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Abstract: Aircraft engines such as gas turbines and deto-
nation engines have very important attention by the
researchers in the last decades. However, using detona-
tion engines for producing electrical and heat power was
not researched efficiently. In this study, gas turbine and
pulse detonation engines cogeneration systems were ana-
lyzed and compared by using first and second laws of
thermodynamics and exergy analysis method. Three dif-
ferent cycles, namely, basic gas turbine, Zeldovich–von
Neumann–Döring (ZND) detonation engine and steam
injected regenerative ZND detonation engine cogeneration
systems were investigated. The performance analyses and
the advantage of these three cycles were obtained and
discussed. The performance analyses were done for dif-
ferent compression ratios (r), and the combustion outlet
temperatures and pressures, exergy efficiencies, specific
fuel consumption, electrical efficiency, exergy fuel con-
sumption, electrical heat rates and other performance
parameters of the three cycles were obtained and dis-
cussed. It is found that gas turbine cogeneration systems
have some advantages and disadvantages in some condi-
tions than ZND cycle. The steam injected regenerative ZND
detonation engine cogeneration systems can compete with
the Brayton cycle cogeneration systems.
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1 Introduction

The combustion processes are very important pollution
source in the World. Research on combustion is conducted
all over the World [1,2]. Subsonic combustion process
called deflagration, in which flames obtained in subsonic

speeds with little decreases in pressure, are used in tradi-
tional gas cycles, like Diesel, Otto, Brayton cycles. Deflagra-
tion-based gas turbines are reaching the exergy efficiency
limits, and increasing their performance efficiencies are
becoming very difficult. One of the new promising technol-
ogies is pressure gain combustion (PGC), which has
emerged because of its higher efficiency than the gas tur-
bine systems. Detonative combustion is one of the primary
methods to obtain and realize PGC. Detonation combus-
tion provides 30% higher thermal efficiency than the con-
ventional gas turbines. Detonation combustion is based
on supersonic mode of combustion, which causes rapid
burning that is thousands of times faster than the flames
[3,4]. Detonation combustion process is more like a con-
stant volume combustion than the constant pressure com-
bustion, because there is no sufficient time for pressure
equilibrium. The advantage of a constant volume combus-
tion process is that it can produce a lower entropy rise of
the working fluid than a constant pressure combustion
process. There are four stages in the Pulsed detonation
engine (PDE) cycles, namely, filling air fuel mixtures, com-
bustion, blow down and purging [5,6]. Detonation is a
shock front driven by energy releases. Detonation engines
are very nicely explained by Zeldovich–von Neumann–
Döring (ZND) cycle. In ZND cycle, the oxidant–fuel mixture
comes from the injectors and is sprayed into the combus-
tion chamber. Immediately after that, a spark igniter initi-
ates the combustion and the flame proceeds subsonically
as deflagration combustion.

The level of turbulence increases with the obstacles
in the combustion chamber. The increase in the turbu-
lence level causes the combustion to become detonation
which is named deflagration to detonation transition
[5,6]. The detonation wave at the combustion chamber
outlet can be obtained. The exhaust gas is cleaned using
an inert gas in the combustion chamber. The combustion
chamber is ready for the next cycle. The minimum or the
average frequency, for more efficient detonation than
deflagration, has to be approximately 60–100 Hz. The
flame moves at Chapman–Jouguet speed which produces
good results when compared with the experimental stu-
dies using high frequency sensors. A detonation wave
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travels at supersonic speed. Temperatures are around
2,000–3,000 K according to the fuel heat value and the
fuel–oxidant combination used in the front of the detona-
tion. The ideal thermodynamic cycle with pressure gain
combustion is ZND and Humphrey cycles. PDE and rotating
detonation engine are the most favorable engines to use
detonative combustion [5–7]. The main problems of PGC
are the increasing entropy generation of combustion pro-
cesses, pressure loss, blade cooling and other difficulties
about the cycle’s devices. The exhaust flows obtained in
PGCs are defined with temperature and velocity fluctua-
tions, and strong pressure. The main problem of PGC in
gas turbines is to efficiently harvest work from the PGC
exhaust gas. To solve these problems using a plenum after
the combustion chamber or improved turbine designs to
expand outlet flow of the PGC are discussed in literature.
Obtaining maximum extraction from a PGC is still the real
problem.

In this study, the performance analyses will be done
for different compression ratios (r), and the combustion
outlet temperatures and pressures, exergy efficiencies,
specific fuel consumption (SFC), electrical efficiency, exergy
fuel consumption, electrical heat rates and other perfor-
mance parameters of the three cycles will be obtained and
discussed. The ZND cogeneration systems advantages and
disadvantages in some conditions will be shown.

In Figure 1, Brayton and ZND cycles’ temperature–
entropy (T–s) diagrams are given. In Table 1, the compar-
ison of the basic parameters of deflagration and detonation
combustions are given.

2 Materials and methods

Cogeneration plants include some components of which
themain component is turbine. In those component chemical

compositions, pressures and temperatures are changed. The
assumptions made in the analyzing and the details can be
found in literature [8–12].

The schema of a basic gas turbine cogeneration plant
is given in Figure 2. From the figure, it is seen that air is
taken into the compressor and after compressing, it is sent
to the combustion chamber for combustion with methane.
The mechanical energy obtained in a gas turbine from
exhaust energies is transformed to the generator to pro-
duce electricity. The other energies of exhaust gas are
transferred to an HRSG component to produce hot water
or steam.

The schema of a ZND detonation engine cogeneration
system is seen in Figure 3. Air is taken into the com-
pressor and after compressing, it is sent to the PDC
chamber for detonative combustion with methane. After
the detonative combustion, the exhaust gas in high pres-
sures and high temperatures is cooled, by producing
steam in HRSG for the metallurgical reasons of the gas
turbine. After the HRSG, the exhaust is available for the
gas turbine to produce mechanical energy. After that, the
exhaust is used in the HRSG to obtain steam again.

The schema of a steam injected regenerative ZND deto-
nation engine cogeneration system is seen in Figure 4. Air
is taken into the compressor and after compressing, it is
sent to be heated in the HRSG for regeneration. The com-
pressed and heated air is taken into the pulse detonation

Figure 1: Brayton and ZND cycles temperature–entropy (T–s) dia-
gram [4].

Table 1: Comparison of the basic parameters of detonation and
deflagration combustion

Parameter Deflagration Detonation

Wave Mach number (Ma) 0.0001–1.04 1.1–5
Pressure ratio (p1/p0) 0.98–0.97 12–65
Temperature ratio (T1/T0) 5–16 8–20
Density ratio (ρ1/ρ0) 0.6–1.3 1.5–2.7

Figure 2: The schema of a basic gas turbine cogeneration plant.
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combustion chamber for detonative combustionwithmethane.
After the detonative combustion, the exhaust gas with
high pressure and temperature are cooled, by injection
steam in the plenum. The exhaust gas mass increases
and their temperature decreases with steam and then exits
from the outlet of the plenum to enter into the gas turbine.
After the gas turbine, the exhaust gas is available to pro-
duce steam again and is sent to HRSG.

For steady state and open system, the energy equa-
tion is as follows:
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The law for steady state conservation mass is as follows:

∑ ∑=m ṁ ̇ .in out (2)

Efficiency or the overall efficiency of the system is as
follows:
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The chemical energy of fuel in combustion chamber
is converted to thermal energy by chemical reaction. In
the calculations, it is taken that the combustion is ideal
and also complete . The chemical reaction in combustion
chamber is as follows:
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Stoichiometric value of air is the minimum value of
air required to complete the combustion theoretically.
However, to complete the combustion, more air is always
used than the theoretical amount in Brayton cycle. Excess
air ratio is the rate of real quantity of given air to theore-
tical air [12–14]. Availability is the theoretical maximum
quantity of useful work. This can be obtained at the end
of a reversible process, if equilibrium with environment is
reached. Exergy has two components, physical and che-
mical [15,16]. For mixed substances, the physical exergy
of ideal gas mixtures is as follows:
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The chemical exergy for mixture of gases is as fol-

lows [17,18]:
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For a flow or control mass, the total exergy is as
follows:

= +E E E¯ ¯ ¯ .phy chem (8)

For open systems, the exergy equation is
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In Table 2, entropy, energy and mass equations for
the devices for basic plant are shown. In Table 3, exergy

Figure 3: The schema of a ZND detonation engine cogeneration
system.

Figure 4: The schema of a steam injected regenerative ZND deto-
nation engine cogeneration system.
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efficiencies, exergy and evaluation criteria equations of
the devices for basic plant are shown.

Temperature for ZND cycles
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Entropy for ZND cycles
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Data for the detonation combustion and the deflagra-
tion combustion of the fuel air mixtures, and exhaust gas
properties are taken as temperature and pressure of the
outlet combustion chamber, from the NASA CEA code
https://cearun.grc.nasa.gov/web sites [19]. The average

approximation of the exhaust properties, by taking into
account the experiments done in literature, was adopted
for the exergetic analysis of this study [4,5,19–21].

3 Results and discussion

In this article, the normal conditions are taken as P0 =
101.3 kPa and T0 = 25°C. For Brayton cycle, compressor’s
inlet air mass flow ismair = 91.3 kg/s, fuel mass flow ismfuel =
1.64 kg/s, isentropic efficiencies for turbines and compres-
sors of the three cycles are taken as ηizC = ηizT = 0.86, the
outlet temperature of the recuperative cycle is Trecout = 850K,
the produced steam temperature is Tsteam = 485.57 K and the
outlet temperature of the HRSG is Texhaust = 426 K [8,12,17].

Table 2: Energy, mass and entropy equations of the devices for basic gas turbine cogeneration plant [12,13,16–18]
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Table 3: Exergy, exergy efficiency and evaluation criteria equations of the devices for basic gas turbine cogeneration plant [12,17,18]
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( ( ))=E m h h T s ṡ ̇ − − −ph 0 0 0
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In Figure 5, variation in the combustion chamber
outlet temperature with compression ratio for gas turbine
(Brayton), ZND detonation engine and steam injected
regenerative ZND detonation engine cogeneration systems
are given. From the figure, it is seen that the increase in
the compression ratios, the combustion chamber outlet tem-
peratures of the three cycles increase. This increase for
Brayton cycle is 27.3%, for ZND cycle is 11.3% and for ZND
steam injected cycle is 1.8%. The ZND cycles combustion
chamber outlet temperatures are about 2,400–2,800K so
that the compression ratio is not effective and not needed.

In Figure 6, variation in the combustion chamber
outlet pressure with compression ratio for ZND detona-
tion engine and steam injected regenerative ZND detona-
tion engine cogeneration systems are given. As it is

clearly seen that increasing compression ratio increases
the combustion chamber outlet pressure for ZND cycle by
380%, for ZND steam injected cycle by 733%, while it
remains the same in Brayton cycle.

In Figure 7, variation in the exergy efficiency with
compression ratio for gas turbine (Brayton), ZND detona-
tion engine and steam injected regenerative ZND detona-
tion engine cogeneration systems are given. As it is seen
this, increasing the compression ratio, increases exergy
efficiency of gas turbine (Brayton), and steam injected
regenerative ZND detonation engine cogeneration sys-
tems about 26 and 50%, respectively. For ZND cycle there
is a maximum exergetic efficiency point at a compression
ratio of about 5–7, which is the same as that found in the
literature.

Figure 5: Variation in the combustion chamber outlet temperature with compression ratio for gas turbine (Brayton), ZND detonation engine
and steam injected regenerative ZND detonation engine cogeneration systems.

Figure 6: Variation in the combustion chamber outlet pressure with compression ratio for gas turbine (Brayton), ZND detonation engine and
steam injected regenerative ZND detonation engine cogeneration systems.
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In Figure 8, the variation in SFC with compression
ratio for gas turbine (Brayton), ZND detonation engine
and steam injected regenerative ZND detonation engine
cogeneration systems are given. This can be seen as there is
a minimum point of the SFC for ZND cycle at a compression
ratio of about 4–6. Over the compression ratio of 6, SFC
increases rapidly. The SFC for gas turbine (Brayton) and
steam injected regenerative ZND are better than ZND cycle.
Gas turbine (Brayton) and steam injected regenerative ZND
cycles can compete with each other.

In Figure 9, variation in the electrical efficiency with
compression ratio for gas turbine (Brayton), ZND detona-
tion engine and steam injected regenerative ZND detonation
engine cogeneration systems are given. Increasing the com-
pression ratios increase the electrical efficiency of the gas
turbine (Brayton) and steam injected regenerative ZND
detonation engine cogeneration systems by about 106%,

and 190%, respectively. For ZND cycle, there is a maximum
electrical efficiency point at a compression ratio of about
5–7, which is similar to that found in the literature.

In Figure 10, variation in fuel consumption for exergy
with compression ratio for gas turbine (Brayton), ZND
detonation engine and steam injected regenerative ZND
detonation engine cogeneration systems are given. It can
be seen from the figure that increasing the compression
ratio decreases fuel consumption for exergy of the gas
turbine (Brayton) and steam injected regenerative ZND
detonation engine cogeneration systems by about 21%,
and 32%, respectively. For ZND cycle, there is a maximum
electrical efficiency point at a compression ratio of about
5–7, which is the same as that found in the literature.

In Figure 11, variation in electrical heat rate with
compression ratio for gas turbine (Brayton), ZND detona-
tion engine and steam injected regenerative ZND

Figure 7: Variation in the exergy efficiency with compression ratio for gas turbine (Brayton), ZND detonation engine and steam injected
regenerative ZND detonation engine cogeneration systems.

Figure 8: Variation in the SFC with compression ratio for gas turbine (Brayton), ZND detonation engine and steam injected regenerative ZND
detonation engine cogeneration systems.
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Figure 9: Variation in the electrical efficiency with compression ratio for gas turbine (Brayton), ZND detonation engine and steam injected
regenerative ZND detonation engine cogeneration systems.

Figure 10: Variation in the fuel consumption for exergy with compression ratio for gas turbine (Brayton), ZND detonation engine and steam
injected regenerative ZND detonation engine cogeneration systems.

Figure 11: Variation in the electrical heat rate with compression ratio for gas turbine (Brayton), ZND detonation engine and steam injected
regenerative ZND detonation engine cogeneration systems.
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detonation engine cogeneration systems are given. As
seen from the figure, an increase in compression ratios
increase the electrical heat rate of the gas turbine (Brayton)
and the steam injected regenerative ZND detonation engine
cogeneration systems by about 143% and 367%, respec-
tively. For ZND cycle there is a maximum electrical heat
rate point at a compression ratio of about 5–7.

4 Conclusion

In this study, for different compression ratios (r), the gas
turbine (Brayton), the ZND detonation engine and the steam
injected regenerative ZND detonation engine cogeneration
systems are analyzed. Increasing the compression ratios
increase the combustion chamber outlet temperatures of
the three cycles. The ZND cycles combustion chamber outlet
temperatures are about 2,400–2,800 K so that the compres-
sion ratio is not effective and not needed to increase the
temperatures. Increasing compression ratio increases the
combustion chamber outlet pressure for ZND cycle by
380%, for ZND steam injected cycle by 733%, while it
remains the same in Brayton cycle. Increasing the compres-
sion ratios increase the exergy efficiency of the gas turbine
(Brayton) and the steam injected regenerative ZND detona-
tion engine cogeneration systems by about 26%, and 50%,
respectively. For ZND cycle there is a maximum exergetic
efficiency point at a compression ratio of about 5–7, which
is the same as that found in the literature. It was seen that
there is a minimum point of the SFC for ZND cycle at about
4–6 compression ratio. Over the compression ratio of 6, SFC
increases rapidly. The SFC for gas turbine (Brayton) and
steam injected regenerative ZND are better than ZND cycle.
Increasing the compression ratios increases the electrical
efficiency of gas turbine (Brayton) and steam injected regen-
erative ZND detonation engine cogeneration systems by
about 106%, and 190%, respectively. For ZND cycle, there
is a maximum electrical efficiency point at a compression
ratio of about 5–7, which is similar to that found in the litera-
ture. Increasing the compression ratios decrease the fuel con-
sumption for exergy of the gas turbine (Brayton) and steam
injected regenerative ZND detonation engine cogeneration
systems by about 21% and 32%, and increases the electrical
heat rate of the gas turbine (Brayton) and the steam injected
regenerative ZND detonation engine cogeneration systems by
about 143% and 367%, respectively. For ZND cycle, there is a
maximum electrical efficiency and electrical heat rate point at
a compression ratio of about 5–7.

In this article, the exergy and electrical efficiencies for
the ZND cycles were compared with a deflagration-based
Brayton cycle. For a compressor pressure ratio of 1, while

the Brayton cycle shows zero efficiency, the thermal effi-
ciency of the two ZND cycles start at 25–30%. These findings
support the theoretical advantage of PDEs over Brayton
cycles. The advantage of the PDEs is that it only requires
fans or few compressor stages. Also, the detonation engines
are less complex and cost effective than other engines.

As a conclusion, gas turbine (Brayton) and steam
injected regenerative ZND cycles can compete with each
other. Improving ZND cycles by steam injection, regen-
eration, better designed gas turbines for PDE engines and
PGC would make the ZND cycles superior over the gas
turbine cycles.
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