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Abstract: Air quality represents one of the most important
parameters determining indoor microclimate and human
comfort. Thus, the current study reports a comprehensive
study on the dominant sources, organic compositions,
and potential health impacts of the polyaromatic hydro-
carbons (PAHs) in the atmospheric particle matters (PMs)
ranging from 2.5 µm (PM2.5) to 10 µm (PM10) size in the
rural and urban regions of western (Jeddah city) Saudi
Arabia collected over 1 year between 2014 and 2015. The
levels of PAHs in two locations namely Obhur (Urban)
and Hada Alsham (Rural) were monitored over 1 year (2014
and 2015) using the gas chromatography coupled mass spec-
trometry. The level of ƩPAHs in Obhur (819.25 ng/m3) has a
significantly high concentration of PAHs compared to Hada
Alsham (Rural) (675.26 ng/m3). Indeno(1,2,3-CD)pyrene was
the major contributor with an average value of 215.66 ng/m3

followed by benzo[k]fluranthene with a concentration of
150.68 ng/m3, respectively. The major contributors were
indeno[1,2,3-cd]pyrene, benzo[k]fluranthene, dibenzo[a,h]
anthracene, benzo[g,h]perylene, and benzo[b]fluranthene
are the major contributors with contributing percentages
of 26.32, 18.39, 9.07, and 8.29%, respectively. The rest of

all compounds were below 4%. The highest concentrations
of PAHs in Obhur (1836.99 ng/m3) and in Hada Alsham
(1107.40 ng/m3) were observed in winter in January 2014.
PAHs with 4–6 aromatic ring components are primarily
emitted by high temperature combustion. The average
values for the BaA/(BaA + Chr) and Flt/(Flt + Pyr) ratios
at Obhur were found 0.58 and 0.43 and at Hada Alsham
were found 0.63 and 0.38, respectively, indicating that coal/
biomass burning is the major source of PAHs. Hada Alsham
(rural area), the transportation system, is a significant con-
tributor to the observed PAHs. These results reflect Saudi
Arabia’s traffic load in both rural and urban areas. On road
sites, the impact of petroleum combustion and vehicular
emissions was also identified. The sum of the incremental
lifetime cancer risk (ILCR) for all congeners for infants along
the Obhur location was 2.13 × 10−6 and 1.38 × 10−6, respec-
tively. ILCR values were less than 1.0 × 10−4, implying that
PAH exposure posed an acceptable potential cancer risk in
this study. Various local emission sources contributed more
PAHs inmany Saudi urban areas, increasing the risk of lung
cancer, and the health risk. PAHs have an associated large
surface area and are capable of deposition in the respiratory
system with high efficiency. The total health risk assess-
ment study also helps in alarming the toxicity at both the
locations.

Keywords: polyaromatic hydrocarbon, rural and urban,
incremental lifetime cancer risk, level of PAHs, health
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1 Introduction

Polyaromatic hydrocarbons (PAHs) have been recognized
as a main component of contaminated airborne compo-
nents, with several of their constituents being identified
as carcinogenic, mutagenic, and allergenic human health
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mediators [1]. Conferring to recent epidemiological research,
inhaling airborne particulate matter (PM) increases human
morbidity and mortality [2–6]. Inhaled PM (2.5m) can be
deposited in the lung and migrate from there via systemic
circulation to the heart and other distal organs [7]. Incom-
plete coal and petroleum combustion have been linked with
the high levels of atmospheric soot particles [8]. The seg-
mentation of PAH complex species into PM and vaporous
levels varies with the atmospheric environment, vapor types,
interactions with the mixture and vapor, and overall perfor-
mance of the mixture in the air [9–11].

PAHs are classified into two types based on their
molecular weight: (i) those with number of aromatic rings
lower than four phenyl rings identified as low molecular
weight compounds, while those with four or more rings
are high molecular weight compounds. PAHs are mostly
colored and crystalline at room temperature [12–14]. The
multiple and the number of aromatic rings containing
various organic constituents and the functional groups
attached to these rings distinguish PAHs [12]. Dehydro-
genation and fusion of hydrocarbon molecules by C–C
bond formation changes the color of PAHs from colorless,
white, or yellow to red or brown at temperature 500–800 K
and at 800–100 K, decrease in intermolecular distance
and benzene ring polycondensation changes the color
from yellow, red, or brown to dark brown or black
as reported earlier [15]. Vehicle emissions, industries,
lubricating oil, road surface weathering, asphalt pave-
ment, tire wear, and construction and demolition activ-
ities are the primary sources to PAH contamination in
urban road dust [16–18].

To the best of our knowledge, more than 200 PAHs
have been discovered, with some of them being highly
toxic substances that cause significant harm to both the
ecosystem and human health [19]. US EPA has classified
16 PAHs into sediments, soil, and water as priority pollu-
tants because of their health risk and carcinogenic nature,
including naphthalene (Nap), acenaphthylene (Acy), ace-
naphthene (Ace),fluorene (Fle), phenanthrene (Phe), anthracene
(Ant), fluoranthene (Fla), pyrene (Pyr), benz[a]anthracene (BaA),
chrysene (Chr), benzo[b]fluoranthene (BbF), benzo[k]
fluoranthene (BkF), benzo[a] pyrene (BaP), dibenz[a,h]
anthracene (DBA), benzo[ghi]perylene (BghiP), and indeno
[1,2,3-cd]pyrene (IDP) [19–21]. The overall main sources of
PAHs include oil seepage, bitumen evaporation, and spon-
taneous fires as natural sources, while incomplete com-
bustion of biomass and fossil fuels are primarily as an
anthropogenic source of PAHs in the atmosphere, particu-
larly particle-bound PAHs. [22,23]. Fuel type and combus-
tion conditions have also significant impacts on the level
of PAH emissions [24,25].

Recently, Yu et al. [26] have studied the risk of lung
cancer associated with PAHs emitted from gas cooking in
Taiwan. On the other hand, during autumn and winter in
rural households of Henan Province, China, Wu et al. [27]
have determined precisely the concentrations and com-
position of 16 PAHs adsorbed to PM10 and PM2.5. The
dispersion of PAHs during cooking and the emission rates
and exposure dynamics to individuals working in kitchens
during the time of cooking have been fully studied by Gao
et al. [28]. On the other hand, a series of organic constitu-
ents produced from food emissions such as fatty acids,
organic ions such as acetate, formate, methane sulfonate,
pyruvate, succinate, and others, and molecular markers
have been reported [29,30]. PAHs released into the atmo-
sphere are followed by rapid partitioning into particulate
and gaseous phases and undergo complex transport and
conversion before being deposited in water bodies, soil,
animal bodies, and vegetation [27,28]. In contrast to the
Eastern Saudi Arabia, where the atmospheric background
is a cumulative assimilation of all sources in route to the
general north-to-south flow of weather patterns, Jeddah
(the Western Saudi Arabia) receives air primarily from
the desert and includes densely populated areas [30].
Furthermore, long-range atmospheric transport of coarse
and fine PM affects Jeddah. Thus, the overall goals of the
current study are focused on: (1) judging the air quality in
Jeddah city and rural region in terms of the dominant
sources of PAHs; (2) assigning the most probable organic
compositions of PMs ranging from 2.5 µm (PM2.5) to 10 µm
(PM10) in the air of Jeddah; (3) assigning the potential health
impacts of the PAHs in various locations in Jeddah Urban
and Rural areas over 1 year; (4) identifying the levels and
profiles of PAHs emissions in PM2.5 and PM10 in the selected
locations in the western region (Jeddah) city; and finally (5)
using the background PAH concentrations at Obhur and
Hada Alsham, the baseline of inhalation exposure values
for public health in Saudi Arabia could be assigned.

2 Materials and methods

Particle size-fractionated PM samples were collected from
top of the medium size building in the city of Jeddah
(Obhur) and the rural area of Hada Alsham [26].

2.1 Sample collection

A MiniVol Portable Air samplers (AirMetrics Inc.), which
draw air at a flow rate of 5 L/min through a particle size
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separator (impactor) and then through a 47 mm filter
was used. The 10 and 2.5 μm particle size separation
was achieved by impaction (or dichtomas sampler). The
fine fractions (PM2.5) were deposited onto 25mm dia-
meter polycarbonate filters (Nucleopore, Costar Corp.)
with 0.4 μm pore size whereas the coarser (PM10) was
collected onto 47mm diameter polycarbonate filters, with
1 μm pores for the determination of the organic content of
the of the atmospheric PM. For every five samples, field
blanks were obtained to ensure quality control. A 2.0 g of
pre-washed sodium sulfate (Na2SO4) was evenly placed on
Al foil for each blank sample and gathered with the vacuum
cleaner in the same manner as the dust samples. The sam-
ples were finally sieved with a 250m mesh to obtain homo-
genized results. For the organic components and toxicity
study, atmospheric PM samples were critically collected
using high volume cascade impactors. The size-segregated
PM was also collected using high volume air samplers
(Tisch, Env. Cleves, OH) retrofitted with a High Volume
Cascade Impactor (HVCI) TE-230 (Tisch Env. Cleves).

2.2 Instrumentation and sample preparation

An appropriate measured aliquot of dust samples (typi-
cally between 50 and 100mg) was collected in a 12 mL
glass centrifuge tube. Internal requirements were spiked
into the samples, which were formerly allowed to equili-
brate overnight at room temperature. The samples were
extracted three times using 4mL of hexane/acetone (4/1,
v/v) and ultrasonicated for 30min, followed by centrifu-
gation at 2,000 rpm for 10min. For instrumental analysis,
the pooled extracts were preconcentrated to 1 mL under a
gentle stream of nitrogen. A Shimadzu Gas chromatography
coupled mass spectrometry (GC-MS) was used in the selec-
tive ion-monitoring mode. A fused silica capillary column
(DB-530m 0.25mm0.25m) was also used for sample isola-
tion. Injector and ion source temperatures were used at
temperature of 80 and 230°C, respectively. The oven tem-
perature was programmed to start at 80°C at a rate of
1.0°C/min and then increased to 180°C at 12 °C/min,
230°C at 6 °C/min, 270°C at 8 °C/min (held for 2min),
and finally 300°C at 30°C/min (held for 12 min). Ions m/z
128, 136, 152, 154,164, 166, 178, 188, 202, 228, 240, 256, 258,
264, 276, 278, and 288 were monitored for different PAHs.

The concentrations of PAHs in the extracts were ana-
lyzed by GC-MS (QPplus-2010, Shimadzu, Japan) utilizing
electron ionization conditions. The preliminary tempera-
ture of the column oven was 250°C. A HP 5MS, 30m capil-
lary column was used (30m × 0.25mm i.d. × 0.25m, 5%

phenylmethyl siloxane, Agilent HP-5MS) with 60°C (2min
hold) temperature program of 60°C (2min hold), ramp
5°C/min to 310, and 5min hold. Helium was used as the
carrier gas (2mL/min).

2.3 Quality assurance/quality control

For each set of vehicle dust samples, laboratory blanks
[extraction and clean up producer in the same way as
dust samples but without dust samples were used as a
part of the quality assurance protocol, field blanks (n = 3)
to insure no contamination coming from solvent or glass
wares] (N = 10). Indoor dust certified reference materials
(CRMs) from National Institute of Standards & Technology
SRM 2585 (N = 3) were also analyzed for method valida-
tion. In parallel, the dust samples were analyzed with the
CRMs to account for eventual external contamination
during sampling, sample preparation, and instrumental
analysis and also to evaluate method accuracy. The lowest
point of calibrations curve was used as limits of quantifi-
cation. To avoid Amber glasses under fume hood without
light were used to avoid the photo degradation of analytes,
during extraction and clean up steps.

2.4 Health risk assessment

To assess the cancer risk attributed to carcinogens, the
incremental lifetime cancer risk (ILCR)whichwas expressed
as the lifetime average daily dose (LADD) multiplied by the
BaP slope factor was used. The cumulative probabilities of
the total risk were also evaluated by means of Monte Carlo
simulation. Lifetime was also divided into three groups
according to age (infants: 0–1 years, children: 2–18 years,
and adults: 19–70 years). The total LADD is the sum of the
LADD values of the above three age groups. The values of
LADD and ILCR can be calculated employing the following
equations, respectively:

=

× × ×

×

CLADD IR EF ED
BW AT

, (1)

⎧
⎨⎩

⎫
⎬⎭

= × × cfILCR LADD CSF BW
70

,3 (2)

where C is the background equivalent concentration (BEC)
and it can be calculated using the method of Jung et al.
[30]. The carcinogenic risk of a PAH mixture can be
expressed via its total BaPeq concentration (BEC), which
is calculated by using the following equation [31]:
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∑= ×BEC Ci TEFi, (3)

where TEFi is the toxicity equivalency factor of PAH con-
gener [31]. The TEFi values of each PAH congener are
given in Table 1 [32]. The meaning and value of the other
parameters used for analysis in the equations were derived
and presented in Table 2.

3 Results and discussion

3.1 Distribution pattern of PAHs

Saudi Arabia’s climate is a major contributor to rising
pollution levels as a dry region with little precipitation.
In most parts of the Saudi Arabia, the average annual
rainfall is less than 150mm. Jeddah receives 53.5 mm
(2.1 in) of rainfall per year on average [26,30]. The topo-
graphy of the land also has an impact on air pollution. On

the other hand, the desert covers the majority of Saudi
Arabia, resulting in a high concentration of wind-trans-
ported dust in inhabited areas’ air sheds. Thus, recently,
air pollution rises in lockstep with socioeconomic devel-
opment, and traffic is a major contributor in the current
study.

The present study was assessed the level of PAHs along
the two locations, Obhur (Urban) and Hada Alsham (Rural)
for 1 year. The data were collected from January 2014 to
December 2014. The location of Obhur showed significantly
higher concentration of ƩPAHs. The average value of ƩPAHs
for 1 year along the Obhur and Hada Alshamwas 819.25 and
675.26 ng/m3, respectively. The average distribution of var-
ious PAHs along Obhur location from the whole year 2014 is
shown in Figure 1. As can be seen in Figure 1, indeno[1,2,3-
cd]pyrene was the major contributor with an average value
of 215.66 ng/m3 followed by benzo[k]fluranthene with a
concentration of 150.68 ng/m3, respectively. The major con-
tributors were indeno[1,2,3-cd]pyrene, benzo[k]fluranthene,
dibenzo[a,h]anthracene, benzo[g,h]perylene, and benzo[b]
fluranthene with contributing percentages of 26.32, 18.39,
9.07, and 8.29%, respectively. The levels of the rest of all
compounds were found below 4%. These results can be
attributed the different sources of PAHs involved in both
locations. In Abhor location, coal/biomass burning is most
likely the major source of PAHs, whereas in Hada Alsham
(rural area), transportation system represents the main
source of PAHs. Moreover, petroleum combustion and
vehicular emissions were also participated in the observed
trend.

Figure 2 represents the month ways variation of each
compound of PAHs along the Obhur for whole the year
from January to December 2014. Figure 2 clearly shows
the dominance of indeno[1,2,3-cd]pyrene and benzo[k]
fluranthene over the course of a year. Figure 3 also
depicts the total of all observed PAHs and the seasonal
pattern of PAHs in Obhur from January to December 2014
from Obhur. The obtainable results shed light on the

Table 1: The TEFi values of each PAH congener

PAH TEF

Ace 0.001
Acy 0.001
Flo 0.001
Phe 0.001
Ant 0.01
Flu 0.001
Pyr 0.001
BaA 0.1
Chr 0.01
BbF 0.1
BkF 0.1
BaP 1
DahA 1
IcdP 0.1
BghiP 0.01

Table 2: The parameter description

Parameters Represents Units Infant Children Adult

Age Years 0–1 2–18 19–70
BW Body weight kg 9.1 ± 1.25 29.7 ± 5.62 71.05 ± 13.6
IR Inhalation rate m3/day 5.36 11.41 15.73
EF Exposure frequency Days/year 350 350 350
ED Exposure duration Year 0–1 0–17 0–52
AT Average time Days 25,550 25,550 25,550
cf Conversion factor 10−6 10−6 10−6

CSF Cancer slope factor mg/kg day 3.14 3.14 3.14
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higher level of PAHs in the winter season (January,
February, and December) as compared to the summer
season. However, an elevated level of PAHs was detected
in August 2014. The highest concentration of PAHs was

observed in January 2014, with a concentration of
1836.99 ng/m3.

Figure 4 depicts the average distribution of various PAHs
along the Sham Alhada location for the entire year 2014.
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Figure 1: The average distribution of various PAHs along the Obhur location from the whole year 2014.
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Figure 2: Monthly variation of PAHs in the air samples from Obhur.
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The average value of indeno[1,2,3-cd]pyrene (326.70 ng/m3)
was clearly shown to be the major contributor, followed by
dibeenzo[a,h]anthracene (47.78 ng/m3). In this study, the sig-
nificant determinants were indeno[1,2,3-cd]pyrene, dibenzo
[a,h]anthracene, benzo[g,h]perylene, benzo[k]fluranthene,
and benzo[b]fluranthene, which contributed 48.38, 7.07,
6.43, 5.61, and 5.25%, respectively. The remnants of
the compounds were all below 4%. Figure 5 depicts the
month-to-month variation of each compound along the
Hada Alsham for the entire year. Indeno[1,2,3-cd]pyrene
levels were significantly higher in all months of 2014 when
compared to other PAH levels. Except for indeno[1,2,3-cd]
pyrene, the rest of the PAHs had significantly lower distri-
bution patterns when compared to the urban area (Obhur).

The levels of all PAHs detected in Hada Alsham from
January to December 2014 are illustrated in Figure 6.
As can be seen, in the Obhur, the observed results do
not vary greatly depending on the season. However, an

elevated level of PAHs was detected in January 2014. The
rest of the months followed a similar pattern. The highest
concentration of PAHs was observed in January 2014,
with a concentration of 1107.40 ng/m3. On the other hand,
the lowest concentration was observed in November 2014,
with a concentration of 486.62 ng/m3. The data also
revealed that the PAHs with four to six aromatic ring com-
ponents are primarily emitted at high temperature com-
bustion and gradually migrates from the particulate phase
to the gaseous phase in the atmosphere [31–34]. On the
other hand, domestic heating may have a greater impact
on PAH levels in residential areas during the winter. Popu-
lation density and airborne PAH concentrations are known
to be positively correlated [35,36]. Local activities are com-
pletely different in the current observation where in the
case of the Obhur region that close to the Red Sea and has
a lot of shipping activities, which are most likely affect
PAHs distribution pattern [26,32].
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Figure 3: The sum PAHs on monthly basis from January 2014 to December 2014 from Obhur.
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Aside from that, nearby industries and man-made
activities along the coast are known to play a significant
role in PAHs distribution. The transportation system was

the significant contributor for the observed PAHs along
the Hada Alsham (rural area). In terms of non-occupa-
tional exposure, residents living in rural areas [35,36]
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Figure 5: Monthly variation of PAHs in the air samples from Hada Alsham.
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generally inhale higher PM-bound PAH concentrations
than residents living in urban areas [37,38]. This behavior
is most likely attributed to rural residents still primarily
use solid fuels such as coal and wood for cooking and
heating, despite the fact that these sources emit a high
level of PAHs due to their low combustion efficiency,
whereas urban residents primarily use clean fuels such
as liquefied petroleum gas and natural gas.

3.2 The sources of PAHs

Pyrogenic, petrogenic, and biological PAH sources are
the main three sources of PAHs in the environment where
when natural materials are subjected to high tempera-
tures and low oxygen concentrations, pyrogenic PAHs
are formed [39–41]. Destructive extraction and thermal
splitting of oil residues into simpler hydrocarbons are
examples of pyrolytic practices. Meanwhile, other inad-
vertent procedures emerge as a result of partial oil incin-
eration in vans, imperfect burning in woodland, and
inadvertent ignition of gas oils in central heating systems
over 350–1,200°C during the pyrogenic procedures repre-
sent another source of PAHs. In metropolitan areas, pyro-
genic PAHs were frequently found in higher concentrations
as well as in areas near PAH sources. It is worth to noting
that, rudimentary oils contain PAHs that are produced
over time at temperatures ranging from 100 to 150°C.
PAHs may also be produced, via specific shrubs and
microorganisms, or may be produced because of plant
destruction naturally or via anthropogenic activities [42].

Diagnostic PAH concentration ratios were used to iden-
tify potential emission sources, The ratio of the sum of the
concentrations of nine major non-alkylated compounds
[fluoranthene (Fl), pyrene (Py), benz[a]anthracene (BaA),
chrysene (Chry), benzofluoranthenes (BbF), benzo[a]
pyrene (BaP), benzo[e]pyrene (BeP), indeno[1,2,3-cd]pyrene
(IcdP), and benzo[ghi]perylene (BghiP)], expressed as con-
centrations of PAH (CPAHs) to the total concentration of the
PAHs, expressed as TAPHs (CPAHs/total PAH (TPAHs)), has
been frequently used as a characteristic value for PAHs
produced by combustion [43,44]. To identify properly the
source of PAHs, the methylphenanthrene-to-phenanthrene
ratio (MP/P) has been also used [43]. MP/P ratios ranging
from 1 to 8 indicate an increase in mobile sources or input
from unburned fossil fuel [44]. Emissions from stationary
combustion sources where the fuel burns at higher tem-
peratures have ratios less than 1. CPAHs/TPAHs were also
used as a diagnostic parameter for mobile or stationary
sources.

The ratios BaA/(BaA + Chry), BeP/(BeP + BaP), F1/(F1 +
Py), and IcdP/(IcdP + BghiP) are also used for source recon-
ciliation [43–47]. At the Obhur, except for March and April
2014, the current study found an MP/P ratio of less than 1.
The graph depicts emissions from stationary combustion
sources where the fuel burns at higher temperatures. How-
ever, it is reflected as increased mobile sources or input
from unburned fossil fuel inMarch and April. Hada Alsham,
on the other hand, shows MP/P ratios ranging from 0.55 to
5.58. These values were found between 1.0 and 8 in April,
May, October, and December, revealing the mobile sources
or input from unburned fossil fuel. During the rest of the
months, it tracks emissions from stationary combustion
sources where fuel burns at higher temperatures. The
mean values of CPAHs/TPAHs at Obhur (0.787) and at
Hada Alsham (0.84) were found twice the value reported
for non-catalyst-equipped (0.41) and catalyst-equipped
(0.51) automobiles and heavy-duty diesel trucks from
Pasadena, USA (0.30) [48,49] and twice the mean value
reported for urban samples (0.430.04) and higher than
rural samples of Heraclion [50].

To understand the PAH emission sources in Obhur
and Hada Alsham, diagnostic ratios were used to eval-
uate potential sources in previous research [51]. Two
diagnostic ratio pairs were used: BaA/(BaA + Chr) versus
Flt/(Flt + Pyr). With thresholds of 0.20 and 0.35, the first
ratio, BaA/(BaA + Chr), can be used to distinguish petro-
genic sources, coal combustion, and vehicular emissions
[52], while with a threshold of 0.50, the second ratio, Flt/
(Flt + Pyr), indicates petroleum combustion or coal/bio-
mass burning [53,54]. The mean values for the BaA/(BaA
+ Chr) and Flt/(Flt + Pyr) ratios at Obhur were found 0.58
and 0.43, respectively, and at Hada Alsham were found
0.63 and 0.38, indicating that coal/biomass burning is
the major source of PAHs. The impact of petroleum com-
bustion and vehicular emissions on road sites was also
identified as illustrated in Figures 7 and 8.

The calculated proportions of BaA/(BaA + Chr), which
are more important than the presence of diesel engines
and limited industrial areas, ranged between 0.4 and
1.0 at all testing locations. These results were similar
to the relative amounts calculated for diesel cars and
vans, which ranged between 0.38 and 0.64 [55,56],
and manufacturing sites, which ranged between 0.23
and 0.89 [53,54]. The observed results reflect Saudi Ara-
bia’s traffic load in both rural and urban areas. Further-
more, due to a variety of meteorological conditions and
other factors, outdoor air pollutants degrade or trans-
form in the atmosphere. Furthermore, despite the fact
that there have been numerous environmental observa-
tion studies on PM-bound PAHs conducted over the last
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few decades, different countries and regions have focused
on different aspects of PM-bound PAH research.

3.3 Health risk assessment

Using the background PAH concentrations at Obhur and
Hada Alsham, the study calculated the baseline of inhalation

exposure values for public health. The ILCR was calculated
bymultiplying the LADDby the BaP slope factor to assess the
cancer risk attributed to carcinogens. Furthermore, using
Monte Carlo simulation, the cumulative probability of the
total risk was calculated. Infants (0.0–1 year), children
(2–18 years), and adults (19–70 years) were divided into
three age groups. The sum of the LADD values for the three
age groups mentioned above is the total LADD. An ILCR
value of 1 × 10−6 was defined as insignificant or “essentially
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negligible,” because it is comparable to the risk level of
some common human activities like diagnostic X-rays and
fishing [22]. An ILCR value between 1 × 10−6 and 1 × 10−4

was regarded as acceptable, while a value of greater than 1
× 10−4 was regarded as serious [56,57]. The probability den-
sity of the current ILCR for infants in the current study is
depicted in Figures 9 and 10.

To provide a clearer picture, all ILCR values were dis-
played on a scale of 10−6. The sum of ILCR for all congeners
for infants along the Obhur and Hada Alsham locations

was 2.13 × 10−6 and 1.38 × 10−6, respectively. The value
represents the infants’ likely risk in both locations.
Figures 11 and 12 depict the ILCR values for the children
at both locations in the same way. The sum of ILCR for all
congeners for children along the Obhur location was 34.99
× 10−6 and 22.6 × 10−6 at Hada Alsham, respectively. The
value represents the children’s likely risk at both locations.
In both locations, the risk factor for infants is approxi-
mately 16 times higher. Figures 13 and 14 also demonstrate
the ILCR values for adults in both locations. The total ILCR
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Figure 9: The probability density of the current ILCR at Obhur for infants.
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Figure 10: The probability density of the current ILCR at Hada Alsham for infants.
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for all congeners for adults along the Obhur location was
82.50 × 10−6, while it was 53.40 × 10−6 at Hada Alsham. The
value represents the children’s likely risk at both locations.

The risk factor for infants is approximately 38 times
higher in both locations, and it is approximately two
times higher in both locations for adults. Several studies
have estimated the contribution of ingestion of residential
dust to total PAH exposure [58,59]. According to Gevao
et al. [60], dust ingestion accounts for 42% of non-dietary
PAH intake in children and 11% in adults. According to
Chuang et al. [59], dust/soil ingestion accounts for 24%
of total carcinogenic PAH intake in children and 7% in
adults. However, in the present study, both ILCR values

decreased in the following order: adults > children >
infants; both ILCR values were less than 1.0 × 10−4,
implying that PAH exposure posed an acceptable potential
cancer risk in this study.

4 Conclusion and future
perspectives

In summary, the current study successfully investigated
the level of PAHs in aerosol samples collected between
2014 and 2015 in Jeddah’s rural and urban areas. Obhur
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Figure 11: The probability density of the current ILCR at Obhur for children.
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has a significantly higher concentration of PAHs when
the concentrations in the two locations are compared.
The Obhur region, for example, is close to the sea and
has a lot of shipping activity, which will affect the dis-
tribution pattern of PAHs. Aside from that, nearby indus-
tries and man-made activities along the coast will be

important. Hada Alsham, on the other hand, was in a
rural area, but the region’s transportation system is a
significant contributor to the observed PAHs. According
to the source factor, coal/biomass combustion is the pri-
mary source of PAHs. On road sites, the impact of petro-
leum combustion and vehicular emissions was also
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Figure 13: The probability density of the current ILCR at Obhur for adults.
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identified. Various local emission sources contributed
more polycyclic aromatic hydrocarbons in many Saudi
urban areas, increasing the risk of lung cancer, and the
health risk was relatively high in these areas. The total
health risk assessment calculation for infants, children,
and adults reveals that the cancer risk assessment values
were vulnerable to health issues, which is a major concern
on these sites. Assigning the potential health impacts,
base line, and the emissions sources of PAHs in PM2.5
and PM10 in various in Saudi Arabia is of great importance
for constructing the baseline of inhalation exposure values
for public health in Saudi Arabia could be assigned.
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