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Pseudo-first order model: In(g. — q;)
(81)

Pseudo-second order model: - = ﬁ L (S82)
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Intra-particle diffusion model: g, = kjt2 + C  (S3)

where t is the adsorption time; g, the amount of dapto-
mycin adsorbed on the adsorbent at time ¢; krand k; are
the rate constants of pseudo-second-order and pseudo-
second-order models, respectively; ki, is liquid film diffu-
sion constants; C the constant describing the thickness of
the bounder layer.

Langmuir isotherm: & = 1 Ce
e kaL Gm

(S4)

Freundlich isotherm: Ing. = In ks + % InC. (S5)
Temkin isotherm: g, = kr In(C,) + kr f (S6)

D-Risotherm: Ing, = Ingp
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Figure S2: (a) DTG and (b) TG profiles of AF-biochar and Biochar.
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where (mg g7%) is the equilibrium adsorption capacity; C,
(mg L") the concentration of equilibrium; g, the mono-
layer saturation adsorption capacity; k; the Langmuir
adsorption equilibrium constant; ks and n are the
Freundlich constants, related to the adsorbent, adsorbate
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Figure S1: Contact angle measurement of water droplet on the sur-
face of (a) Biochar and (b) AF-biochar.
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Figure S3: (a) N, adsorption and desorption isotherms at 77 K and (b) pore size distribution of AF-biochar and Biochar.
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Figure S4: Relation of adsorbed capacities of AF-biochar and Biochar
to the pH values of DAP. (conditions: the temperature of 298K, the  Figyre S5: Influence of DAP ionic concentration on adsorbed capa-
initial concentration of 25 mg L™, and the duration of 85 min). cities (conditions: temperature 298 K, pH 4.8, and duration of

85 min).
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Figure S6: DAP adsorption isotherms in the aqueous solution at pH 4.8, temperature 298 K, and the duration of 85 min fitted in isotherm

models: (a) Langmuir; (b) Freundlich; (c) Temkin; (d) Dubinin-Radushkevich (D-R).
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Figure S7: (a) Variation curve of the adsorption capacity of DAP by AF-biochar and Biochar with the temperature; (b) Plot for the thermo-

dynamic analysis.
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: AF-biochar Table S2: Parameters of thermodynamic adsorbing DAP on AF-
B Biochar biocharj\nd biochar (conditions: pH 4.6; duration = 85 min; Co =
25mglL™)
Parameter Temperature (K) AF-biochar Biochar
AGE (k) mol™) 285 -1.565 -0.235
290 -1.605 -0.316
295 -1.621 -0.395
300 -1.610 -0.463
305 -1.557 -0.568
310 -1.487 -0.618
315 -1.345 -0.662
- — 320 -1.362 -0.783
I ) Numberi)l‘recvc]es ! AH° (k) mol™) ~24.833 3.837
‘ AS° (k) mol™) -74.799 1.485
Figure S8: Adsorption-capacity variation with recycles for regener- R 0.9631 0.9912

ating AF-biochar and Biochar.

Table S1: Physico-chemical properties of daptomycin

type, and temperature; ky is the Tempkin constant

Parameter Character

reflecting the adsorption heat; f (Lmg™') is the
Compound Daptomycin Tempkin binding constant reflecting the maximum com-
Molecular C75H101N17046 bine energy.
formula Ke = q./Ce (S8)
CAS number? 103060-53-3 AG® = AH® — TAS® (S9)
Molecular AG*® = —-RT In K¢ (S10)
structure

Ink = 25 A (S11)
R RT

where K. (mLg™!) is the thermodynamic-equilibrium

constant.
Molar mass® 1620.67 g mol™*
pK;? 4.00 + 0.10
Density® 1.45+ 0.1gcm>
Solubility in 5mgmL™
water®
Storage -20°C
condition?

Data from the

website:  https://www.chemicalbook.com/

ProductChemicalPropertiesCB8855073.htm.
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Table S3: Comparison of maximum adsorption capacity/removal efficiency and adsorption equilibrium time of removing macrolide anti-
biotics from wastewater with other adsorbents

Adsorbent Abbreviation  Macrolide dm (mgg™)/ Equilibration References
antibiotic removal time (min)
efficiency (%)
Clivia biochar Biochar Daptomycin 81.53 85 This study
Ag/Fe clivia biochar AF-biochar 44.81
Willow sawdust biochar WSBC Daptomycin 57.47 240 [1]
WSBC/Fe;0, 217.39 120
Pine sawdust biochar PSBC 55.56 240
PSBC/Fe;0, 212.77 120
Boron nitride—carbon nanosheets BCNs Roxithromycin 460.09 60 [2]
Mesoporous boron nitride—carbon MBCNs 575.68
nanosheets
Activated carbon impregnated magnetite PAC/Fe/Ag/Zn Azithromycin 14.18 120 [3]
composite
L-Methionine modified montmorillonite K10 LMP clay Azithromycin 298.78 90 [4]
3-Aminopropyltriethoxysilane AMP clay 286.10
functionalized magnesium phyllosilicat
Magnetic nanocrystalline cellulose NC-Fes0, Azithromycin 86.61 180 [5]
MnFe,0, N/A Azithromycin 55.5% 240 [6]
Amino MnFe,0, magnetic nanomaterials MnFe,0,4-N, 82.3%
Thiol-functionalized MnFe,0, magnetic MnFe,0,4-HS 92.6%
nanomaterials
Nanoemulsions CNF 1 Clarithromycin 92.9% 30 [7]
CNF 2 89.8%
CNF 3 82.8%
CNF 4 74.9%
CNF 5 70.7%
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