, with helium as the carrier gas. The sample injection volume was 1 µL, split ratio at 20:1, linear velocity at 38.032 cm/s, and pressure at 8.1322 psi. To determine the constituents of the HME, the obtained mass spectra were cross-referenced with spectral libraries such as the National Institute of Standards and Technology and WILEY. Additionally, comparisons were made with similar compounds identified in the Adams Library [26] and the Wiley GC/MS Library [27].

#### 2.8 Antioxidant activity assay

#### 2.8.1 Determination of DPPH radical scavenging activity

The DPPH free radical scavenging activity of each sample was assessed using a spectrophotometric method, following

the method described by Chebbac et al. [28] with minor modifications. To summarize, a 0.2 mM solution of DPPH was prepared in methanol. The baseline absorbance of the DPPH solution, prepared in methanol, was recorded at 515 nm using a UV-visible spectrophotometer and remained consistent throughout the experiment. Different concentrations of each plant sample (100 µL) prepared with methanol (ranging from 1,000 to 20 µg/mL), as well as various concentrations of ascorbic acid (used as a positive control), were mixed with 100 µL of the DPPH solution for analysis. Following 30 min of incubation in darkness, the variation in absorbance at 515 nm was quantified using the BioTek ELX800 Absorbance Microplate Reader (Winooski, VT, USA). The findings are expressed as the percentage of inhibition, which indicates the anti-free radical effect of the samples using the following equation:

% of radical scavenging activity = 
$$\frac{Abc - Abs}{Abc} \times 100$$
,

where Abc represents the absorbance of the DPPH solution in methanol and Abs represents the total absorbance of both DPPH and samples.

#### 2.8.2 ABTS radical scavenging activity

The evaluation of the ABTS radical scavenging capacity of plant extracts was conducted employing a spectrophotometric method, following the procedure outlined by Alam et al. [29]. Initially, ABTS (2,2'-azino-bis-3-ethylbenzothiazo-line-6-sulfonic acid) aqueous solutions (7 mM) and potassium persulfate (2.45 mM) were combined in equal proportions and incubated for 0.5 h. The mixture was then kept in the freezer for 24 h and later diluted with ethanol. Following this, various volumes of the ABTS solution (50  $\mu$ L each) were combined with the plant samples and allowed to incubate in darkness for 1 h. The decrease in ABTS absorbance was measured at a wavelength of 734 nm ( $\lambda_{\rm max}$ ) using BioTek ELX800 Absorbance Microplate Reader, and the antioxidant activity of the plant extracts was determined using the formula below [30]:

% of radical scavenging activity
$$= \frac{\text{Abs control - Abs sample}}{\text{Abs control}} \times 100.$$

#### 2.9 Molecular docking

All molecular dockings between the most abundant phytochemicals and Cyt-c were conducted using PyRx software with AutoDock VINA, following the methodology described

by Al-Shabib et al. [31]. The initial step involved downloading the 2D structures of the compounds from PubChem, which were subsequently imported into PyRx. Subsequently, the compounds underwent energy minimization employing the universal forcefield and were converted to pdbqt format with Open Babel. The 3D coordinates of Cyt-c protein (PDB ID: 4A71) were obtained from the RCSB website (www.rcsb.org) and prepared by adding missing hydrogen atoms while removing non-essential foreign and water molecules. The energy of the entire system was minimized using the CHARMM36 force field. The dimensions of the grid box for Cyt-c were set at  $(52.14 \times 48.00 \times 62.11)$  Å<sup>3</sup>, positioned at  $(-11.2 \times 5.21 \times -5.12)$  Å<sup>3</sup> with 0.375 Å spacing. Molecular docking utilized the Lamarckian Genetic Algorithm (LGA) in conjunction with Solis and Wets local search methods [32]. The compounds were given random orientations, starting positions, and torsional angles. Each docking run included up to  $2.5 \times 106$  energy calculations, with each one evaluating the interaction energy between the ligand and the protein. Various factors were considered in the evaluation, including van der Waals forces, electrostatic interactions, and hydrogen bonding. Docking parameters specified a population size of 150, which determined the number of individual ligand conformations generated and assessed. The translational step, set at 0.2 Å, allowed for precise exploration of translational space, enhancing the identification of potential binding sites. Additionally, a torsion step parameter of 5 was employed, broadening the exploration of torsional angles and increasing ligand flexibility. Quaternions were utilized to efficiently describe molecular rotations, with a higher number (5) facilitating a more comprehensive search of ligand orientations during rotation.

The results obtained were analyzed, and final figures were created using Discovery Studio (Accelrys). The dissociation constant of phytochemicals  $(K_d)$  for Cyt-c was determined from the docking energy ( $\Delta G$ ) using the equation [32]:

$$\Delta G = -RT \ln K_{\rm d}$$

where R represents the universal gas constant and T represents the temperature.

#### 2.10 ADMET analysis

The investigation aimed to explore descriptors characterizing the absorption, distribution, metabolism, excretion, and toxicity profiles of prevalent phytochemicals. This analysis utilized the ADMETlab 3.0 web server [33]. Molecular properties were derived from the chemical structures of the analyzed compounds, represented by SMILES definitions retrieved from the PubChem database [34]. The methodology for interpretation and the definitions of individual descriptors obtained during the analysis are detailed in the "Results" and "Discussion" sections.

#### 2.11 Statistical analysis

All experiments were conducted in triplicate unless otherwise specified. The data is presented as the mean ± standard deviation. An analysis of variance was performed to assess the significance of differences between variables, followed by a Tukey test for multiple comparisons. Statistically significant differences were identified using a p-value threshold of less than 0.05.

#### 3 Results

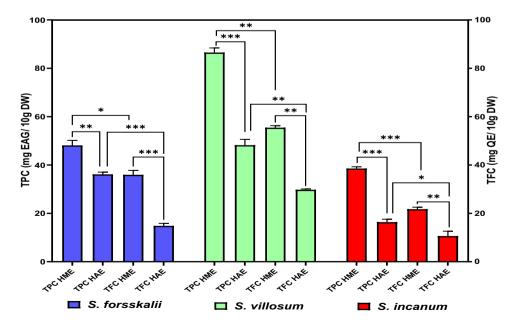
#### 3.1 Yield of extracts

The extraction yields from maceration of the aerial parts of three Solanum species were evaluated. Among the species studied, SF demonstrated the highest yields for both HME at 15.41% and HAE at 13.76%. In contrast, SV and SI exhibited lower yields, with SV showing the lowest overall extraction yields (HME: 10.28%, HAE: 9.15%), while SI had extraction yields of HME: 11.47% and HAE: 12.92%. These results demonstrate that the extraction yields varied among the different species and between the HME and HAE. These variations likely stem from a complex interplay of factors specific to each species, one key factor is the inherent differences in secondary metabolite profiles. Each species possesses a unique set of bioactive compounds, and the abundance of these target molecules can significantly impact the final yield. Additionally, cell wall composition plays a crucial role. Species with more robust cell walls might necessitate harsher extraction conditions or alternative techniques (e.g., sonication) to achieve optimal yields [35]. Beyond these species-specific characteristics, the choice of solvent significantly influences the extraction yields. Both methanol and acetone are polar solvents, with methanol being more polar than acetone. The polarity of the solvent significantly influences the types and quantity of compounds extracted. Studies have shown that highly polar solvents, such as methanol, result in higher extract yields [36,37]. This may explain the observed higher yields with hydroalcoholic mixtures (HME) in most cases. Furthermore, it is important to

Table 2: TPC and TFC of HME and HAE of SF, SV, and SI

| Extracts | TPC (  | mg GAE/1 | 0 g DW) | TFC (mg QE/10 g DW) |        |        |  |  |  |
|----------|--------|----------|---------|---------------------|--------|--------|--|--|--|
|          | SF     | sv       | SI      | SF                  | SV     | SI     |  |  |  |
| НМЕ      | 48.11  | 86.52    | 38.56   | 35.95               | 55.46  | 21.73  |  |  |  |
|          | ± 1.3  | ± 1.9    | ± 0.61  | ± 0.91              | ± 1.4  | ± 0.12 |  |  |  |
| HAE      | 36.14  | 48.21    | 16.29   | 14.35               | 29.87  | 10.62  |  |  |  |
|          | ± 0.83 | ± 1.3    | ± 0.53  | ± 0.28              | ± 0.72 | ± 0.23 |  |  |  |

Values are expressed as mean  $\pm$  SD of three parallel measurements.


note that several factors can impact the extraction yield, including the duration of maceration, the particle size of the material, the solvent combination employed and its polarity, the solvent volume to sample mass ratio, temperature of extraction, timing of harvest, drying process, and the specific plant part being used [38–40]. Understanding the interplay between these factors is crucial for optimizing extraction protocols. Future research could investigate how different extraction conditions influence the yield of the extracts.

#### 3.2 Quantification of TPC and TFC

Table 2 presents the experimental results obtained for the TPC and TFC of various *Solanum* species extracts using different extraction solvents and a graphic comparison representations are presented in Figure 1. The results

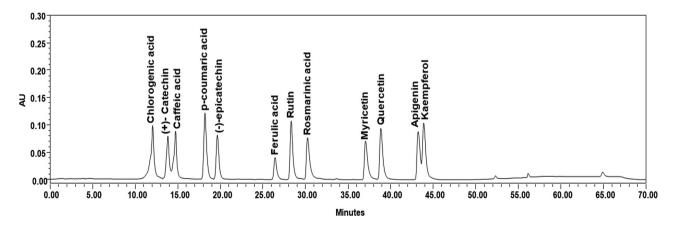
clearly indicate that SV has higher phenolic and flavonoid contents compared to the other two species. When extracted using HME, the phenolic contents of SF, SV, and SI were found to be  $48.11 \pm 1.3$ ,  $86.52 \pm 1.9$ , and  $38.56 \pm 0.61\,\mathrm{mg}$  GAE/10 g DW, respectively. However, when extracted using hydro-acetone (HAE), the phenolic contents were lower at  $36.14 \pm 0.83$ ,  $48.21 \pm 1.3$ , and  $16.29 \pm 0.53\,\mathrm{mg}$  GAE/10 g DW, respectively. Flavonoids followed a similar pattern, with higher concentrations in the HME (ranging from  $21.73 \pm 0.12$  to  $55.46 \pm 1.4\,\mathrm{mg}$  QE/10 g DW) compared to the HAE (ranging from  $10.62 \pm 0.23$  to  $29.87 \pm 0.72$  QE/10 g DW). It is worth noting that the HME showed a remarkably high phenolic content, surpassing 60% of the TPC and TFC extracted from both solvents.

The selection of solvents utilized in the extraction process plays a crucial role in determining the TPC and TFC of plant extracts. An effective solvent is characterized by its ability to achieve optimal extraction efficiency while preserving the chemical stability of the target compounds [41]. Polyphenols exhibit a range of polarities, with optimal extraction typically achieved using polar solvents that facilitate efficient solvation through interactions such as hydrogen bonding with the polar sites of these compounds. Polar solvents like hydro-methanol are known for their effectiveness in extracting phenolic compounds, flavonoids, and other bioactive molecules due to their superior solvation capacity for polar molecules than less polar solvents like hydro-acetone, leading to lower TPC and TFC in the resulting extracts [42]. This observation offers a possible



**Figure 1:** Comparative data of the TPC and TFC obtained from HME and HAE) of SF, SV, and SI. Results are expressed as mean  $\pm$  SD of three parallel measurements (n = 3). The presence of asterisks signifies the application of statistical tests for multiple reciprocal comparisons among the extracts, with significance levels indicated as follows: \*p < 0.05, \*\*p < 0.01, \*\*\*p < 0.001.

| Analyte         | Rt (min) | Calibration equations  | R <sup>2</sup> | LOD (µg/mL) | LOQ (µg/mL) | %RSD (n = 5) |
|-----------------|----------|------------------------|----------------|-------------|-------------|--------------|
| CLA             | 12.01    | y = 4.352x + 1.752     | 0.9982         | 0.42        | 0.82        | 0.31         |
| (+)-Catechin    | 13.83    | y = 9.143x - 6.768     | 0.9997         | 0.11        | 0.34        | 0.56         |
| Caffeic acid    | 14.73    | y = 11.681x - 3.924    | 0.9981         | 0.26        | 0.65        | 0.19         |
| PCA             | 18.19    | y = 2.842x + 5.811     | 0.9994         | 0.15        | 0.57        | 0.84         |
| (–)-Epicatechin | 19.64    | y = 27.216 + 4.661     | 0.9990         | 0.12        | 0.38        | 0.91         |
| Ferulic acid    | 26.42    | y = y = 8.021x + 0.739 | 0.9996         | 0.10        | 0.26        | 0.47         |
| RUT             | 28.54    | y = 13.543x + 4.022    | 0.9983         | 0.13        | 0.44        | 0.21         |
| Rosmarinic acid | 30.13    | y = 4.152x - 8.631     | 0.9997         | 0.09        | 0.26        | 0.70         |
| Myricetin       | 37.16    | y = 12.534x - 0.738    | 0.9986         | 0.43        | 1.35        | 0.41         |
| Quercetin       | 38.92    | y = 14.991x - 9.483    | 0.9991         | 0.14        | 0.39        | 0.95         |
| Apigenin        | 43.24    | y = 13.648x + 5.035    | 0.9989         | 0.11        | 0.35        | 0.27         |
| Kaempferol      | 43.89    | y = 9.351x - 8.246     | 0.9995         | 0.08        | 0.21        | 0.68         |


Table 3: Calibration curves, LOD, and LOQ for the determination of polyphenolic compounds by RP-HPLC

explanation for the higher levels of TPC and TFC in HME compared to HAE, as indicated in our study findings. It is noteworthy that other studies have reported a higher recovery of polyphenolic compounds when utilizing HAE solvent [43]. Therefore, our study was designed to compare the total phenolic outcomes obtained using both hydromethanol and HAE solvents, considering various factors such as secondary metabolite profiles rather than focusing solely on solvent polarity.

# 3.3 Identification and quantification of polyphenolic compound using HPLC analysis

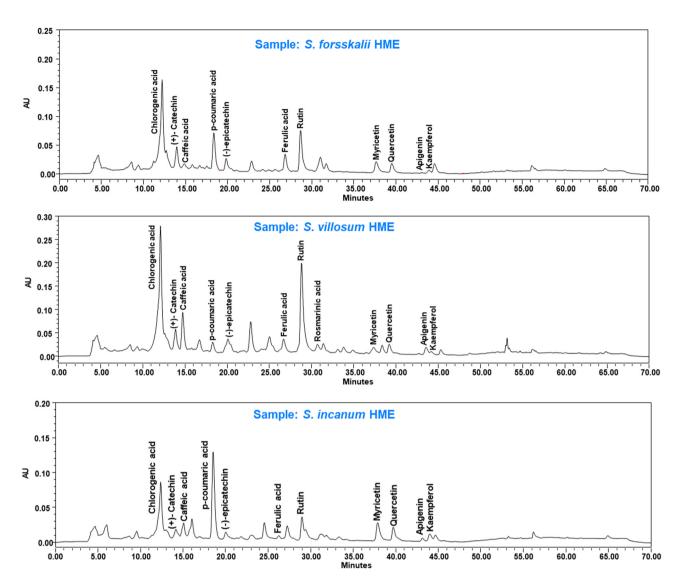
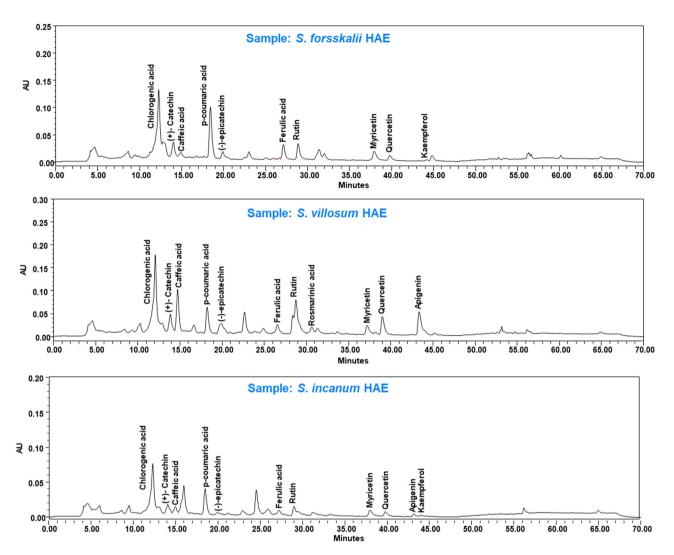

Polyphenolic compounds were analyzed and quantified using RP-HPLC in this study. By establishing external calibration curves and plotting peak area against concentrations ranging from 0.2 to 100  $\mu$ g/mL, we were able to successfully quantify twelve phenolic compounds. These compounds included CLA, (+)-catechin, caffeic acid, PCA, (-)-epicatechin, ferulic acid, RUT, rosmarinic acid, myricetin, quercetin, apigenin, and kaempferol. The correlation coefficients obtained for all cases were higher than 0.9981. Table 3 provides additional information on the determination of these compounds, including detection limits (LOD), quantification limits (LOQ), and RT. The sequence in which substances elute from the chromatographic column is determined by both the hydrophobic characteristics of the packing material and gradual rise in methanol and acetonitrile (solvent B) within the mobile phase. Figure 2 and Table 3 present the chromatogram and data, respectively, illustrating the sequence in which the target compounds were eluted.

Figure 3 displays the chromatographic separations of polyphenols from various *Solanum* species extracts using hydro-methanol as the extraction solvent (HME). On the other hand, Figure 4 illustrates the chromatographic



**Figure 2:** RP-HPLC chromatogram of a mixture of 12 polyphenolic compounds using a Pinnacle™ II C18 column. Mobile phase: (a): 1% (v/v) acetic acid, (b) methanol and acetonitrile (75:25) (v/v) in gradient system. Flow rate: 1.0 mL/min. Absorbance measured at 280 nm, 25°C.


8 — Rashed N. Hergash *et al.* DE GRUYTER



**Figure 3:** RP-HPLC chromatograms of the polyphenolic compound profiles from three *Solanum* species extracts (SF, SV, and SI) using hydro-methanol as the extraction solvent (HME).

separations using hydro-acetone as the extraction solvent (HAE). The results clearly demonstrate variations in the individual polyphenolic compounds among the three tested species, which are also influenced by the extraction solvent used. Notably, in the case of HME, SV showed the presence of all twelve phenolic compounds, while SF and SI only lacked rosmarinic acid. In the case of HAE, the abundance of phenolic compounds was lower compared to HME in all three species. Specifically, SF lacked rosmarinic acid and apigenin, SI lacked rosmarinic acid, and SV only had kaempferol undetected. Through a comparative analysis of the chromatograms, it was observed that the extracts derived from SV displayed a notably richer content of phenolic acids, specifically CLA, along with a diverse range of individual flavonoid compounds.

The experimental results for quantifying the content of individual polyphenolic compounds from the extracts (HME and HAE) of three *Solanum* species are presented in Table 4. The results clearly show that the levels of most polyphenolic compounds were higher in HME compared to HAE. Additionally, all the extracts contained a significant amount of CLA, ranging from 8.17 mg/10 g in SI to a much higher concentration in SV (42.16 mg/10 g). In the extracts of SF, SV, and SI, RUT was identified as the primary flavonoid, with concentrations of 10.77, 29.13, and 6.85 mg/10 g, respectively. Furthermore, significant levels of PCA were detected, with concentrations of 10.28, 11.49, and 19.73 mg/10 g, respectively. Notably, PCA was identified as the most predominant compound in SI. The content of other phenolic acids, such as ferulic acid, caffeic acid, and rosmarinic acid, showed



**Figure 4:** RP-HPLC chromatograms of the polyphenolic compound profiles from three *Solanum* species extracts (SF, SV, and SI) using hydro-acetone as the extraction solvent (HAE).

Table 4: HPLC determination of polyphenolic compounds in SF, SV, and SI extracts in mg/10 g, expressed by dry weigh

| Polyphenolic compound |              | НМЕ             |              | HAE          |                 |             |  |  |  |
|-----------------------|--------------|-----------------|--------------|--------------|-----------------|-------------|--|--|--|
|                       | SF           | SV              | SI           | SF           | SV              | SI          |  |  |  |
| CLA                   | 24.76 ± 0.18 | 42.16 ± 0.59    | 10.41 ± 0.37 | 21.29 ± 0.68 | 26.82 ± 0.41    | 8.17 ± 0.33 |  |  |  |
| (+)- Catechin         | 5.64 ± 0.22  | $7.33 \pm 0.62$ | 3.55 ± 0.53  | 4.71 ± 0.89  | 6.91 ± 0.57     | 2.08 ± 0.92 |  |  |  |
| Caffeic acid          | 2.19 ± 0.15  | 10.92 ± 0.21    | 5.42 ± 0.39  | 1.86 ± 0.13  | 2.91 ± 0.25     | 1.39 ± 0.19 |  |  |  |
| PCA                   | 8.05 ± 0.52  | 5.27 ± 0.36     | 19.73 ± 0.14 | 10.28 ± 0.28 | 11.49 ± 0.46    | 4.78 ± 0.30 |  |  |  |
| (–)Epicatechin        | 2.55 ± 0.09  | $6.02 \pm 0.14$ | 1.31 ± 0.07  | 1.63 ± 0.12  | 4.05 ± 0.23     | 0.77 ± 0.14 |  |  |  |
| Ferulic acid          | 5.48 ± 0.81  | 4.73 ± 0.75     | 0.64 ± 0.56  | 2.71 ± 0.74  | $3.86 \pm 0.42$ | 0.81 ± 0.37 |  |  |  |
| RUT                   | 10.77 ± 0.34 | 29.13 ± 0.47    | 6.85 ± 0.61  | 4.39 ± 0.19  | 7.53 ± 0.23     | 2.19 ± 0.36 |  |  |  |
| Rosmarinic acid       | ND           | 3.65 ± 0.12     | ND           | ND           | 2.92 ± 0.17     | ND          |  |  |  |
| Myricetin             | 3.53 ± 0.31  | 5.77 ± 0.49     | 4.31 ± 0.23  | 2.62 ± 0.17  | 2.46 ± 0.41     | 1.42 ± 0.29 |  |  |  |
| Quercetin             | 2.08 ± 0.18  | 4.11 ± 0.22     | 3.92 ± 0.37  | 0.92 ± 0.14  | 5.81 ± 0.29     | 1.25 ± 0.13 |  |  |  |
| Apigenin              | 0.34 ± 0.12  | $2.32 \pm 0.09$ | 0.71 ± 0.16  | ND           | 4.22 ± 0.31     | 0.94 ± 0.22 |  |  |  |
| Kaempferol            | 0.87 ± 0.43  | 0.91 ± 0.36     | 1.08 ± 0.22  | 0.29 ± 0.35  | ND              | 0.41 ± 0.26 |  |  |  |

Values are expressed as mean  $\pm$  SD (n = 5). \*ND – not determined; HME – hydro-methanolic extract; HAE – hydro-acetonic extract.

significant variation depending on the species and extracting solvent. Notably, rosmarinic acid was only detected in SV, with concentrations of 3.65 mg/10 g in HME and 2.92 mg/10 g in HAE. Significant levels of other important flavonoid compounds, including (+)-catechin, (-)-epicatechin, myricetin, and quercetin, were detected among the extracts of the three species. However, apigenin and kaempferol exhibited the lowest contents.

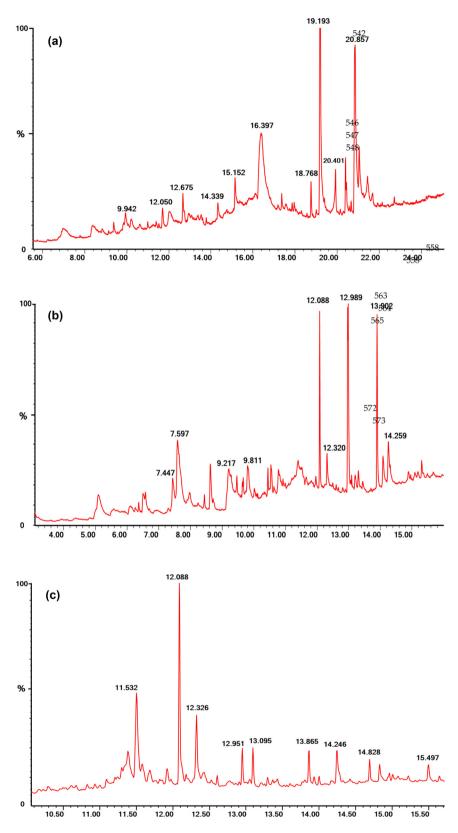
#### 3.4 Phytochemical analysis by GC/MS

To determine the chemical composition of the three *Solanum* species, a comparative analysis was conducted using GC–MS. The HME was selected for its demonstrated efficiency in extracting phytochemical compounds.

The chemical content of the extracts was profiled using the HP Innowax column, and the identified compounds were characterized based on their RT, molecular formula, molecular weight (MW), and peak area percentages. The analysis includes three replicates for each sample, and the results presented are the mean values from these replicates. These percentages were used as an indicator of the relative concentration of each compound. Table 5 and Figure 5 present the data and chromatograms, respectively, showcasing the major compounds found in each species. In the SF extract, the most abundant compounds were 2,4dimethyl-1-decene (28.54%), palmitic acid (24.65%), and linoleic acid (LNA) (19.71%). For SV, the predominant compounds were (E)-cinnamaldehyde (CMA) (19.31%), cis-13octadecenoic acid methyl ester (OAM) (20.37%), methyl palmitate (MEP) (9.81%), and (-)-eburenine (EBU) (12.16%). The major compounds identified in the SI extract were MEP (28.25%), palmitic acid (14.11%), and oleic acid amide (OAA) (8.28%). The presence of diverse bioactive compounds, as revealed by GC-MS analysis, provides support for the traditional medicinal applications of these plants. However, further scientific investigation is required to isolate and study the individual phytoactive compounds in greater detail.

### 3.5 DPPH and ABTS radical scavenging effects

Plant extracts have been evaluated for their ability to scavenge free radicals using different methods [44,45]. In this study, the antioxidant activity of the HME and HAE from three *Solanum* species was assessed using two methods: the DPPH and ABTS radical scavenging assays (as presented in Table 6). The DPPH assay measures the ability


of antioxidants in the samples to reduce the DPPH radical through electron transfers, with the absorption at 517 nm being used as a measurement. Conversely, the ABTS assay assesses the antioxidant capacity to reduce the ABTS radical through electron and/or hydrogen atom transfer, with absorption measured at 734 nm. A lower value for the 50% effective concentration (IC<sub>50</sub>) typically indicates a more potent radical agent [46]. The results obtained from these methods, illustrated in Figures 6 and 7, clearly demonstrate that the antioxidant activity of the crude extracts is dosedependent. Furthermore, the results summarized in Table 6 provide valuable insights into the order of radical scavenging potency among the different extracts. It is noteworthy that the HME exhibited superior antioxidant capacity compared to the HAE in all three Solanum species. Specifically, the DPPH and ABTS scavenging activities of the HME from SF were measured and the  $IC_{50}$  values were 51.24  $\pm$  1.65 and  $35.74 \pm 0.84 \,\mu g/mL$ , respectively. Similarly, the HME from SV exhibited IC<sub>50</sub> values of 40.81  $\pm$  1.86 and 44.16  $\pm$  0.61  $\mu$ g/mL for DPPH and ABTS scavenging activities, respectively. Likewise, the HME from SI demonstrated IC<sub>50</sub> values of 78.24  $\pm$ 2.03 and 58.07  $\pm$  1.57  $\mu$ g/mL for DPPH and ABTS scavenging activities, respectively. It is important to mention that the fruit extracts have been classified into three groups based on their DPPH/IC<sub>50</sub> values: those with significant antioxidant properties (DPPH/IC<sub>50</sub>  $\leq$  100  $\mu$ g/mL), those with moderate antioxidant properties (100  $\mu$ g/mL < DPPH/IC50  $\leq$  316  $\mu$ g/mL), and those with weak antioxidant properties (DPPH/IC<sub>50</sub> > 316 µg/mL) [47]. Therefore, the results obtained clearly demonstrate the significant antioxidant capacity of the extracts from the three plants, especially when compared to the tested synthetic antioxidant ascorbic acid, which exhibited IC50 values of  $20.04 \pm 0.43 \,\mu\text{g/mL}$ . These findings correspond closely with the polyphenol content observed in all the extracts, with the HME consistently displaying higher levels compared to the HAE. Therefore, it can be inferred that these chemical compounds contribute to the observed antioxidant capacity observed in the DPPH and ABTS tests. This relationship has been previously established and reported by other researchers utilizing similar testing techniques [48-53].

## 3.6 Correlation between phenolic content and antioxidant activity

The antioxidant activity observed in plant samples can be attributed to the presence of certain components, particularly compounds of phenolic nature. To assess the correlation between the TPC and TFC with antioxidant radical activity, we utilized the Pearson correlation coefficient (PCC), also known as Pearson's r. Figure 8 displays the

 Table 5: GC-MS analysis of phytoconstituents identified in HME from the three Solanum species

| Solanum species | Name of compound                                            | Chemical formula                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | MW (g/mol) | RT (min)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | % area        |
|-----------------|-------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------|
| SF              | <i>para</i> -vinylguaiacol                                  | C <sub>9</sub> H <sub>10</sub> O <sub>2</sub>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 150.07     | 12.050                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 3.66          |
|                 | 1-Tridecene                                                 | C <sub>13</sub> H <sub>26</sub>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 182.20     | 12.675                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 2.85          |
|                 | phenol-2,4-bis (1,1-dimethylethyl)                          | C <sub>17</sub> H <sub>30</sub> O                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 206.17     | 14.339                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 2.00          |
|                 | 8-Methyl-6-nonenoic acid                                    | $C_{10}H_{18}O_2$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 170.13     | 14.771                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 1.57          |
|                 | 2-Tetradecene                                               | C <sub>9</sub> H <sub>10</sub> O <sub>2</sub> 150.07 12.050 3 C <sub>13</sub> H <sub>26</sub> 182.20 12.675 2 C <sub>17</sub> H <sub>30</sub> O 206.17 14.339 2 C <sub>10</sub> H <sub>18</sub> O <sub>2</sub> 170.13 14.771 1. C <sub>14</sub> H <sub>28</sub> 196.22 15.152 2 C <sub>12</sub> H <sub>24</sub> 168.19 16.397 2 C <sub>17</sub> H <sub>34</sub> O <sub>2</sub> 270.45 18.768 2 C <sub>16</sub> H <sub>32</sub> O <sub>2</sub> 256.42 19.193 2 C <sub>19</sub> H <sub>34</sub> O <sub>2</sub> 294.47 20.401 4 C <sub>18</sub> H <sub>32</sub> O <sub>2</sub> 280.44 20.857 11 C <sub>18</sub> H <sub>36</sub> O <sub>2</sub> 284.47 21.051 3 C <sub>18</sub> H <sub>36</sub> O <sub>2</sub> 284.47 21.051 3 C <sub>18</sub> H <sub>36</sub> O <sub>2</sub> 152.08 7.447 4 C <sub>9</sub> H <sub>12</sub> O <sub>2</sub> 152.08 7.447 4 C <sub>9</sub> H <sub>12</sub> O <sub>2</sub> 152.08 7.447 4 C <sub>9</sub> H <sub>8</sub> O 132.06 8.248 0 C <sub>15</sub> H <sub>24</sub> 204.19 8.448 0 C <sub>15</sub> H <sub>24</sub> 204.19 8.448 0 C <sub>9</sub> H <sub>6</sub> O <sub>2</sub> 146.04 9.217 4 C <sub>9</sub> H <sub>6</sub> O <sub>2</sub> 146.04 9.217 4 C <sub>16</sub> H <sub>10</sub> O <sub>2</sub> 162.07 9.811 5 C <sub>9</sub> H <sub>8</sub> O 108.06 10.456 1. C <sub>17</sub> H <sub>34</sub> O <sub>2</sub> 270.26 12.088 9 C <sub>15</sub> H <sub>24</sub> 204.19 10.55 2 C <sub>16</sub> H <sub>32</sub> O <sub>2</sub> 256.24 12.32 C <sub>16</sub> H <sub>32</sub> O <sub>2</sub> 270.26 12.088 9 C <sub>15</sub> H <sub>36</sub> O <sub>2</sub> 270.26 12.088 9 C <sub>16</sub> H <sub>30</sub> O <sub>2</sub> 270.26 12.088 9 C <sub>16</sub> H <sub>30</sub> O <sub>2</sub> 270.26 12.088 9 C <sub>16</sub> H <sub>30</sub> O <sub>2</sub> 296.27 12.989 20 C <sub>16</sub> H <sub>30</sub> O <sub>2</sub> 296.27 12.989 20 C <sub>16</sub> H <sub>30</sub> O <sub>2</sub> 296.27 12.989 20 C <sub>16</sub> H <sub>30</sub> O <sub>2</sub> 182.17 10.825 1. C <sub>19</sub> H <sub>24</sub> N <sub>2</sub> 280.19 13.902 17 C <sub>18</sub> H <sub>18</sub> N 245.12 13.308 1. C <sub>19</sub> H <sub>24</sub> N <sub>2</sub> 280.19 13.902 17 C <sub>18</sub> H <sub>18</sub> N 245.12 13.308 1. C <sub>19</sub> H <sub>24</sub> N <sub>2</sub> 280.19 13.902 17 C <sub>18</sub> H <sub>18</sub> N 245.12 13.308 1. C <sub>19</sub> H <sub>24</sub> N <sub>2</sub> 280.19 13.902 17 C <sub>18</sub> H <sub>18</sub> N 245.12 13.308 1. C <sub>19</sub> H <sub>24</sub> N <sub>2</sub> 280.19 13.902 17 C <sub>18</sub> H <sub>18</sub> N 245.12 13.308 1. C <sub>19</sub> H <sub>24</sub> N <sub>2</sub> 280.19 13.902 17 C <sub>18</sub> H <sub>18</sub> N 245.12 13.308 1. C <sub>18</sub> H <sub>18</sub> N 245.12 13.308 1. C <sub>19</sub> H <sub>24</sub> N <sub>2</sub> 280.19 13.902 17 C <sub>18</sub> H <sub>18</sub> O <sub>2</sub> 182.13 11.3 1. C <sub>17</sub> H <sub>34</sub> O <sub>2</sub> 270.26 12.088 22 C <sub>18</sub> H <sub>18</sub> N 245.12 11.052 3. C <sub>18</sub> H <sub>19</sub> N 281.27 14.259 3. C <sub>18</sub> H <sub>19</sub> N 281.27 14.259 3. C <sub>18</sub> H <sub>19</sub> O <sub>2</sub> 284.27 12.607 1. C <sub>18</sub> H <sub>36</sub> O <sub>2</sub> 284.27 12.607 1. C <sub>18</sub> H <sub>36</sub> O <sub>2</sub> 284.27 12.607 1. C <sub>18</sub> H <sub>36</sub> O <sub>2</sub> 284.27 12.607 1. C <sub>18</sub> H <sub>36</sub> O <sub>2</sub> 284.27 13.296 1. C <sub>18</sub> H <sub>36</sub> O <sub>2</sub> 284.27 13.296 1. C <sub>18</sub> H <sub>36</sub> O <sub>2</sub> 284.27 13.296 1. C <sub>18</sub> H <sub>36</sub> O <sub>2</sub> 284.27 13.296 1. C <sub>18</sub> H <sub>36</sub> O <sub>2</sub> 284.27 13.296 1. C <sub>18</sub> H <sub>36</sub> O <sub>2</sub> 284.27 13.296 1. C <sub>18</sub> H <sub>36</sub> O <sub>2</sub> 284.27 13.296 1. C <sub>18</sub> H <sub>36</sub> O <sub>2</sub> 284.27 13.296 1. C <sub>18</sub> H <sub>36</sub> O <sub>2</sub> 284.27 13.296 1. C <sub>18</sub> H <sub>36</sub> O <sub>2</sub> 284.27 13.296 1. C <sub>18</sub> H <sub>36</sub> O <sub>2</sub> 284.27 13.296 1. C <sub>18</sub> H <sub>36</sub> O <sub>2</sub> 28 | 2.92       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |               |
|                 | 2,4-Dimethyl-1-decene                                       | C <sub>12</sub> H <sub>24</sub>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 168.19     | 16.397                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 28.54         |
|                 | MEP                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 270.45     | 18.768                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 2.30          |
|                 | Palmitic acid                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 256.42     | 19.193                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 24.65         |
|                 | LNA, methyl ester                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 294.47     | 20.401                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 4.34          |
|                 | LNA                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 280.44     | 20.857                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 19.71         |
|                 | Octadecanoic acid                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 284.47     | 21.051                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 3.28          |
| SV              | 4H-Pyran-4-one, 2,3-dihydro-3,5-dihydroxy-6-methyl-         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 1.82          |
|                 | Benzaldehyde dimethyl acetal                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 4.33          |
|                 | ( <i>E</i> )-CMA                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 19.31         |
|                 | 3-Phenyl-2-propyn-1-ol                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0.63          |
|                 | Copaene                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0.96          |
|                 | Coumarin (2 <i>H</i> -1-benzopyran-2-one                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |            | 12.050 12.675 14.339 14.771 15.152 16.397 18.768 19.193 20.401 20.857 21.051 6.515 7.447 7.597 8.248 8.448 9.217 9.474 9.811 10.024 10.456 10.55 10.787 12.088 12.32 12.989 13.208 13.308 13.902 14.259 10.825 11.094 11.3 11.532 12.088 12.182 12.326 12.432 12.088 12.182 12.326 12.432 12.088 12.182 12.326 12.432 12.088 12.182 12.326 12.432 12.607 12.776 12.951 13.095 13.296 13.865 13.934 14.002 14.165 14.246 14.421 14.828 14.959                                                                            | 4.50          |
|                 | y-Gurjunene                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 1.28          |
|                 | 2-Propenal, 3-(2-methoxyphenyl)-                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 5.44          |
|                 | 6-Methoxycoumaran-7-ol-3-one                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0.94          |
|                 | o-Cresol                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 1.51          |
|                 | (+/–)-gamma-Muurolene                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 2.77          |
|                 | <del>-</del>                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 1.19          |
|                 | Naphthalene, 1,6-dimethyl-4-(1-methylethyl)-<br>MEP         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 9.82          |
|                 |                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |               |
|                 | Palmitic acid                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 3.16<br>20.37 |
|                 | cis-13-Octadecenoic acid, methyl ester                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |               |
|                 | Cyclohexene, 1-pentyl-4-(4-propylcyclohexyl)-               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 1.64          |
|                 | Pyridine, 3-(diphenylmethyl)-                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 1.42          |
|                 | (-)-EBU                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 12.16         |
| -               | OAA                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 3.39          |
| SI              | Cyclohexanepropanol, 2,2-dimethyl-6-methylene-              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 1.05          |
|                 | Acetaldehyde, (3,3-dimethylcyclohexylidene)-, ( <i>E</i> )- |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |            | 12.050 12.675 14.339 14.771 15.152 16.397 18.768 19.193 20.401 20.857 21.051 6.515 7.447 7.597 8.248 8.448 9.217 9.474 9.811 10.024 10.456 10.55 10.787 12.088 12.32 12.989 13.208 13.308 13.308 13.902 14.259 10.825 11.094 11.3 11.532 12.088 12.182 12.326 12.432 12.088 12.326 12.432 12.088 12.321 12.989 13.208 13.308 13.902 14.259 10.825 11.094 11.3 11.532 12.088 12.182 12.326 12.432 12.088 12.182 12.326 12.432 12.607 12.776 12.951 13.095 13.296 13.865 13.934 14.002 14.165 14.246 14.421 14.828 14.959 | 1.93          |
|                 | 5,7-Dimethyloctahydrocoumarin                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 1.07          |
|                 | Bicyclo[5.2.0]non-1-ene                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 3.20          |
|                 | MEP                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 28.25         |
|                 | 7,9-Di-tert-butyl-1-oxaspiro(4,5)deca-6,9-diene-2,8-dione   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 276.17     | 12.182                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 1.78          |
|                 | Palmitic acid                                               | $C_{16}H_{32}O_2$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 256.24     | 12.326                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 14.11         |
|                 | 1,1,10-Trimethyl-trans-decalon                              | C <sub>13</sub> H <sub>22</sub> O                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 2.72          |
|                 | Methyl 14-methylhexadecanoate                               | $C_{18}H_{36}O_2$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 284.27     | 12.607                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 1.37          |
|                 | Caryophyllene oxide                                         | C <sub>15</sub> H <sub>24</sub> O                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 220.18     | 12.776                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 2.11          |
|                 | Heneicosane                                                 | C <sub>21</sub> H <sub>44</sub>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 296.34     | 12.951                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 4.99          |
|                 | Methyl 16-methyl-heptadecanoate                             | $C_{19}H_{38}O_2$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 298.29     | 13.095                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 5.05          |
|                 | Octadecanoic acid                                           | $C_{18}H_{36}O_2$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 284.27     | 13.296                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 1.46          |
|                 | Tricosane                                                   | C <sub>23</sub> H <sub>48</sub>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 324.38     | 13.865                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 5.08          |
|                 | 2,11-Dodecadiene, 4-chloro-                                 | C <sub>12</sub> H <sub>21</sub>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 200.13     | 13.934                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 1.25          |
|                 | Methyl 18-methylnonadecanoate                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |            | 14.002                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 1.35          |
|                 | 2-Butyl-3-methyl-5-(2-methylprop-2-enyl) cyclohexanone      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 222.20     | 14.165                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 1.13          |
|                 | OAA                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 8.28          |
|                 | 2-Dodecenylsuccinic anhydride                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 1.72          |
|                 | Methyl 20-methyl-heneicosanoate                             | C <sub>23</sub> H <sub>46</sub> O <sub>2</sub>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 354.35     | 21.051                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 3.87          |
|                 | Diisooctyl phthalate                                        | C <sub>24</sub> H <sub>38</sub> O <sub>4</sub>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 390.28     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 1.54          |
|                 | beta-Phenylethyl butyrate                                   | C <sub>12</sub> H <sub>16</sub> O <sub>2</sub>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 192.12     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 3.45          |



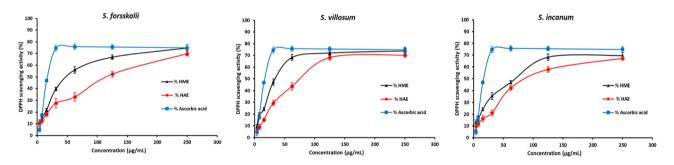
 $\textbf{Figure 5:} \ \, \textbf{GC-MS} \ \, \textbf{chromatograms of crude extracts (HME) from (a) SF, (b) SV, and (c) SI. \\$ 

**Table 6:**  $IC_{50}$  values ( $\mu$ g/mL) of anti-radical activity of HME and HAE of SF, SV, and SI using the DPPH and ABTS methods

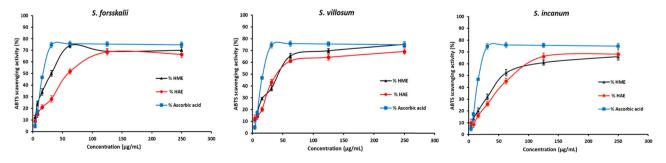
| Species | Crude extract | DPPH          | ABTS         |
|---------|---------------|---------------|--------------|
| SF      | НМЕ           | 51.24 ± 1.65  | 35.74 ± 0.84 |
|         | HAE           | 114.30 ± 2.37 | 60.93 ± 1.73 |
| SV      | HME           | 40.81 ± 1.86  | 44.16 ± 0.61 |
|         | HAE           | 68.12 ± 1.43  | 46.79 ± 1.29 |
| SI      | HME           | 78.24 ± 2.03  | 58.07 ± 1.57 |
|         | HAE           | 98.89 ± 1.52  | 84.94 ± 2.16 |

Values are expressed as mean  $\pm$  SD of three parallel measurements.

scatter plots illustrating the PCC relationship between TPC and TFC with antioxidant radical activity. The correlation analysis performed in this study revealed a strong positive association between antioxidant activity and both the TPC (r = 0.8904-0.8927,  $p \le 0.05$ ) and the flavonoid content (r = 0.6067-0.6538,  $p \le 0.05$ ).


#### 3.7 Analysis of molecular docking

Using the molecular docking approach, the potential antioxidant effect of phytochemicals against Cyt-c was assessed.


The results indicated that all the phytochemicals successfully bound to Cyt-c at various sites, as illustrated in Figure 9. The binding energies of all phytochemicals were determined and are summarized in Table 7. These energies spanned from -4.0 to -8.2 kcal/mol, with the most effective compounds having binding energies of  $\leq$ -6.0 kcal/mol. Specifically, RUT, CLA, EBU, PCA, and (E)-CMA exhibited docking energies of -8.2, -7.7, -7.4, -6.0, and -6.0 kcal/mol, respectively. For comparison, the positive control, ascorbic acid, had a docking energy of -5.5 kcal/mol. The relative binding position of the phytochemicals is represented in Figure 9.

The Cyt-c and ascorbic acid (control) complex exhibited stability through four conventional hydrogen bonds with ARG48:HH21, ALA147:HN, PRO80:O, and SER81:O along with one carbon hydrogen bond with ARG184:O (Figure 10a, and Table 8). Additionally, the complex involved several van der Waals interactions between ascorbic acid and Cyt-c amino acid residues such as HIS52, ALA83, PRO145, ASP146, SER185, TYR187, and HEME moiety. The docking energy of ascorbic acid towards Cyt-c was –5.5 kcal mol<sup>-1</sup>, corresponding to the dissociation was 1.08 × 10<sup>4</sup> M<sup>-1</sup> (Table 8).

The Cyt-c and PCA complex exhibited stability through four conventional hydrogen bonds with ARG31:HE, TYR42:HN, GLY43:HN, and GLU228:OE1 along with one carbon hydrogen bond with GLY41:CA (Figure 10b, and Table 8). PCA also



**Figure 6:** Anti-radical activity of crude extracts from SF, SV, and SI and standard ascorbic acid using the DPPH method. HME = hydro-methanolic extract, HAE = hydro-acetonic extract.



**Figure 7:** Anti-radical activity of crude extracts from SF, SV, and SI and standard ascorbic acid using the ABTS method. HME = hydro-methanolic extract, HAE = hydro-acetonic extract.

14 — Rashed N. Hergash et al. DE GRUYTER

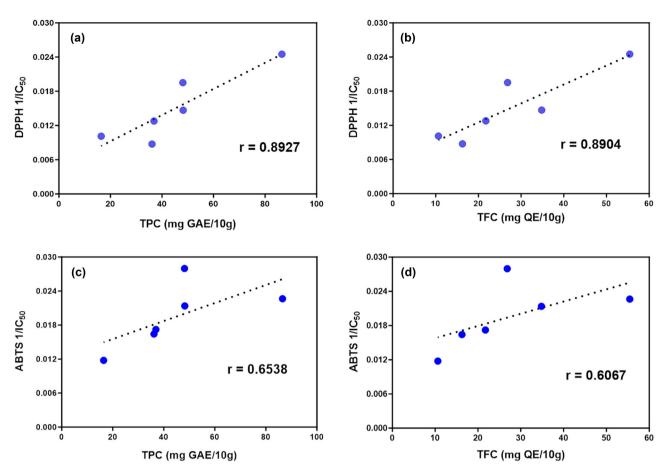



Figure 8: Pearson correlation scatter plot of relationship between (a) TPC and DPPH free radical scavenging activity, (b) TFC and DPPH free radical scavenging activity, (c) TPC and ABTS free radical scavenging activity, and (d) TFC and ABTS free radical scavenging activity.

interacted with Cyt-c through one amide-Pi stacked hydrophobic interaction with LEU30:C,O and ARG31:N, and one Pi-alkyl hydrophobic interaction with ARG31. Additionally, Moreover, it engaged in van der Waals interactions with

specific amino acid residues, including ALA27, ILE40, ASN196, and LEU289. The docking energy and binding affinity of PCA towards Cyt-c were estimated to be  $-6.0 \, \text{kcal mol}^{-1}$  and  $2.52 \times 10^4 \, \text{M}^{-1}$ , respectively (Table 8).

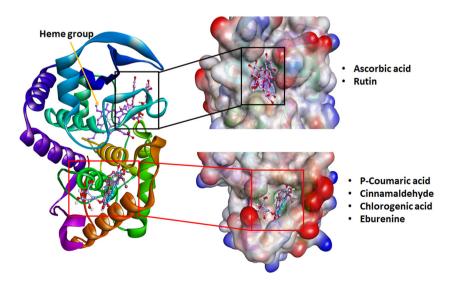



Figure 9: The relative binding position of the phytochemicals bound to different sites on Cyt-c.

**Table 7:** Molecular docking energy between selected phytochemicals and Cyt-c

| S. no. | PubChem ID | Name of compound           | Docking energy<br>(kcal mol <sup>–1</sup> ) |
|--------|------------|----------------------------|---------------------------------------------|
| 1      | 54670067   | Ascorbic acid<br>(control) | -5.2                                        |
| 2      | 521583     | 4-Dimethyl-1-<br>decene    | -4.8                                        |
| 3      | 1794427    | CLA                        | -7.7                                        |
| 4      | 637511     | CMA                        | -6.0                                        |
| 5      | 12541027   | OAM                        | -5.6                                        |
| 6      | 624448     | EBU                        | -7.4                                        |
| 7      | 5280450    | LNA                        | -4.2                                        |
| 8      | 8181       | MEP                        | -4.0                                        |
| 9      | 5283387    | OAA                        | -4.6                                        |
| 10     | 985        | Palmitic acid              | -5.2                                        |
| 11     | 637542     | PCA                        | -6.0                                        |
| 12     | 5280805    | RUT                        | -8.2                                        |
|        |            |                            |                                             |

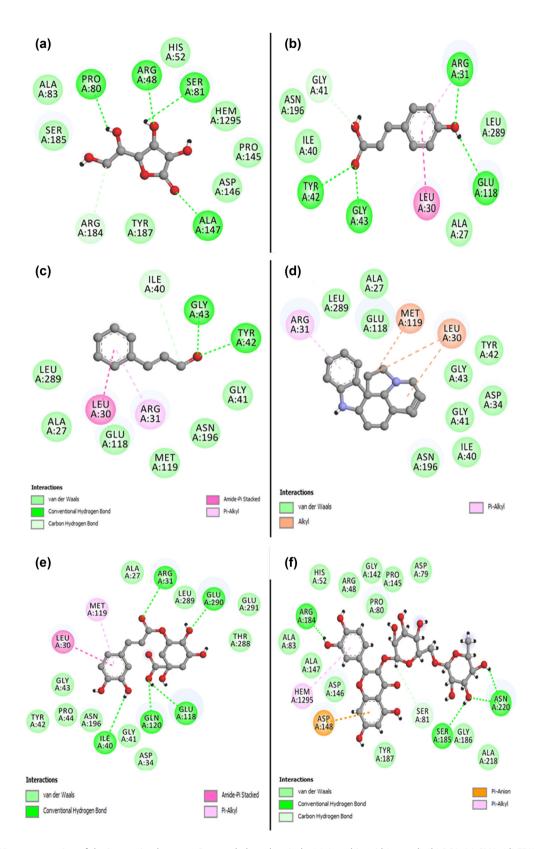
The stability of Cyt-c and E-CMA complex was maintained due to the formation of two conventional hydrogen bonds with TYR42:HN, and GLY43:HN, along with one carbon hydrogen bond with ILE40:O. Additionally, *E*-cinnamaldehyde interacted with Cyt-c via one amide-Pi stacked hydrophobic interaction with LEU30:C,O and ARG31:N, and one Pi-alkyl hydrophobic interaction with ARG31 (Figure 10c). Furthermore, E-CMA engaged in van der Waals interactions with specific amino acid residues of Cyt-c, including ALA27, GLY41, GLU118, MET119, ASN196, and LEU289. The estimated docking energy and binding affinity of E-CMA towards Cyt-c were  $-6.0 \text{ kcal mol}^{-1}$  and  $2.52 \times 10^4 \text{ M}^{-1}$ , respectively (Table 8).

The estimation of the Cyt-c and EBU interaction revealed that the complex was stabilized through three alkyl hydrophobic interactions with LEU30 (two interactions), and MET119, along with one Pi-alkyl hydrophobic interaction with ARG31 (Figure 10d). Additionally, EBU formed a network of van der Waals interactions amino acid residues like with ALA27, ASP34, ILE40, GLY41, TYR42, GLY43, GLU118, ASN196, and LEU289. The docking energy and dissociation constant of EBU binding to Cyt-c were estimated to be -7.4 kcal mol $^{-1}$  and  $2.68 \times 10^5 \, \mathrm{M}^{-1}$ , respectively, as shown in Table 8.

The Cyt-c and CLA complex was stabilized by five conventional hydrogen bonds with ARG31:HE, GLN120:HE22, GLU290:HN, ILE40:O, and GLU118:O. Additionally, CLA interacted with Cyt-c through one amide-Pi stacked hydrophobic interaction with LEU30:C,O and ARG31:N, and two Pi-alkyl hydrophobic interactions with LEU30, and MET119 (Figure 10e). Importantly, van der Waals interactions occurred between CLA and ALA27, ASP31, GLY41, TYR42, GLY43, PRO44, ASN196, THR288, GLU291, and LEU289 of Cyt-c. The binding interaction

between CLA and Cyt-c was estimated, revealing an estimated docking energy of -7.7 kcal mol<sup>-1</sup> and a binding affinity of  $4.44 \times 10^5 \text{M}^{-1}$ , as detailed in Table 8.

The complex between RUT and Cyt-c was stabilized by four conventional hydrogen bonds with ASN220:HD21, ASN220:OD1, ARG184:O, and SER185:O, along with one carbon hydrogen bond with SER81:OG. Additionally, the RUT and Cyt-c complex was stabilized by one Pi-anion electrostatic interaction with ASP148:OD1, and one Pi-alkyl hydrophobic interaction with HEME group (Figure 10f, and Table 8). Significantly, RUT engaged in van der Waals interactions with a range of Cyt-c amino acid residues. These included ARG48, HIS52, ASP79, PRO80, ALA83, GLY142, PRO145, ASP146, ALA147, GLY186, TYR187, and ALA218. The estimated docking energy and binding affinity of RUT toward Cyt-c were estimated to be  $-8.2 \, \text{kcal} \, \text{mol}^{-1}$  and  $1.03 \times 10^6 \, \text{M}^{-1}$ , respectively (Table 8).


#### 3.8 ADMET analysis

The crucial ADMET analysis values and molecular properties for the examined phytochemicals are detailed in Table 9 and Figure 11. The absorption potential of the compounds was assessed using several parameters, including human intestinal absorption (HIA), Caco-2 permeability, MDCK permeability, and Pgp factors (Table 9). Most compounds exhibit high HIA, classified as excellent to medium absorption (0-0.3: excellent; 0.3-0.7: medium; 0.7-1.0: poor). However, for orally administered drugs, human oral bioavailability (F (30%)) is vital, indicating the efficiency of drug absorption into the bloodstream. The data in Table 9 suggest a propensity for low oral bioavailability among the compounds studied. In evaluating new drugs, a crucial consideration is assessing their metabolism and the possible effects of their metabolites in the patient's body. As per the prediction data in Table 9, the majority of the compounds exhibit high values of plasma protein binding (PPB) and volume distribution (VD) falling within the optimal range of 0.04-20 L/kg.

Cytochrome P450 (CYP) enzymes play a significant role in regulating drug metabolism in humans. The CYP 1–3 enzyme families, especially CYP1A2, CYP2C19, CYP2C9, CYP2D6, and CYP3A4, are responsible for about 80% of drug oxidative processes and 50% of drug elimination from the body [54]. The ADMET analysis conducted facilitates the prediction of potential pharmacokinetic and toxicological properties for the group of inhibitors being studied. According to the findings in Table 9, compounds like CLA, LNA, palmitic acid, PCA, and RUT, which showed the highest levels through RP-HPLC and GC–MS analyses, demonstrate minimal to zero probability of inhibition. This suggests a very low likelihood of

16 — Rashed N. Hergash et al.

**DE GRUYTER** 



**Figure 10:** 2D representation of the interaction between Cyt-c and phytochemicals. (a) Ascorbic acid (control), (b) PCA, (c) CMA, (d) EBU, (e) CLA, and (f) RUT.

Table 8: Molecular docking parameters for the interaction of phytochemicals and Cyt-c

| Compound                | Donor–acceptor pair     | Distance (Å) | Type of interaction            |
|-------------------------|-------------------------|--------------|--------------------------------|
| Ascorbic acid (control) | ARG48:HH21 – LIG:O      | 1.97         | Conventional hydrogen bond     |
|                         | ALA147:HN – LIG:O       | 2.21         | Conventional hydrogen bond     |
|                         | LIG:H - PRO80:O         | 2.02         | Conventional hydrogen bond     |
|                         | LIG:H - SER81:O         | 2.50         | Conventional hydrogen bond     |
|                         | LIG:C - ARG184:O        | 3.50         | Carbon hydrogen bond           |
| PCA                     | ARG31:HE - LIG:O        | 2.41         | Conventional hydrogen bond     |
|                         | TYR42:HN – LIG:O        | 2.83         | Conventional hydrogen bond     |
|                         | GLY43:HN - LIG:O        | 1.98         | Conventional hydrogen bond     |
|                         | LIG:H - GLU118:OE1      | 2.68         | Conventional hydrogen bond     |
|                         | GLY41:CA – LIG:O        | 3.63         | Carbon hydrogen bond           |
|                         | LEU30:C,O;ARG31:N - LIG | 4.30         | Hydrophobic (Amide-Pi Stacked) |
|                         | LIG – ARG31             | 3.97         | Hydrophobic (Pi-Alkyl)         |
| CMA                     | TYR42:HN - LIG:O        | 2.69         | Conventional hydrogen bond     |
|                         | GLY43:HN - LIG:O        | 2.13         | Conventional hydrogen bond     |
|                         | LIG:C - ILE40:O         | 3.75         | Carbon hydrogen bond           |
|                         | LEU30:C,O;ARG31:N - LIG | 4.17         | Hydrophobic (Amide-Pi Stacked) |
|                         | LIG – ARG31             | 4.01         | Hydrophobic (Pi-Alkyl)         |
| EBU                     | LEU30 – LIG             | 5.24         | Hydrophobic (Alkyl)            |
|                         | LIG – LEU30             | 4.53         | Hydrophobic (Alkyl)            |
|                         | LIG – MET119            | 4.66         | Hydrophobic (Alkyl)            |
|                         | LIG – ARG31             | 4.20         | Hydrophobic (Pi-Alkyl)         |
| CLA                     | ARG31:HE - LIG:O        | 2.49         | Conventional hydrogen bond     |
|                         | GLN120:HE22 - LIG:O     | 2.17         | Conventional hydrogen bond     |
|                         | GLU290:HN - LIG:O       | 2.51         | Conventional hydrogen bond     |
|                         | LIG:H - ILE40:O         | 2.73         | Conventional hydrogen bond     |
|                         | LIG:H - GLU118:0        | 2.41         | Conventional hydrogen bond     |
|                         | LEU30:C,O;ARG31:N - LIG | 4.37         | Hydrophobic (Amide-Pi Stacked) |
|                         | LIG – LEU30             | 4.42         | Hydrophobic (Pi-Alkyl)         |
|                         | LIG – MET119            | 5.22         | Hydrophobic (Pi-Alkyl)         |
| RUT                     | ASN220:HD21 - N:UNK1:O  | 2.25         | Conventional hydrogen bond     |
|                         | LIG:H - ARG184:O        | 2.34         | Conventional hydrogen bond     |
|                         | LIG:H - ASN220:OD1      | 2.45         | Conventional hydrogen bond     |
|                         | LIG:H - SER185:O        | 2.79         | Conventional hydrogen bond     |
|                         | LIG:H15 – SER81:OG      | 2.60         | Carbon hydrogen bond           |
|                         | ASP148:OD1 – LIG        | 4.37         | Electrostatic (Pi-Anion)       |
|                         | LIG – HEM1295:CMA       | 4.49         | Hydrophobic (Pi-Alkyl)         |

interaction with the tested group of enzymes as substrates. Therefore, these tested compounds are not expected to significantly interfere with the metabolic processes of other pharmaceuticals metabolized by the analyzed group of enzymes.

The predicted excretion data, represented by CL plasma penetration (CL) and half-life (T<sub>1/2</sub>), are vital indicators. A CL value greater than 15 mL/min/kg is considered high clearance, while 5–15 mL/min/kg indicates moderate clearance, and less than 5 mL/min/kg suggests low clearance. According to the data, all compounds exhibit low to moderate clearance, ranging between 2.05 and 9.122 mL/min/kg, and short half-life durations between 0.174 and 3.878 h.

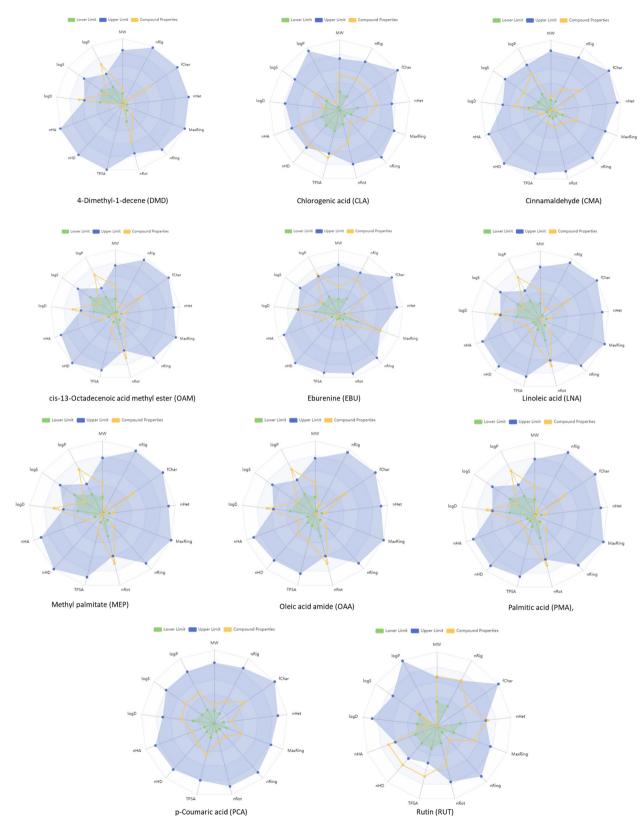
In the exploration of chemical compounds for pharmaceutical purposes, analyzing their toxicity concerning interaction with the human body is crucial. The pharmacological effects of a chemical may entail undesirable side effects. The conducted studies depict a wide range of potential impacts of the tested inhibitors on the human body, summarized in Table 9. Evaluating the potential impact of new drugs involves assessing their effects on the heart, including their ability to inhibit the human ether-a-go-go-related gene (hERG) potassium channel. Inhibition of this channel can disrupt normal cardiac rhythm, potentially leading to adverse effects such as cardiac dysfunction or the development of life-threatening arrhythmias [55]. The collected data suggest a minimal likelihood of adverse effects from the tested compounds in this context, as indicated by the classification of values: 0–0.3 (excellent), 0.3–0.7 (medium), and 0.7–1.0 (poor). Another indicator of drug toxicity is the rat oral acute toxicity (ROA) index, which measures the maximum dose that can cause death in

18 — Rashed N. Herqash *et al.* DE GRUYTER

Table 9: The values of descriptors characterizing ADMET properties (absorption, distribution, metabolism, extraction, and toxicity) of the predominant phytochemicals including 4-dimethyl-1-decene (DMD), CLA, CMA, OAM, EBU, LNA, MEP, OAA, PMA, PCA, and RUT

| ADMET parameters | Property            |                      |        |        |        | С      | ompoun | d      |        |        |        |        |
|------------------|---------------------|----------------------|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------|
|                  |                     | DMD                  | CLA    | СМА    | ОАМ    | EBU    | LNA    | MEP    | OAA    | PMA    | PCA    | RUT    |
| Absorption       | Caco-2 permeability | -4.374               | -6.349 | -4.767 | -5.023 | -4.682 | -5.062 | -5.028 | -5.135 | -5.096 | -4.985 | -6.307 |
|                  | MDCK permeability   | $1.5 \times 10^{-5}$ | -5.029 | -4.639 | -4.755 | -4.889 | -4.761 | -4.824 | -4.723 | -4.803 | -4.774 | -4.996 |
|                  | Pgp-inhibitor       | 0.006                | 0.0    | 0.945  | 0.038  | 0.726  | 0.001  | 0.006  | 0.001  | 0.0    | 0.0    | 0.0    |
|                  | Pgp-substrate       | 0.0                  | 0.122  | 0.029  | 0.083  | 0.033  | 0.007  | 0.11   | 0.102  | 0.014  | 0.04   | 0.959  |
|                  | F 30%               | 0.695                | 0.999  | 0.63   | 0.894  | 0.001  | 0.671  | 0.959  | 0.591  | 0.926  | 0.768  | 1.0    |
|                  | HIA                 | 0.002                | 0.849  | 0.031  | 0.187  | 0.0    | 0.208  | 0.558  | 0.044  | 0.85   | 0.086  | 0.974  |
| Distribution     | PPB                 | 92.87                | 54.794 | 94.866 | 97.941 | 62.105 | 96.967 | 98.45  | 98.196 | 98.031 | 68.241 | 81.741 |
|                  | VD                  | 2.85                 | 0.379  | -0.415 | -0.218 | 0.575  | -0.211 | 0.837  | 0.474  | 0.592  | -0.712 | -0.151 |
|                  | BBB                 | 0.972                | 0.003  | 0.608  | 0.025  | 1.0    | 0.073  | 0.013  | 0.27   | 0.021  | 0.003  | 0.0    |
|                  | Fu                  | 8.369                | 44.663 | 5.263  | 1.498  | 36.106 | 2.766  | 1.623  | 1.653  | 1.672  | 25.338 | 19.664 |
| Metabolism       | CYP1A2-inh          | 0.895                | 0.0    | 1.0    | 1.0    | 0.0    | 0.566  | 0.995  | 0.998  | 0.073  | 0.074  | 0.0    |
|                  | CYP2C19-inh         | 0.507                | 0.0    | 0.998  | 0.001  | 0.0    | 0.9    | 0.994  | 0.991  | 0.015  | 0.0    | 0.0    |
|                  | CYP2C9-inh          | 0.375                | 0.0    | 0.949  | 0.992  | 0.0    | 0.493  | 0.931  | 0.0    | 0.166  | 0.0    | 0.0    |
|                  | CYP2D6-inh          | 0.032                | 0.0    | 0.225  | 0.152  | 0.998  | 0.005  | 0.259  | 0.007  | 0.147  | 0.002  | 0.0    |
|                  | CYP3A4-inh          | 0.075                | 0.0    | 0.002  | 0.981  | 0.668  | 0.002  | 0.884  | 0.108  | 0.0    | 0.0    | 0.001  |
| Excretion        | CL                  | 9.122                | 2.529  | 11.086 | 5.431  | 6.559  | 3.804  | 5.278  | 5.387  | 3.77   | 2.609  | 2.05   |
|                  | T <sub>1/2</sub>    | 0.174                | 3.157  | 1.395  | 0.409  | 1.08   | 0.598  | 0.521  | 0.414  | 0.932  | 1.695  | 3.878  |
| Toxicity         | hERG-Blockers       | 0.023                | 0.021  | 0.231  | 0.394  | 0.579  | 0.119  | 0.352  | 0.41   | 0.166  | 0.046  | 0.029  |
|                  | H-HT                | 0.025                | 0.431  | 0.399  | 0.167  | 0.718  | 0.109  | 0.433  | 0.282  | 0.423  | 0.457  | 0.291  |
|                  | ROA                 | 0.012                | 0.201  | 0.311  | 0.057  | 0.742  | 0.064  | 0.148  | 0.08   | 0.124  | 0.258  | 0.415  |
|                  | FDAMDD              | 0.023                | 0.54   | 0.324  | 0.123  | 0.836  | 0.063  | 0.224  | 0.11   | 0.178  | 0.089  | 0.636  |
|                  | Carcinogenicity     | 0.139                | 0.089  | 0.399  | 0.227  | 0.567  | 0.1    | 0.473  | 0.223  | 0.27   | 0.197  | 0.111  |

Abbreviations: human oral bioavailability 30% (F 30%); human intestinal absorption (HIA); plasma protein binding (PPB); volume distribution (VD); Blood-brain barrier penetration (BBB); the fraction unbounded in plasma (FU); CL plasma penetration (CL); half-life ( $T_{1/2}$ ); human ether-a-go-go related gene (hERG); human hepatotoxicity (H-HT); rat oral acute toxicity (ROA); FDA Maximum (Recommended) Daily Dose (FDAMDD).


mammals, particularly in rats and mice. This index serves as one of the fundamental indicators of toxicity in the evaluation of potential drugs. The data in Table 9 suggest a low to moderate probability of undesirable effects for each of the compounds, with the highest probability observed for EBU (0.742). Another key aspect of the adverse activity is hepatotoxicity (H-HT), which assesses the risk of drug-induced liver damage, liver injuries, and carcinogenicity. The obtained values clearly indicate a low to moderate probability of these undesirable effects occurring.

#### 4 Discussion

Plants are vital sources of diverse chemical compounds with biological properties for creating effective medications. However, more research is needed to identify phytoconstituents in medicinal plants [56]. The *Solanum* genus is historically significant for the treatment of various illnesses and diseases [57]. This study analyzed the phytochemical composition and antioxidant activity of three

Solanum species from Saudi Arabia using GC–MS and RP-HPLC. Two polar extraction solvents (HME and HAE) are known for their high efficiency in extracting bioactive compounds, including phenolic compounds and flavonoids, from plants. This selection significantly influenced the levels of extracted polyphenols and overall phytochemical content, shedding light on the solvent's pivotal role in extraction processes. The comparison of these solvents provided valuable insights into their respective capabilities in enhancing the solubility and extraction efficiency of the targeted compounds [58,59].

Interestingly, our findings reveal that the HME exhibited an exceedingly high concentration of phenolic and flavonoid compounds, accounting for nearly 60% of the TPC and TFC extracted from both solvents across the three species investigated. This finding aligns with earlier research, specifically, the study carried out by Rupasinghe et al. [60]. In their study, they found that solvents with higher polarity, like hydro-alcoholic mixtures, were successful in extracting flavonoid glycosides and higher molecular-weight phenols, resulting in greater quantities compared to an equivalent acetonic system. Based on the findings, the SV extract



**Figure 11:** The charts illustrate the molecular property values of prevalent phytochemicals compared to the recommended lower and upper limits for substances with pharmacological effects. MW, number of rigid bonds (nRig), formal charge (fChar), number of heteroatoms (nHet), number of atoms in the biggest ring (MaxRing), number of rings (nRing), number of rotatable bonds (nRot), Topological Polar Surface Area (TPSA), number of hydrogen bond donors (nHD), number of hydrogen bond acceptors (nHA), logP at physiological pH 7.4 (logD), log of the aqueous solubility (logS), and log of the partition coefficient (logP) are presented.

obtained using an 80% (v/v) methanol solvent (HME) exhibited the highest content of total polyphenols and flavonoids. The total polyphenol content was measured at 86.52 GAE/10 g DW, while the TFC was 55.46 mg GAE/ 10 g DW. These values are also higher compared to those obtained in a previous study for extracts carried out in solvent 80% methanol [61]. Previous studies assessing the polyphenolic and flavonoid content in SF have been limited. However, our findings reveal that SF contains a significant level of total polyphenols (48.11 mg GAE/10 g DW) and total flavonoids (35.95 mg QE/10 g DW). The results also demonstrate that SI has a lower level of total polyphenols and total flavonoids among the three tested species (38.56 mg GAE/10 g DW and 21.73 mg QE/10 g DW, respectively). These findings are comparable to a previous study conducted by Hlangothi [62], which found that the concentrations of polyphenols and flavonoids in SI extracts varied depending on the extraction solvent. They reported a total phenol content ranging from 0.19 to 3.49 mg GAE/100 mg and a TFC ranging from 0.33 to 1.18 ± 0.93 mg QE/100 mg.

Further investigation led us to a quantitative analysis of twelve polyphenolic compounds in the extracts of the three tested Solanum species employing the RP-HPLC method. The chromatograms (Figures 4 and 5) displayed distinct and well-defined peaks corresponding to various polyphenolic compounds. These peaks were observed at specific RT in minutes: CLA (12.01), (+)-catechin (13.83), caffeic acid (14.73), PCA (18.19), (-)-epicatechin (19.64), ferulic acid (26.42), RUT (28.54), rosmarinic acid (30.13), myricetin (37.16), quercetin (38.92), apigenin (43.24), and kaempferol (43.89). The RT were meticulously compared with their respective standards, definitively verifying the presence of these compounds in SF, SV, and SI. CLA has consistently been identified as the main abundant soluble phenolic compound in most Solanaceous species [2,63], including the current study. Our findings confirm that CLA is indeed the predominant phenolic compound, and we observed a higher concentration in SV, ranging from 26.82 to 42.16 mg/10 g DW. These values were also compared to a previous study by Staveckien et al. [17], which similarly measured CLA in SV fruit at different ripening stages. In their study, the results ranged from 341 to 415 mg/100 g DW. Additionally, in a novel finding, a high amount of CLA was observed in SF, ranging from 21.29 to 24.76 mg/10 g DW. Similarly, SI was found to have significant levels of CLA, ranging from 8.17 to 10.41 mg/10 g DW, corroborating a previous study [64]. Furthermore, among the phenolic compounds analyzed, PCA exhibited a remarkably higher concentration of 19.73 mg/10 g DW in SI, which was also tentatively identified by Lin et al. [65].

Significant levels of other phenolic acids (such as caffeic acid, PCA, ferulic acid, and rosmarinic acid) were detected and their levels varied depending on the species and extracting solvent used. Specifically, caffeic acid and ferulic acid are noteworthy phenolic compounds known for their cytoprotective and antioxidant properties. These compounds play a crucial role in preventing the production of reactive oxygen species, which are linked to the development of diverse diseases [66]. Additionally, caffeic acid and CLAs have exhibited potential as anti-inflammatory agents and have been explored in the development of novel diabetes drugs to enhance insulin sensitivity and secretion [67]. Furthermore, rosmarinic acid has demonstrated its capacity to diminish reactive oxygen species, thereby reducing oxidative stress. It also possesses antibacterial, immunomodulatory, and antifungal activities [68].

RUT, a natural flavone derivative, has been identified as the second most abundant polyphenol in SF and SV, with concentrations of 10.77 and 29.13 mg/10 g DW, respectively. RUT is highly regarded for its potent antioxidant properties, known for its ability to effectively strengthen the walls of blood cells [69]. In addition to its antioxidant capabilities, RUT exhibits a diverse range of beneficial effects, including anti-tumor, antibacterial, and antiviral activities [70]. Furthermore, RUT has been found to contribute to collagen synthesis and improve the utilization of vitamin C [71]. Significant quantities of the important flavonoids, including myricetin, quercetin, (+)-catechin, and (-)-epicatechin, were detected in all three species, with SV exhibiting the highest concentrations (5.77, 4.11, 7.33, 6.02 mg/ 10 g DW, respectively). In contrast, apigenin and kaempferol were found in relatively minimal amounts. The functional properties of flavonoid compounds are diverse, as they possess antioxidant capabilities and can act as reducing agents, donors of hydrogen, chelators of transition metals, quenchers of reactive oxygen and nitrogen species, inhibitors of enzymes related to oxidative stress, as well as regulators and protectors of the body's natural defense systems. Additionally, their ability to strengthen the immune system and aid in the prevention of physical disorders caused by cancer, bacteria, and viruses [72]. Given the presence of numerous phenolic compounds in the tested Solanum species is clear evidence of their ability to provide protection against a variety of diseases and significantly enhance overall health and well-being.

The utilization of GC-MS is pivotal in the exploration of unidentified plant constituents. Given the complex composition of plant materials, GC-MS is an excellent option for their examination due to its heightened sensitivity and selectivity. By ionizing compounds and quantifying their mass numbers, GC-MS contributes to the characterization

of these profiles by offering additional and valuable information [73]. The GC–MS analysis of (Figure 5 and Table 5) revealed the presence of various compounds belonging to different chemical nature. Notably, palmitic acid, MEP, LNA, and OAA emerged as the major constituents in the tested species. These compounds have been reported in scientific literature for their significant antioxidant, anti-bacterial, and antifungal properties [74].

Additionally, alongside the analysis of the phenolic content, we extensively conducted in vitro experiments to evaluate the antioxidant activity of HME and HAE from SF, SV, and SI. It is important to consider that antioxidants vary in their chemical properties and mechanisms of scavenging [75]. Therefore, it is necessary to employ multiple methods to accurately assess the antioxidant potential of plant extracts. In this particular study, we employed two complementary tests, namely the DPPH radical scavenging assay and the ABTS scavenging assay, to evaluate the antioxidant capacity of the tested extracts. Radical-scavenging properties are crucial for inhibiting lipid oxidation. In studies to determine antioxidant activity, the use of radical scavenging-based methods such as DPPH and ABTS has become standard practice. These spectrophotometric assays are widely used to assess the antioxidant activities of pure antioxidant molecules, particularly herbal extracts or phenolic compounds. These assays offer advantages in terms of sensitivity, simplicity, speed, and reproducibility, as they allow for the direct reaction between the chromogen radicals and antioxidant com-pounds [76]. The results obtained from this study (Table 4, Figures 7 and 8) offer valuable insights into the significant antioxidant properties (IC<sub>50</sub>  $\leq$ 100 µg/mL) of all the tested extracts. They also shed light on the order of scavenging potency among the extracts, which is consistent with their polyphenol content. Specifically, the HME consistently exhibited higher polyphenolic content and greater radical scavenging potency compared to the HAE extract. This trend is similar to the comparison between SV (IC<sub>50</sub> =  $40.81 \,\mu\text{g/mL}$ ), SF (IC<sub>50</sub> =  $51.24 \,\mu\text{g/mL}$ ), and SI (IC<sub>50</sub> =  $78.24 \,\mu\text{g/mL}$ ). These findings demonstrate a clear relationship between the phenolic contents and the enhancement of antioxidant activity. This suggests that these chemical compounds play a crucial role in the observed antioxidant capacity in the DPPH and ABTS tests.

The study used molecular docking to evaluate the antioxidant capacity of key phytochemicals against Cyt-c. RUT, CLA, EBU, PCA, and (*E*)-CMA displayed strong binding energies, with RUT exhibiting the highest at -8.2 kcal mol<sup>-1</sup>. Interactions involved hydrogen bonds and van der Waals forces, enhancing stability. These results support previous findings, indicating that phytochemicals in these plants, especially those in high concentrations, possess substantial antioxidant properties. The robust binding energies from the docking analysis suggest a potential for these compounds as effective antioxidants.

ADMET analysis was performed to assess the therapeutic applicability of the main identified phytochemicals, offering valuable insights into their absorption, distribution, metabolism, excretion, and toxicity. Detailed values and molecular properties are presented in Table 9 and Figure 11. The evaluation of these data reveals that most investigated compounds exhibit promising characteristics suitable for therapeutic application, aligning well with fundamental ADMET criteria [77,78]. The high predicted HIA values indicate facilitation of bloodstream entry post-oral administration. However, low oral bioavailability prompts further investigation, possibly due to poor permeability. Permeability assays and in vivo studies can illuminate these factors, aiding formulation design for enhancement. Favorable predicted plasma protein binding and volume of distribution suggest sufficient concentration for therapeutic efficacy. Minimal CYP enzyme inhibition minimizes the risk of drug interactions, advantageous in multi-drug treatments. Clearance rates, while generally desirable, may necessitate frequent dosing due to short half-life durations, a challenge potentially addressed by controlled-release formulations. Predicted low to moderate toxicity bodes well for safety, though in vivo studies are imperative to confirm these findings and establish safe dosage ranges. Overall, while the ADMET analysis underscores the phytochemicals' medicinal promise, addressing oral bioavailability and optimizing halflife through formulation strategies are pivotal for clinical translation.

Furthermore, when comparing the antioxidant effectiveness of the three tested species with other Solanum species evaluated using the same bioassays, including *Solanum sessiliflorum*, *S. torvum*, *S. nigrum*, *S. aethiopicum*, *Solanum sisymbriifolium*, *Solanum melongena*, *Solanum muricatum*, *Solanum melongena* L., and *Solanum lycopersicum* [79–86], it can be inferred that SF, SV, and SI exhibited remarkable radical-scavenging activity. Hence, it can be deduced that the species under investigation in the present study possesses a notable antioxidant capacity that surpasses numerous other species within the *Solanum* genus. This highlights the therapeutic value of these plant-derived compounds in combating oxidative stress and underscores their potential for future development as natural antioxidants in various applications.

#### 5 Conclusions

This investigation delved into the phytochemical composition, as well as the antioxidant activity, of three *Solanum* 

species (SF, SV, SI) from Saudi Arabia. The study employed both HME and HAE for a comprehensive analysis of phytochemical compounds, with RP-HPLC and GC-MS analyses revealing high levels of diverse compounds, particularly in HME. CLA was the most abundant, but other valuable phenolic acids and flavonoids were also detected. GC-MS analysis revealed the presence of various compounds, notably, palmitic acid, LNA, MEP, cis-13-octadecenoic acid, and oleic acid emerged as the major constituents. This diverse profile aligns with the significant antioxidant activity observed in all extracts using DPPH and ABTS assays, with SV boasting the strongest potential. The study utilized molecular docking to assess the antioxidant capacity of key phytochemicals against Cyt-c, revealing strong binding energies and interactions, supporting their potential as antioxidants. ADMET analysis revealed promising therapeutic characteristics of the identified phytochemicals, aligning with fundamental criteria. While high predicted HIA values suggest efficient bloodstream entry, addressing issues of low oral bioavailability and optimizing half-life through formulation strategies are crucial for clinical translation. Additionally, favorable plasma protein binding and minimal CYP enzyme inhibition enhance their potential for therapeutic efficacy. Although predicted low to moderate toxicity levels are promising, in vivo studies are imperative to confirm safety profiles and establish appropriate dosage ranges. These findings suggest that these Solanum species could serve as promising sources of bioactive compounds with potential health benefits. Further research is warranted to explore their specific therapeutic applications and potential contributions to functional foods or natural medicines.

**Acknowledgments:** The authors are thankful to the Researchers Supporting Project number (RSP2024R132) at King Saud University, Riyadh, Saudi Arabia.

**Funding information:** The authors are thankful to the Researchers Supporting Project number (RSP2024R132) at King Saud University, Riyadh, Saudi Arabia.

**Author contributions:** Conceptualization, Rashed N. Herqash and Ali S. Alqahtani; data curation, Mohammed S. Alharbi; Formal analysis, Rashed N. Herqash, and Syed Rizwan Ahamad; funding acquisition, Abdullah A. Al-Mishari; investigation, Abdullah R. Alanzi and Sami A. Alsufyani; methodology, Rashed N. Herqash and Syed Rizwan Ahamad; resources, Ali S. Alqahtani; supervision, Ali S. Alqahtani; writing — review and editing, Rashed N. Herqash and Syed Rizwan Ahamad.

**Conflict of interest:** The authors declare no conflict of interest.

**Ethical approval:** The conducted research is not related to either human or animal use.

**Data availability statement:** The datasets generated during and/or analyzed during the current study are available from the corresponding author on reasonable request.

#### References

- [1] Senizza B, Rocchetti G, Sinan KI, Zengin G, Mahomoodally MF, Glamocilja J, et al. The phenolic and alkaloid profiles of Solanum erianthum and Solanum torvum modulated their biological properties. Food Biosci. 2021;41:100974.
- [2] Hale AL, Reddivari L, Nzaramba MN, Bamberg JB, Miller JC. Interspecific variability for antioxidant activity and phenolic content among Solanum species. Am J Potato Res. 2008;85:332–41.
- [3] Aksoy E, Demirel U, Bakhsh A, Zia MAB, Naeem M, Saeed F, et al. Recent advances in potato (Solanum tuberosum L.) breeding. Adv Plant Breed Strategies: Veg Crops: Bulbs, Roots Tubers. 2021;8:409–87.
- [4] Kandimalla R, Kalita S, Choudhury B, Kotoky J. A review on antidiabetic potential of genus Solanum (Solanaceae). J Drug Delivery Ther. 2015;5(1):24–7.
- [5] Kaunda JS, Zhang Y-J. The genus solanum: an ethnopharmacological, phytochemical and biological properties review. Nat Prod Bioprospect. 2019;9:77–137.
- [6] Siddiqui NA, Parvez MK, Al-Rehaily AJ, Al Dosari MS, Alam P, Shakeel F, et al. High-performance thin layer chromatography based assay and stress study of a rare steroidal alkaloid solanopubamine in six species of Solanum grown in Saudi Arabia. Saudi Pharm J. 2017;25(2):184–95.
- [7] Zhang H, Tsao R. Dietary polyphenols, oxidative stress and anti-oxidant and anti-inflammatory effects. Curr OpFood Sci. 2016;8:33–42
- [8] Vladimir-Knežević S, Blažeković B, Bival Štefan M, Babac M. Plant polyphenols as antioxidants influencing the human health. London: IntechOpen; 2012.
- [9] Muflihah YM, Gollavelli G, Ling Y-C. Correlation study of antioxidant activity with phenolic and flavonoid compounds in 12 Indonesian indigenous herbs. Antioxidants. 2021;10(10):1530.
- [10] Barriada-Bernal LG, Almaraz-Abarca N, Delgado-Alvarado EA, Gallardo-Velázquez T, Ávila-Reyes JA, Torres-Morán MI, et al. Flavonoid composition and antioxidant capacity of the edible flowers of Agave durangensis (Agavaceae). CyTA-J Food. 2014;12(2):105–14.
- [11] Kabtni S, Sdouga D, Bettaib Rebey I, Save M, Trifi-Farah N, Fauconnier M-L, et al. Influence of climate variation on phenolic composition and antioxidant capacity of Medicago minima populations. Sci Rep. 2020;10(1):8293.
- [12] Diep T, Pook C, Yoo M. Phenolic and anthocyanin compounds and antioxidant activity of tamarillo (Solanum betaceum Cav.). Antioxidants. 2020;9(2):169.
- [13] Nithiyanantham S, Varadharajan S, Siddhuraju P. Differential effects of processing methods on total phenolic content, antioxidant and antimicrobial activities of three species of Solanum. J Food Drug Anal. 2012;20(4):21.

- Khatoon U, Sharma L, Dubey R. Assessment of bioactive compounds, antioxidative activity and quantification of phenols through HPLC in solanum species. Ethno Med. 2018;12(2):87-95.
- [15] Yasir M, Sultana B, Anwar F. LC-ESI-MS/MS based characterization of phenolic components in fruits of two species of Solanaceae. J Food Sci Technol. 2018;55:2370-6.
- [16] Medina-Medrano IR. Mares-Ouiñones MD. Valiente-Banuet II. Vázguez-Sánchez M, Álvarez-Bernal D, Villar-Luna E. Determination and quantification of phenolic compounds in methanolic extracts of Solanum ferrugineum (Solanaceae) fruits by HPLC-DAD and HPLC/ESI-MS/TOF. J Liq Chromatogr Relat Technol. 2017;40(17):900-6.
- [17] Staveckienė J, Kulaitienė J, Levickienė D, Vaitkevičienė N, Vaštakaitė-Kairienė V. The effect of ripening stages on the accumulation of polyphenols and antioxidant activity of the fruit extracts of solanum species. Plants. 2023;12(14):2672.
- [18] Oszmianski J, Kolniak-Ostek J, Wojdyło A. Characterization of phenolic compounds and antioxidant activity of Solanum scabrum and Solanum burbankii berries. J Agric food Chem. 2014;62(7):1512-9.
- [19] Oyinloye OE, Alabi OS, Ademowo OG. In vitro antimicrobial, antioxidant properties and GC-MS analysis of the crude methanolic extract and fractions of Solanum dasyphyllum Schumach and Thonn. Leaves. Research Square; 2020.
- [20] Bouslamti M, El Barnossi A, Kara M, Alotaibi BS, Al Kamaly O, Assouguem A, et al. Total polyphenols content, antioxidant and antimicrobial activities of leaves of Solanum elaeagnifolium Cav. from Morocco. Molecules. 2022;27(13):4322.
- [21] Bouslamti M, Elrherabi A, Loukili EH, Noman OM, Mothana RA, Ibrahim MN, et al. Phytochemical profile, antilipase, hemoglobin antiglycation, antihyperglycemic, and anti-inflammatory activities of solanum elaeagnifolium Cav. Appl Sci. 2023;13(20):11519.
- [22] Algahtani AS, Hergash RN, Noman OM, Nasr FA, Alyhya N, Anazi SH, et al. In vitro antioxidant, cytotoxic activities, and phenolic profile of Senecio glaucus from Saudi Arabia. Evidence-Based Complementary Altern Med. 2020;2020(1):8875430.
- [23] Bouslamti M, Metouekel A, Chelouati T, El Moussaoui A, Barnossi AE, Chebaibi M, et al. Solanum elaeagnifolium var. obtusifolium (Dunal) Dunal: antioxidant, antibacterial, and antifungal activities of polyphenol-rich extracts chemically characterized by use of in vitro and in silico approaches. Molecules. 2022;27(24):8688.
- [24] Bristy AT, Islam T, Ahmed R, Hossain J, Reza HM, Jain P. Evaluation of total phenolic content, HPLC analysis, and antioxidant potential of three local varieties of mushroom: A comparative study. Int J Food Sci. 2022;2022(1):3834936.
- [25] Al-zharani M, Nasr FA, Barnawi IO, Noman OM, Herqash RN, Alsufyani SA, et al. In vitro cytotoxicity assessment of abutilon pannosum chloroform fraction and its phytoconstituents analysis. Processes. 2023;11(5):1306.
- [26] Sparkman OD. Identification of essential oil components by gas chromatography/quadrupole mass spectroscopy Robert P. Adams. IL 60188, USA ISBN 0-931710-85-5 2001, Book 175, 469; BookandDisk. Vol. 625, Allured Carol Stream, Springer; 2005.
- [27] McLafferty FW, Stauffer DB. The Wiley/NBS registry of mass spectral data. New York: Wiley; 1989.
- [28] Chebbac K, Ghneim HK, El Moussaoui A, Bourhia M, El Barnossi A, Benziane Ouaritini Z, et al. Antioxidant and antimicrobial activities of chemically-characterized essential oil from Artemisia

- aragonensis Lam. against drug-resistant microbes. Molecules. 2022:27(3):1136.
- [29] Alam P, Fantoukh OI, Asaker M, Almarfadi OM, Akhtar A, Al-Hamoud GA, et al. Concurrent optimization of ultrasonic-assisted extraction of total phenolic compounds and in vitro anticancer and antioxidant potential of pulicaria schimperi (aerial parts) using response surface methodology. Separations. 2023;10(3):208.
- Li X, Wang X, Chen D, Chen S. Antioxidant activity and mechanism of protocatechuic acid in vitro. Funct Foods Health Dis. 2011;1(7):232-44.
- [31] Al-Shabib NA, Khan JM, Malik A, Alsenaidy MA, Rehman MT, AlAjmi MF, et al. Molecular insight into binding behavior of polyphenol (rutin) with beta lactoglobulin: Spectroscopic, molecular docking and MD simulation studies. I Mol Lig. 2018;269:511-20.
- Rehman MT, Shamsi H, Khan AU. Insight into the binding mechanism of imipenem to human serum albumin by spectroscopic and computational approaches. Mol Pharm. 2014;11(6):1785-97.
- [33] Fu L, Shi S, Yi J, Wang N, He Y, Wu Z, et al. ADMETlab 3.0: an updated comprehensive online ADMET prediction platform enhanced with broader coverage, improved performance, API functionality and decision support. Nucleic Acids Res. 2024;52:gkae236.
- Medicine NLo. 2024 [6-5-2024]. https://pubchem.ncbi.nlm.nih. [34] gov/.
- Didion YP, Tjalsma TG, Su Z, Malankowska M, Pinelo M. What is next? the greener future of solid liquid extraction of biobased compounds: Novel techniques and solvents overpower traditional ones. Sep Purif Technol. 2023;320:124147.
- [36] Tourabi M, Metouekel A, Ghouizi AE, Jeddi M, Nouioura G, Laaroussi H, et al. Efficacy of various extracting solvents on phytochemical composition, and biological properties of Mentha longifolia L. leaf extracts. Sci Rep. 2023;13(1):18028.
- Nawaz H, Shad MA, Rehman N, Andaleeb H, Ullah N. Effect of solvent polarity on extraction yield and antioxidant properties of phytochemicals from bean (Phaseolus vulgaris) seeds. Brazilian. J Pharm Sci. 2020;56:e17129.
- [38] Mohammedi H, Idjeri-Mecherara S, Menaceur F, Hassani A. The effect of solvents and extraction procedure on the recovery of phenolic compounds and the antioxidant capacity of Algerian Bassia muricata L. extracts. Chem J Moldova. 2019;14(2):79-89.
- [39] Louasté B, Eloutassi N, Fadli M. The impact of the harvesting period and drying conditions on the essential oil yield of Rosmarinus officinalis, Thymus satureioides and Origanum compactum from the Taza-Taounate region. Asian J Agric Biol. 2021;3:1-7.
- [40] Ngamwonglumlert L, Devahastin S, Chiewchan N. Natural colorants: Pigment stability and extraction yield enhancement via utilization of appropriate pretreatment and extraction methods. Crit Rev food Sci Nutr. 2017;57(15):3243-59.
- [41] Harborne A. Phytochemical methods a guide to modern techniques of plant analysis. London: Chapman & Hall; 1998.
- Thouri A, Chahdoura H, El Arem A, Omri Hichri A, Ben Hassin R, Achour L. Effect of solvents extraction on phytochemical components and biological activities of Tunisian date seeds (var. Korkobbi and Arechti). BMC Complementary Altern Med. 2017;17:1-10.
- [43] Liao X, Greenspan P, Pegg RB. Examining the performance of two extraction solvent systems on phenolic constituents from US southeastern blackberries. Molecules. 2021;26(13):4001.
- [44] Al-Qudah MA, Obeidat SM, Saleh AM, El-Oglah AA, Al-Masaeed E, Al-Jaber HI, et al. Volatile components analysis, total phenolic,

- flavonoid contents, and antioxidant activity of phlomi s species collected from Jordan. J Essent Oil Bear Plants. 2018;21(3):583–99.
- [45] Abu-Orabi ST, Al-Qudah MA, Saleh NR, Bataineh TT, Obeidat SM, Al-Sheraideh MS, et al. Antioxidant activity of crude extracts and essential oils from flower buds and leaves of Cistus creticus and Cistus salviifolius. Arab J Chem. 2020;13(7):6256–66.
- [46] Carvalho NCC, Monteiro OS, da Rocha CQ, da Silva JKR, Maia JGS. Phenolic compounds and antioxidant properties of puruí (Alibertia edulis, Rubiaceae), an edible dark purple fruit from the Brazilian Amazon. Nutraceuticals. 2023;3(4):529–39.
- [47] Gregoris E, Pereira Lima GP, Fabris S, Bertelle M, Sicari M, Stevanato R. Antioxidant properties of Brazilian tropical fruits by correlation between different assays. BioMed Res Int. 2013;2013:132–9.
- [48] Hmamou A, Eloutassi N, Alshawwa SZ, Al Kamaly O, Kara M, Bendaoud A, et al. Total phenolic content and antioxidant and antimicrobial activities of Papaver rhoeas L. organ extracts growing in Taounate region, Morocco. Molecules. 2022;27(3):854.
- [49] Krasteva D, Ivanov Y, Chengolova Z, Godjevargova T. Antimicrobial potential, antioxidant activity, and phenolic content of grape seed extracts from four grape varieties. Microorganisms. 2023;11(2):395.
- [50] Aliaño-González MJ, Barea-Sepúlveda M, Espada-Bellido E, Ferreiro-González M, López-Castillo JG, Palma M, et al. Ultrasound-assisted extraction of total phenolic compounds and antioxidant activity in mushrooms. Agronomy. 2022;12(8):1812.
- [51] Martínez S, Fuentes C, Carballo J. Antioxidant activity, total phenolic content and total flavonoid content in sweet chestnut (Castanea sativa Mill.) cultivars grown in northwest spain under different environmental conditions. Foods. 2022;11(21):3519.
- [52] Liu W, Zhang Z, Zhang T, Qiao Q, Hou X. Phenolic profiles and antioxidant activity in different organs of Sinopodophyllum hexandrum. Front Plant Sci. 2022;13:1037582.
- [53] Gaber NB, El-Dahy SI, Shalaby EA. Comparison of ABTS, DPPH, permanganate, and methylene blue assays for determining antioxidant potential of successive extracts from pomegranate and guava residues. Biomass Convers Biorefin. 2021;13:1–10.
- [54] Zhao M, Ma J, Li M, Zhang Y, Jiang B, Zhao X, et al. Cytochrome P450 enzymes and drug metabolism in humans. Int J Mol Sci. 2021;22(23):12808.
- [55] Du L, Li M, You Q. The interactions between hERG potassium channel and blockers. Curr Top Med Chem. 2009;9(4):330–8.
- [56] Kim Y-J, Kang KS. The phytochemical constituents of medicinal plants for the treatment of chronic inflammation. MDPI. 2023;13:1162.
- [57] Chidambaram K, Alqahtani T, Alghazwani Y, Aldahish A, Annadurai S, Venkatesan K, et al. Medicinal plants of Solanum species: the promising sources of phyto-insecticidal compounds. J Tropical Med. 2022;2022:221–43.
- [58] El Mannoubi I. Impact of different solvents on extraction yield, phenolic composition, in vitro antioxidant and antibacterial activities of deseeded Opuntia stricta fruit. J Umm Al-Qura Univ Appl Sci. 2023;9(2):176–84.
- [59] Borges A, José H, Homem V, Simões M. Comparison of techniques and solvents on the antimicrobial and antioxidant potential of extracts from acacia dealbata and olea europaea. Antibiotics. 2020;9(2):48.
- [60] Rupasinghe HV, Kathirvel P, Huber GM. Ultrasonication-assisted solvent extraction of quercetin glycosides from 'Idared'apple peels. Molecules. 2011;16(12):9783–91.

- [61] Ben-Abdallah S, Zorrig W, Amyot L, Renaud J, Hannoufa A, Lachâal M, et al. Potential production of polyphenols, carotenoids and glycoalkaloids in Solanum villosum Mill. under salt stress. Biologia. 2019;74:309–24.
- [62] Hlangothi B. Evaluating biological ethnopharmaceutical activities of fruit and root extracts of solanum incanum L. Afr J Food Agric Nutr Dev. 2023;23(7):24136–56.
- [63] Niggeweg R, Michael AJ, Martin C. Engineering plants with increased levels of the antioxidant chlorogenic acid. Nat Biotechnol. 2004;22(6):746–54.
- [64] Plazas M, Andujar I, Vilanova S, Hurtado M, Gramazio P, Herraiz FJ, et al. Breeding for chlorogenic acid content in eggplant: interest and prospects. Not Bot Horti Agrobot Cluj-Napoca. 2013;41(1):26–35.
- [65] Lin YL, Wang WY, Kuo YH, Chen CF. Nonsteroidal constituents from Solanum incanum L. | Chin Chem Soc. 2000;47(1):247–51.
- [66] Damasceno SS, Dantas BB, Ribeiro-Filho J, Araújo AM, da Costa GM. Chemical properties of caffeic and ferulic acids in biological system: implications in cancer therapy. A review. Curr Pharm Des. 2017;23(20):3015–23.
- [67] Choi J, An J, Lee H-D, Kim WJ, Lee S, Lee S. Comprehensive analysis of phenolic compounds, carotenoids, and antioxidant activities in lactuca sativa var. longifolia cultivated in a smart farm system. Processes. 2023;11(10):2993.
- [68] Kola A, Vigni G, Baratto MC, Valensin D. A combined NMR and UV–Vis approach to evaluate radical scavenging activity of rosmarinic acid and other polyphenols. Molecules. 2023;28(18):6629.
- [69] Sun T, Ho C-T. Antioxidant activities of buckwheat extracts. Food Chem. 2005;90(4):743–9.
- [70] Calabro M, Tommasini S, Donato P, Stancanelli R, Raneri D, Catania S, et al. The rutin/β-cyclodextrin interactions in fully aqueous solution: spectroscopic studies and biological assays. J Pharm Biomed Anal. 2005;36(5):1019–27.
- [71] Poiroux-Gonord F, Bidel LP, Fanciullino A-L, Gautier H, Lauri-Lopez F, Urban L. Health benefits of vitamins and secondary metabolites of fruits and vegetables and prospects to increase their concentrations by agronomic approaches. J Agric Food Chem. 2010;58(23):12065–82.
- [72] Dias MC, Pinto DC, Silva AM. Plant flavonoids: Chemical characteristics and biological activity. Molecules. 2021;26(17):5377.
- [73] Noman OM, Herqash RN, Shahat AA, Ahamad SR, Mechchate H, Almoqbil AN, et al. A phytochemical analysis, microbial evaluation and molecular interaction of major compounds of Centaurea bruguieriana using HPLC-spectrophotometric analysis and molecular docking. Appl Sci. 2022;12(7):3227.
- [74] Pinto ME, Araújo SG, Morais MI, Sa NP, Lima CM, Rosa CA, et al. Antifungal and antioxidant activity of fatty acid methyl esters from vegetable oils. An Acad Bras Ciênc. 2017;89:1671–81.
- [75] Gulcin İ. Antioxidants and antioxidant methods: An updated overview. Arch Toxicol. 2020;94(3):651–715.
- [76] Gulcin İ, Alwasel SH. DPPH radical scavenging assay. Processes. 2023;11(8):2248.
- [77] Hughes JD, Blagg J, Price DA, Bailey S, DeCrescenzo GA, Devraj RV, et al. Physiochemical drug properties associated with in vivo toxicological outcomes. Bioorg Med Chem Lett. 2008;18(17):4872–5.
- [78] Gleeson MP. Generation of a set of simple, interpretable ADMET rules of thumb. J Med Chem. 2008;51(4):817–34.
- [79] Loganayaki N, Siddhuraju P, Manian S. Antioxidant activity of two traditional Indian vegetables: Solanum nigrum L. and Solanum torvum L. Food Sci Biotechnol. 2010;19:121–7.

- [80] Mascato DRdLH, Monteiro JB, Passarinho MM, Galeno DML, Cruz RJ, Ortiz C, et al. Evaluation of antioxidant capacity of Solanum sessiliflorum (Cubiu) extract: an in vitro assay. J Nutr Metab. 2015;2015:1–8.
- [81] Nwanna EE, Adebayo AA, Ademosun AO, Oboh G. Phenolic distribution, antioxidant activity, and enzyme inhibitory properties of eggplant (Solanum aethiopicum) cultivated in two different locations within Nigeria. J Food Biochem. 2019;43(6):e12797.
- [82] More GK, Makola RT. In-vitro analysis of free radical scavenging activities and suppression of LPS-induced ROS production in macrophage cells by Solanum sisymbriifolium extracts. Sci Rep. 2020;10(1):6493.
- [83] Somawathi K, Rizliya V, Wijesinghe D, Madhujith W. Antioxidant activity and total phenolic content of different skin coloured brinjal (Solanum melongena). Trop Agric Res. 2014;26(1):152–61.
- [84] Sudha G, Sangeetha Priya M, Indhu Shree RB, Vadivukkarasi S. Antioxidant activity of ripe and unripe pepino fruit (Solanum muricatum Aiton). J Food Sci. 2012;77(11):C1131–5.
- [85] Di Sotto A, Di Giacomo S, Amatore D, Locatelli M, Vitalone A,
  Toniolo C, et al. A polyphenol rich extract from Solanum melongena L. DR2 peel exhibits antioxidant properties and anti-herpes
  simplex virus type. 2018;1:1–25.
- [86] Azam M, Eden WT, Fibriana AI, Rahayu SR. Antioxidant properties of capsule dosage form from mixed extracts of Garcinia mangostana Rind and Solanum lycopersicum fruit. Acta Pharm Sci. 2021;59(1):69–80.