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Abstract: Direct urea fuel cell (DUFC) has attracted many
researchers’ attention due to the use of wastewater, for
example urine, which contains urea for the fuel. The
main factor to improve the electrochemical oxidation per-
formance of urea and further enhance the performances
of DUFC is the use of a good anode catalyst. Non-noble
metal catalyst, such as nickel, is reported to have a good
catalytic activity in alkaline medium towards urea electro-
oxidation. Besides optimizing the anode catalyst, the use
of supporting electrode which has a large surface area as
well as the use of H,0, as an oxidant to replace O, could
help to improve the performances. The recent progress in
anode catalysts for DUFC is overviewed in this article. In
addition, the advantages and disadvantages as well as the
factors that could help to escalate the performance of
DUFC are discussed together with the challenges and
future perspectives.

Keywords: fuel cell, urea, electro-oxidation, anode catalyst

1 Introduction

Global energy demands keep increasing every year, while
most energy sources are still depending on fossil fuels [1].
Accordingly, other alternatives of the clean, environmen-
tally safe, and low cost energy sources are necessary to be
developed [2-7]. The use of wastewater as an alternative
source of energy has obtained great attentions due to at
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least two problems, energy demand and wastewater treat-
ment, which can be solved. One of the challenging efforts
is the application of urine as a fuel in direct urea fuel cells
(DUFCs). Urea, widely found in wastewater, is an organic
compound containing carbon, hydrogen, and oxygen. The
amount of hydrogen in urea is around 6.67 wt%. There-
fore, urea, which is found around 2-2.5 wt% in the waste-
water (urine), is classified as an acceptable source for
DUEFC in alkaline medium [1,8-10]. As an energy source,
urea has some good characteristics, such as having a high
energy density (16.9 MJ L™ that is ten times higher than
hydrogen, safe and acceptable in transportation as well as
non-flammable and non-toxic [11-13].

On the other hand, fuel cell is a device which electro-
chemically transforms fuel energy into electricity with
high efficiency [14-16]. Many types of fuel cells have
been reported. Besides proton exchange membrane fuel
cell (PEMFC), which is the most popular one [17,18], there
are also other types of fuel cells, including solid oxide
fuel cell (SOFC) [19-21], molten carbonate fuel cell (MCFC)
[22,23], alkaline fuel cell [24-26], and urea fuel cells. DUFC
is an encouraging and effective method for energy produc-
tion with urea, urine, and wastewater as the fuels [27]. In
this system, urea or urine is electrochemically oxidized to
produce CO,, N,, and H,0 and electricity. Oxygen is neces-
sary to perform the oxidation reactions. The reactions
occurring in DUFC are mentioned below [28]:

Anode: CO(NH,), + 60H — CO, + N, + 5H,0 + 6e™,
E% = —0.746 V(vs standard hydrogen electrode (SHE)),

o))
Cathode: O, + 2H,0 + 4e~ — 40H-, 2
E® = -0.40 V(vs SHE),
Overall: 2CO(NH2)2 + 302 - 2C02 + 2N2 + 4H20, (3)

E° = —1.146 V(vs SHE),

It is also known that H,0, can be used as the alter-
native of O as it can provide a higher electrode potential,
around two times higher, than the use of O, in alkaline
medium [29]. Furthermore, the direct urea/H,0, fuel cell
has a more compact design, since urea and H,0, are in
the aqueous forms [30]. The reaction occurred is quite
similar with the use of H,0, at the cathode as the exception,
and therefore gives an impact to the overall reactions.
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Cathode: 3H,0, + 6H" + 6e- — 6H,0,

4
EO = 1.763 V(vs SHE), @

Overall: CO(NH,), + 3H,0, + 6H" + 80H"

(5)
— €03 + N, + 12H,0, E°=-0.40 V(vs SHE),

Figure 1 shows the typical schematic diagram of
DUFCs. At the cathode catalyst, electrochemical reduc-
tion reaction of O, or H,0, in the cathode chamber pro-
duces OH™ ions, which then transport through the anion
exchange membrane to reach the anode chamber. In this
chamber, the OH™ ions react with urea and release elec-
trons, which are later transferred to the cathode over the
external circuit to produce electricity [28].

Research about the use of urea to generate electricity
was initiated in 1973 using Pt as the electrodes for both
anode and cathode with an anion exchange membrane
to separate the anode and cathode chambers [31]. The
investigation concluded that urea could be oxidized into
CO,, N,, and H,0, but needs further development. In
2010, Lan et al. examined DUFCs with urea as well as
urine and AdBlue (32.5% urea aqueous solution) as the
fuels [10]. Comparison between Pt and Ni/C as the anode
was performed with Ag/C and MnO,/C used as the cathode.
A maximum power density of 1.7 mW cm 2 was obtained
at 50°C operation at Ni/C and MnO,/C as the anode and
cathode, respectively, with 1M solution of urea as the
fuel. Until now, the development of anode catalyst for
DUFCs has been investigated to maximize the power
density of DUFCs. Many catalysts, including noble and
non-noble metals have been examined to enhance the per-
formance of this type of fuel cell.

This report summarized about recent development in
DUFC, particularly the use of supporting anode catalysts
and their influences on the DUFC performances. The
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Figure 1: Schematic diagram of DUFC.

Recent progress in direct urea fuel cell = 1117

explanation on advantages and disadvantages as well
as the strategy to fabricate better catalysts were also ela-
borated. In addition, the influences of the external factors
as well as the challenges and future prospects are also
investigated to maximize the performances.

2 Mechanism of urea electro-
oxidation

Urea could be oxidized either in alkaline, neutral, or
acidic medium with N, and CO, as the products.
However, there are some differences in the products
and intermediate products reaction in different pH sup-
porting electrolytes.

2.1 Neutral medium mechanism

In neutral medium, for example NaCl solution as the
electrolyte, Cl™ is oxidized into Cl, which is disproportio-
nated in aqueous solution to form HOCI. HOCI will be
reduced back to CI™, while urea is electro-oxidized accord-
ing to the following reactions [32]:

6CI" — 3Cl, + 6e, (6)
3ClL, + 3H,0 — 3HOCI + 3H* + 3CI° @)

3HOCI + 3CO(NH2)2 - Ny + COZ + 3H" + 3CI" + ZHQO,
(8)

Overall reactions: CO(NH,), + H,0 —» N, + CO, )

+ 6H" + 6e.

H* is generated in this condition, hence, catalyst
which has a resistance against acid is needed as the
anode catalyst, such as RuO, and IrO, [12,32]. It was
reported that urea was successfully oxidized to CO, and
N, by using RuO,-TiO,-coated titanium electrode [32].

2.2 Alkaline medium mechanism

Under alkaline medium, urea is electro-oxidized at a
lower cost by using Ni as the catalyst [33,34]. Moreover,
it is reported that the use of Ni metal, nickel hydroxides,
or Ni composites as the catalyst resulted in a better per-
formance toward urea electro-oxidation than using other
noble metal catalysts, such as Pt, Pt-Ir, etc., [35]. Lower
oxidation potentials and higher current densities could
be obtained.
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Suarez et al. [36] proposed that the active sites of
urea’s dissociation process are Ni and hydroxide groups.
The urea molecule is bound with two Ni sites, one Ni
binds to the O of urea, while the other is linked to one
of the amine groups. The bridge formed by the hydroxide
group has been studied to be involved in this reaction to
devote a proton to the amine group that connected to the
Ni site.

Ni is an active element. In humid air, Ni is easily
oxidized into NiO and Ni(OH), will be further oxidized
to NiOOH during the cyclic voltammetry treatment in
alkaline medium [37,38]. NiOOH is known as the active
catalyst for electrochemical oxidation of urea. The oxida-
tion process occurred according to the following reactions:

Nitmeta) + H2O — (NiOH)yq + H + €7, (10)
(NiOH),q + H,0 — (NiOH - H,0).q 11)
(NiOH - H,0),q — Ni(OH), + H" + €7, (12)
Ni + 20H- — Ni(OH), + 2e" (13)
Ni(OH),,, + OH — NiOOH + H,0 + e". (14)

Ni(OH), is generally formed in two crystallographic
species, a-Ni(OH), (Figure 2a) and B-Ni(OH), (Figure 2h).
The form of B-Ni(OH), is more stable due to its Ni octahe-
dral structure coordination with eight O atoms. Meanwhile,
the a-Ni(OH), form is less stable due to the presence
of water molecules intercalated between the NiO, layers.
B-Ni(OH), could be formed by potential cycling in alka-
line medium and by increasing the potential [39],
whereas at the higher potential, y-Ni(OH), is formed
and can be reduced back to B-Ni(OH), in the reverse
scan [40,41].

Figure 2: The structure of a-Ni(OH), (a) and B-Ni(OH), (b).
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Electro-oxidation of urea by Ni catalyst in alkaline
medium is proposed to occur in two possible mechan-
isms, including:

2.2.1 Indirect mechanism

The common mechanism used to explain the urea electro-
oxidation is indirect mechanism with NiOOH as the active
catalyst for electro-oxidation of urea. NiOOH formed from
the electro-oxidation of Ni(OH), oxidizes the urea mole-
cules and is reduced back to Ni(OH), according to the
following equations [42]:

6Ni(OH),,, + 60H" — 6NiOOH + H,0 + 6e”, (15)
6NiOOH s) + CO(NH,)s,, + H20q) (16)
— 6Ni(OH)y,, + Ny, + COy,,
Overall reaction:
CO(NH,)y,, + 60H™ — Ny + 5H,0q) + COy,, + 67, (17)

2.2.2 Direct mechanism

In the direct mechanism, urea is oxidized by Ni in the
form of NiOOH which is not reduced back to the Ni
(OH), form. The oxidation process will use OH™ and the
NiOOH will be reduced at the reverse scan [43]. According
to Guo et al., the proposed direct mechanisms are the
following reactions [43]:

Ni(OH), + OH- = NiOOH + H,0 + e, (18)




DE GRUYTER

[6NiOOH - CO(NH,);]ags + HoO

(19)
s 6N1(OH)2 + Nz + COZ
[NiOOH - CO(NH,);]aqs + 60H" 20)
— [NiOOH - CO,]ags + N; + 5H0 + 6€7,
NiOOH + OH™ — [NiOOH - OH],q5 + €7, (21)
[NiOOH - CO5]ags + 2[NiOOH - OH],q4s 22)

— 3NiOOH + CO%™ + H,0,

[NiOOH - CO,lags + 2[OH ]sq — NiOOH + CO2™ + H,0,
(23)

According to the above reactions, Ni(OH), will be
initially oxidized to NiOOH. The OH™ then deprotonates
the amine group in urea. The remaining N will later be
desorbed while transferring the electrons to the elec-
trode. The adsorbed CO, will be discarded by hydroxides
[43].

The mechanism of urea decomposition via electro-
oxidation was studied by Botte et al. using DFT calcula-
tion [44]. The most possible mechanisms were set up by
the electrophilic atoms of urea which interacted with the
nucleophilic atoms of NiOOH and reversed. NiOOH as the
active catalyst is formed by the interaction of Ni atoms
with N and O in urea, while the bridging O interacts with
the C atom in urea [36].

The electro-oxidation process of urea can also be
explained using cyclic voltammetry. Vedharathinam and
Botte reported the cyclic voltammogram urea electro-oxi-
dation at Ni electrode in 5M KOH with and without the
presence of urea [1]. The cyclic voltammogram (Figure 3a)
shows that in the absence of urea, a redox peak appears
in the anodic and cathodic regions at 387 and 260 mV,
respectively, implying the redox reaction of Ni®*/Ni’**.

a 250 T T T T T T T
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When urea is added to the electrolyte solution, an increase
in current density is observed at the oxidation potential
around 0.35V (vs Hg/HgO), implying that the urea electro-
oxidation has occurred on the surface of Ni electrode.
Yan et al. also reported the same phenomena of urea
electro-oxidation process in Ni—Co hydroxides electrode
as shown in the cyclic voltammograms of Ni—Co hydro-
xides electrodes in the same condition as the previous one
(Figure 3b) [35]. The oxidation peak is observed at the
potential of 0.42V indicating the formation of NiOOH
from Ni(OH),. In the presents of urea, a strong oxidation
current starts at 0.40V was observed. This potential is
similar to the potential formation of NiOOH, indicating
that NiOOH is the active form of catalyst for the oxidation
of urea. Table 1 shows the activity of various anode cata-
lysts toward urea electro-oxidation.

2.3 Effect of KOH concentration

The use of KOH as the electrolyte in electrochemical oxi-
dation of urea is reported to provide a better perfor-
mance, in regards to the lower onset potential and the
higher current density, than LiOH and NaOH [45] with
the activity of urea oxidation of LiOH < NaOH < KOH.
The surface poisoning effect of PtOH-M"* (H,0), at the
interface decreases the hydration energy of the alkali
metal and further inhibits the active sites in the order
of Li* > Na™ > K" [46]. The increase in KOH concentration
has been reported to improve the urea oxidation current
density. As the KOH concentration increases, the OH™
which has a strong impact on the NiOOH development
will lead to a decrease (shift to negative) in the onset

200

oy

(a) 'Soluti'ons '

#1- 5M KOH

E 1504  #2-5M KOHI0.33M Urea AR |
2

Z 100 4 E
£

é Onset potential of urea

s 50 oxidation 0.40 V -
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o

04 00 01 02 03 04 05 06 07
Potential(V vs. Hg/HgO)

Figure 3: CVs of nickel nanoparticle electrode [1] (a) and Ni-Co hydroxide electrodes [35] (b) in 5 M KOH in the presence and absence of

urea, republished with permission.
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Figure 4: The dependence of urea electro-oxidation on KOH concentrations at (a) nickel nanoparticles and (b) NiCo/MWCNT electrodes. Scan
rates of 10 and 20 mV s were applied at (a) and (b), respectively, republished with permission [1,47].

potential of urea oxidation and concurrently increase the
current density [1,47]. Figure 4 shows the CV curves using
different KOH concentrations. The CVs imply that the
current density keeps increasing until it reaches 5M
KOH, and then remains constant afterwards. It might be
due to a full coverage of OH™ on the catalyst that will lead
to the blocking of the urea oxidation reaction [1]. More-
over, using a very high concentration of KOH will produce
oxygen evolution reaction, catalyst oxidation, and accu-
mulation of undesirable products [47].

2.4 Effect of urea concentration

Besides varying the KOH concentration, the urea concen-
tration has also been investigated. CVs of Ni nanoparticle

a 40 T T T T
:lll
b BRI .
30 +8 V7. g
v
< 154,
20
“ .
E 0+ s
“ ol
E 0.0 05 10 15 20 25

Curca ™M
10 +

0.2 0.3 0.4 0.5 0.6 0.7

E/V (Hg/HgO)

(NP) electrode [1] and NiCo/multi-walled carbon nanotube
(MWCNT) [47] using different concentrations of urea is
shown in Figure 5. It is shown that the increase in urea
concentration leads to the increase in oxidation peak of
urea. It might be because of the available urea for the oxi-
dation reaction. In Figure 5a, the oxidation peak keeps
increasing until it reaches 0.2 M urea. It was reported that
after the concentration reaches above 0.2M, the current
density decreases due to a kinetics limitation because the
catalyst surface is covered with urea molecules which
decreases the urea oxidation rate due to the deprivation
of OH™ [1]. Meanwhile, in Figure 5b, the oxidation peak of
urea keeps increasing until it reaches 1 M urea. After it sur-
passes 1 M, the oxidation peak decreases. The excess of urea
will cover the catalyst surface and the reaction product will
inhibit the contact with OH™ to form NiOOH [47]. The max-
imum oxidation peak might be achieved by using different

120 4= 1M KOH (a)
~—— 0AMUREA
—— 02MUREA
90 4—— 033MUREA
~ 05MUREA
~—— 10MUREA
o 80— 20muRren
€ —— 30MUREA
9
< 304
€
-
-~ 0-
.30 4
60

0.2 04 0.6

E/Vvs. Ag/AgCl

0.0 0.8

Figure 5: The dependence of urea electro-oxidation on urea concentrations at (a) nickel nanoparticle and (b) NiCo/MWCNT electrode. Scan
rates at (a) was 10 mV s~ %, while at (b) was 20 mV s, republished with permission [1,47].
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KOH concentrations in different types of catalyst. There-
fore, the optimization of urea is prescribed to achieve
higher activity in DUFC.

3 Progress of anode catalyst
for DUFC

The use of anode catalyst in DUFC has a great impact on
the result of higher power density and it will improve the
electrical performance of DUFC. There are many ways to
improve the output of DUFC, namely by increasing the
surface active sites of the catalyst, increasing the theore-
tical open circuit voltage (OCV) by using oxidants, and
the most important way is by developing the anode cat-
alyst of DUFC. Originally, noble metal catalyst has been
used as the anode catalyst in DUFC, such as Ti/Pt,
Ti/(Pt-Ir), and Ti/RuO, [48], which resulted in an unsa-
tisfactory effect on DUFC, yet required a very high cost.
Alternatively, using an affordable non-noble metal cata-
lyst as the anode catalyst in urea fuel cell is reported to
produce a highly effective result in DUFC. Nickel, in the
form of NiOOH, has been reported as an excellent catalyst
for urea electro-oxidation and could further increase the
electrical performance of DUFC. There are many ways to

Recent progress in direct urea fuel cell = 1123

increase the activity of Ni, such as by developing various
morphologies of Ni, using high surface area supporting
catalyst, and alloying Ni with various metals.

3.1 Single nickel metal catalyst

Nickel in the form of NiOOH was proven to be a promising
catalyst in urea electro-oxidation. Vedharathinam and
Botte (2012) have successfully electrodeposited Ni on
the surface of Ti (inert) rod [1]. The Ni electrode was
then applied as the anode catalyst (working electrode)
for urea electro-oxidation process. Cyclic voltammetry
study was conducted and confirmed that Ni is an active
catalyst for urea electro-oxidation. In 2011, Lan and Tao
have successfully synthesized Ni NPs (nanosized Ni)
using KBH, reduction methods with the primary particles
around 5 nm, but in some area the particles were around
2-3nm [49].

Figure 6 shows the SEM images of the nanosized Ni
compared to the commercial Ni. Figure 6a and b shows
the images of nanosized Ni which have particle size of
around 0.2 pm, whereas the ~50 nm particles are still in
observation. Meanwhile, as can be seen in Figure 6¢c and d,
the commercial Ni has much larger particle size com-
pared to nanosized Ni, around 4-10 pm. It was reported

Figure 6: SEM characterization of nanosized nickel (a and b) and commercial nickel (c and d), republished with permission [49].
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that nanosized Ni, which has a smaller size and larger
surface area compared to the commercial Ni, shows a
better performance in DUFC with a maximum power den-
sity of 14.2mW cm 2 obtained at 60°C when using 1M
urea as fuel placed in anode chamber and humidified
air was filled in the cathode chamber. The smaller size
of the particles could lead to larger surface area which is
an ideal condition of DUFC catalyst. This result indicates
that nanosized Ni is a promising catalyst in urea electro-
oxidation as well as DUFC.

3.2 Nickel hydroxides

As mentioned above, Ni(OH), generally forms two types
of crystals, namely a-Ni(OH), and B-Ni(OH), forms. In the
a-Ni(OH), form, intercalations between the layers by
additional anions neutralize the positive layers with the
spacing distributed between 7.5 and 31.7 A and lead to
higher electrochemical activity as the conductive layers
could sustain the electrolyte transfer to the a-Ni(OH), layer.
Meanwhile, in the B-Ni(OH), form, the layers are closely
arranged which lead to minor interlayer spacing and affect
the amount of electrolyte entering the layers of B-Ni(OH),,
thus could lower the electrochemical activity [48].

To decrease the over-potential and obtain an optimum
performance of DUFC, Wang et al. have modified glassy
carbon electrodes with two-dimensional Ni(OH), nanosheets
[76]. XRD characterization confirmed the interlayer spacing
of 2.67 nm, indicating that Ni(OH), nanosheets have been
deposited in the form of a-Ni(OH),. The electrochemical
study conducted in KOH with the absence and the presence
of urea confirmed that in the absence of urea, the current
density increased to 154 mA cm 2 mg . The a-Ni(OH), form
could lower the onset potential by 100 mV compared to the
bulk Ni(OH),. In 2012, Wang et al. successfully synthesized
nickel hydroxide nanoribbons through hydrothermal treat-
ment. The XRD characterization confirmed the pattern of
B-Ni(OH), phase with the sample thickness of around
15-20 nm [77]. Electrochemical study conducted with
the same previous condition, using KOH in the absence
and the presence of urea, showed that nickel hydroxide nano-
ribbon enhanced the current density to 7mAcm™ mg™.
Accordingly, it is confirmed that a-Ni(OH), provided
higher current density of urea electro-oxidation than
the B-Ni(OH),.

In 2016, Ye et al. reported the use of Ni(OH),/Ni foam
as the anode catalyst in DUFC. Ni(OH),/Ni foam was pre-
pared in various morphologies, which are sheet-like (SH),
flower-like (FL), nanosheet (NS), and twin-like (TW), to
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optimize the performance toward urea electro-oxidation
[74]. All the configurations were then examined as anode
catalyst. The result showed that NS Ni(OH),/Ni foam gen-
erated a higher current density of urea electro-oxidation
compared to the other configurations of Ni(OH),/Ni foam.
This is because the NS Ni(OH),/Ni foam morphology has
a larger surface area than the other configurations.
The SEM images of the prepared electrode in various
morphologies (Figure 7a) show that SH Ni(OH),/Ni foam
consists of thick sheets, while flower-like shape Ni(OH),
is well distributed in Ni foams. In regards to NS Ni(OH),/
Ni foam, it is fully coated with nanosheet Ni(OH),. Mean-
while, compact film of Ni(OH), is homogenously dis-
tributed on TL Ni(OH),/Ni foam. The comparison of all
modified Ni foams toward urea electro-oxidation in alka-
line medium (KOH) and their DUFC performances are
displayed in Figure 7b and c, respectively. These figures
imply that NS Ni(OH),/Ni foam has a loose structure
with many open spaces which lead to a higher surface
area, so it is sufficient for the electro-catalytic perfor-
mance of DUFC.

3.3 Ni with other metals

Although Ni in the form of NiOOH has been proven as the
promising catalyst towards urea electro-oxidation, the
NiOOH itself has a high overpotential which could further
decrease the result of DUFC. Likewise, the use of Ni cat-
alyst is most likely to be fouling throughout the electro-
oxidation process which could disband the NiOOH as the
active site of the catalyst. Doped Ni with other metal has
been reported to be able to improve the electrocatalytic
activities and reduce the abovementioned difficulties.
King et al. [78] reported the modification of Ni with noble
metals, including Pt-Ni [79], Pt-Ir-Ni, Ru-Ni, Pd [80],
and Rh-Ni [78]. Between all the various combinations,
the combination of Rh and Ni could create a synergistic
effect because it has been proven to lower the overpo-
tential and increase the stability in the urea electro-oxi-
dation. Electrochemical study of Rh-Ni electrode with
0.33M urea in 1M KOH as the electrolyte is reported to
achieve the current density of ~80 mA cm ™2 during the
cyclic voltammetry. In 2012, Miller et al. have reported
to use Rh/Ni electrodes, which were developed by depos-
iting Rh on Ni foil using constant potential techniques
[81]. It was reported that the addition of Rh lead to an
increase in current density, which implied the role of
Rh in the oxidation acceleration of Ni(OH), to NiOOH.
Alloying of Ni-Rh occurs when Rh is deposited on the
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surface of Ni at lower potential; however, the best cata-
lytic performance occurs when Rh is not alloyed with Ni,
which means that only monometallic Rh is deposited on
the Ni surface.

Alloying Ni with noble metal catalyst has been proven
to increase the effectivity toward urea electro-oxidation,
but the high cost of the noble metal catalyst remains as
the main problem if this will be further used in a larger
scale application. Therefore, doping or alloying Ni with
non-noble metal catalyst is one way to overcome this pro-
blem. Alloying or doping non-noble metal catalyst, such
as Co [71], Mn [82], Zn [65], Fe [83], Cr [84], Mo [85], etc.,
to Ni has been proven to decrease the onset potential of
NiOOH and improve the catalytic activity toward urea
electro-oxidation in DUFC application. Cobalt has been
widely used to decrease the onset potential of NiOOH
formation to further optimize the electrocatalytic activity
toward urea electro-oxidation. Wei et al. (2011) used Ni—Co
bimetallic hydroxide film deposited on Ti foil as the anode
catalyst for urea electro-oxidation. It was reported that

alloying Ni and Co produced a significant reduction in
the overpotential of NiOOH (it decreases at about 150 mV)
when compared with only nickel hydroxide electrode [35].
In 2014, Xu et al. also reported the use of nickel-cobalt
bimetallic (NiCo/C) for the anode catalyst for DUFC [64]. A
reduction method using NaBH, was applied to prepare
NiCo/C with various Co ratios to optimize the use of Co.
An average particle size of NiCo NPs is calculated to be
around 30-40 nm. The most negative potential is obtained
using Ni;Co,/C, indicating that the use of Co could lower
the onset potential. On the other hand, the increase in Co
content decreases the electro-oxidation current of urea
because of the inactive activity of Co urea electro-oxida-
tion. Therefore, it is important to control the balance of Ni
and Co ratio to obtain higher catalytic activity. A max-
imum power density of 1.57 mW cm ™ could be achieved
at NiCo/C electrode using 0.33 M urea as the fuel and O, as
the oxidant, which were filled in the anode and cathode
chambers, respectively, at 60°C. Yan et al. reported that
the use of Zn and Co as the multi-metal catalyst in Ni could
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enhance the catalytic activity toward electro-oxidation,
since Co itself is inactive [65]. It was reported that using
Ni—Zn as the metal catalyst decreases the onset potential
from 0.43 to 0.39V, while using Ni-Zn-Co it decreases
the onset potential to 0.35 V. The higher current density
is achieved using Ni-Zn-Co as the anode catalyst of urea
electro-oxidation. Mn is used to help remove the poiso-
nous intermediates formed on the catalyst surfaces. Mn
also helps to reduce the overpotential of NiOOH formation.
In 2016, Barakat et al. used NiMn NPs-decorated carbon
nanofibers (NiMn-CNFs) as the anode catalyst for urea
electro-oxidation [86]. It was reported that NiMn-CNFs
show a better electrocatalytic activity toward urea oxi-
dation compared to Ni-CNFs, which is almost three
times higher. In 2017, Singh and Schechter alloyed Ni
with Cr which resulted in an increase in the electro-oxi-
dation activity of urea and shifting the redox peak to
the more negative potentials [87]. Using NiCr/C results
in higher current density than that obtained by using
Ni/C, which is 3.6 times higher.

3.4 Ni with specific morphologies

Besides optimizing the anode catalyst in the form of Ni
metal, nickel hydroxides, and alloying Ni with other
metals, the morphologies are also considered to enhance
the surface area which later could enhance the electrical
performance of DUFC. Many morphologies have been
successfully developed, such as nanowires, nanofibers,
nanosheet, and many more.
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In 2014, Yan et al. fabricated two various Ni struc-
tures, i.e., nickel nanowire electrocatalyst (NNE) and
nickel film electrocatalyst (NFE), using electrodeposition
technique at an applied potential of —0.85V vs Ag/AgCl
[88]. Anodic aluminum oxide (AAO) template was used to
fabricate the NNE. The deposition time for NNE was
60 min and that for NFE was only 6 min. Both NNE and
NFE obtained the same loading Ni. Figure 8a shows the
SEM characterization of both nickel nanowire electrodes
in the form of NFE and NNE. It is also shown in the
electrochemical studies of urea electro-oxidation using
CVs (Figure 8b) which reveals that NNE has achieved
higher electrocatalytic activity and higher current density
compared to NFE. It is mainly because there is no assis-
tance of AAO resulting in nickel particle with partial
agglomeration; meanwhile, the use of AAO template
resulted in a larger surface area with an average diameter
of 90 nm and electro-active surface area of 79.1 cm> mg .
It is also reported that the current density of 40 mA cm™>
at 0.55V (vs Hg/HgO) could be achieved when using
NNE. In 2014, Guo et al. have successfully prepared fully
metallic structure of nickel nanowire array (NWA) elec-
trode developed by doping the Ni particles within the
pores through electrodeposition methods and over-plat-
ing it on the surface of polycarbonate template (Guo
et al., 2016). The prepared NWAs have an active surface
area of 25.21 cm? and 50 nm diameter for a single wire.
Comparison of NWAs with a flat Ni electrode showed the
noticeable decrease in the onset potential of urea electro-
oxidation with a higher peak current density, indicating
that the nanowire array structure is promising for anode
catalyst application in DUFC.
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Figure 8: SEM characterization of nickel nanowires in the form of NFE and NNE (a) and the CVs of nickel nanowires with different form in 1M
KOH in the presence and absence of 0.33 M urea (b), republished with permission [89].
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4 DUFC performances

DUFC has been considered as a promising alternative for
the renewable energy due to the use of wastes which
could generate electricity with high efficiency. Compared
to the PEMFC, which uses hydrogen as the energy resources,
DUFC has an excellence factor such as the use of urea-con-
taining wastewater. Hydrogen, which is a clean energy, still
has many drawbacks such as its difficult production, sto-
rage, and the transportation and will create difficulties in the
process to make it a large-scale application [89]. DUFC, on
the other hand, using urea as the energy sources leads to an
easy-storage and easy-transport, non-toxic, and could make
use of the high amount of urea-containing wastewater
found in human and animal urine and industrial area
[90]. The urea electro-oxidation process is the primary key
to generate high electricity. Therefore, the current progress
of anode catalyst to improve the catalytic activity in urea
electro-oxidation is investigated.

Basically, the instrument used in DUFC is the same as
the conventional fuel cell. DUFC is often used in two-
chamber cell which contains the anode chamber and
cathode chamber. An ion exchange membrane is placed
between the two chambers [91,92]. In each chamber,
there are catalysts which will act as the working electrode
and the counter electrode. Generally, the flow cell is used
to perform the DUFC application.

Already in 1973, Yao et al. conducted an experiment
to generate electricity using urea as the energy source by
using Pt as the catalyst in the trial [31]. The experiments
result presented evidence that oxidation of urea trans-
forms into CO,, N,, and H,O using Pt as the anode and
cathode catalysts. The investigation of first DUFC was
reported by Lan et al. in 2010 which compared the use
of Pt/C and Ni/C as the anodes. The use of Pt/C electrodes
as both cathode and anode catalysts produced the OCV of
0.5V and the power density of 0.2mW cm 2 at room tem-
perature. Meanwhile, when using Ni/C as the anode and
Ag/C-MnO,/C as the cathode, an anion-exchange resin-
PVA membrane was utilized due to the use of basic elec-
trolyte in the anode chamber. This system resulted in a
maximum power density of 1.7 mW cm ™2 at 50°C. This
work proves that DUFC could be executed using Ni as a
non-noble metal catalyst. Afterwards, the recent progress
of anode catalyst has been investigated. In 2014, Xu et al.
used nickel-cobalt bimetallic/C (NiCo/C) as the anode
catalyst. It was proven that the Co doping could reduce
the overpotential of Ni toward urea-oxidation and further
improve the catalytic activity [64]. Application using
0.33M urea as a fuel (anode electrolyte) and O, which
was filled in the cathode chamber at 60°C temperature
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generated a maximum power density of 1.57 mW cm 2,
while the use of urine as the fuel achieved a maximum
power density of 0.19mW cm™ and OCV of 0.38V at
60°C. In 2016, the use of nickel-cobalt nanowire arrays
(Ni—-Co NWAs) as the anode catalyst in DUFC produced
a maximum OCV and power density of 0.92V and
7.4mW cm™2, respectively, at room temperature [30]. In
this DUFC, a solution of 0.33 M urea in 9 M KOH was used
as the anode electrolyte and a solution containing 2 M
H,0, and 2 M H,SO, was placed as the cathode electrolyte.
It was also confirmed that this type of DUFC showed a
good stability during one-hour durability test. Basuma-
tary et al. reported Ni-Cu/ZnO@MWCNT application as
anode catalyst could enhance the surface area and improve
the catalytic activity and further enhance the electricity
performance of DUFC to be higher [66]. Maximum power
density of 26.9 and 44.36 mW cm 2 were achieved at 20 and
50°C, respectively, using 3 M KOH/0.7 M urea as the anode
electrolyte. This result was the highest output of power
density reported at 50°C. Ranjani et al. developed 3D hier-
archical nickel cobaltite (NiCo,0,) on carbon cloth (CC)
fibers as anode catalyst in DUFC [93]. It was reported that
maximum power density of 38 mW cm 2 could be generated
using 50 mM urea in 0.1 M KOH at 80°C (Figure 9a). Higher
result could not be accomplished due to the synergistic
impact of Ni*" ion which substituted in the octahedral
sites of Cos0, and the 3D hierarchical configuration which
leads to limiting the oxygen evolution reaction and further
improves the urea electro-oxidation reaction. Besides, the
use of this anode catalyst could achieve 180 h durability test
due to its large surface area (Figure 9b).

Besides the optimization of anode catalyst, the use of
high surface area supporting electrode of the anode cat-
alyst could also determine the performances. The use of
ion exchange membrane and the use of cathodic oxidants
were also reported to have an impact on the electrical
performances of DUFC.

4.1 Supporting electrode

One of the main reasons for higher electrical perfor-
mances is the surface area of the catalyst, both in the
anode and cathode chambers. Commonly, C has been
used as the supporting electrode due to its inexpensive
material, such as graphene [41,58], CNTs [47,94], and
CNFs [86]. Additionally, boron-doped diamond [95], Ni
foam [63], and many more were also reported.

Li et al. have reported the use of CoNi nanosheet array
which was grown in Ni foam modified by reducing
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graphene oxide (rGO) as the anode catalyst in DUFC [67].
The GO was attached to Ni foam through facile dip and dry
method and further reduced to reducing graphene oxide by
electroreduction method. The distribution of CoNi nanosheet
arrays in the rGO/Ni foam contributes to the increase in
the surface area. Ni foam was selected as the supporting
electrode due to its large surface area, whereas the mod-
ification using rGO produces a more larger surface area
CoNi/rGO/Ni foam electrode. This electrode successfully
formed a porous surface electrode that provides abundant
active sites on the catalyst to enhance the urea oxidation
performance. A good stability for 1 h application time was
also demonstrated. This implies a good stability for 1h,
although longer stability test still needs to be conducted to
evaluate the catalyst durability for daily or even industrial
use in the future. Basumatary et al. also reported the use of
Ni—Cu alloy NPs which was deposited onto the surface of
Zn0-coated MWCNTs [66]. The Ni-Cu/ZnO@MWCNTs
was prepared using a two-step hydrothermal process. MWCNTs
are usually used as supporting electrodes in DUFC due to its
large surface area and good thermal and chemical stability
in acidic and base media. However, to uniformly distribute
metal NP onto the surface of MWCNTs is rather difficult.
To solve this problem, ZnO was coated onto the MWCNTSs
to achieve high distribution of metal NPs as well as to
increase the catalytic activity of the catalysts. It is reported
that uniform distribution of Ni-Cu NPs on the entire surface
of ZnO@MWCNT was successfully performed without agglo-
meration as also confirmed by the TEM characterization. The
average particle size of Ni-Cu NPs of around 2.5 + 0.31 nm
was observed. The result implied that the use of ZnO@MWCNT
as the supporting electrode enlarged the surface area and
accordingly increased the catalytic activity of the catalyst

as well as the electrical performance of DUFC. However, as
the stability test has not been reported in this work, hence
review of the stability and durability performance of this
electrode could not be performed.

The above two examples showed that the use of sup-
porting electrode is greatly important to form larger sur-
face area and escalate the urea oxidation performance.
Furthermore, it is also crucial to observe the stability and
durability of the electrodes for suitable and repetitive
use, especially for daily use and in industrial scale.

4.2 Cathode electrolyte: using H,0, as
oxidants

In DUFC, oxygen (air) commonly has been used as the
cathode electrolyte. However, it has been reported that
replacing oxygen with oxidants could help to improve the
electrical performances of DUFC due to its theoretical
cathodic potential, which is twice as high as the oxygen.
Besides, the use of oxidants is proven to create a faster
electro-reduction kinetics [96]. As mentioned above, the
theoretical cathodic potential increases from 0.40V vs
SHE, when O, is applied as the cathode electrolyte, to
1.763 V vs SHE, when H,0, is applied as the cathode elec-
trolyte. It increases the potential around 0.87 V vs SHE.
Another advantage in using H,0, is that oxygen density
in liquid phase is around a thousand times higher than in
its gaseous phase. Thus, it will enhance a higher current
density in the DUFC application [27].

In 2014, Xu et al. have used bimetallic Ni—Co depos-
ited on carbon cloth as an anode catalyst in DUFC [64].
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0.33M urea has been delivered into flow channels and
used as the fuel (anode electrolyte), while humidification
oxygen has been used as the cathode electrolyte. Max-
imum power density of 1.57mW cm™ is obtained at a
temperature of 60°C. Serban et al. in 2014 was the first
to introduce the use of H,0, as the cathode electrolyte
for DUFC application [27]. It was reported that the use of
Ni/MWCNTs can produce a maximum power density of
0.05 mW cm 2, when using a solution containing 1 M urea
and 1.5M NaOH as an anode electrolyte and a solution
containing 20% H,0, and 5% H5PO, as the cathode elec-
trolyte [27]. Since then, the use of H,0, as the cathode
electrolyte for DUFC application has gained great atten-
tions and further optimized. In 2016, Guo et al. used
porous Ni—Co anode catalyst for DUFC application with
a solution containing 0.5M urea and 7M KOH as the
anode electrolyte and a solution containing 2M H,0,
and 2M H,SO, as the cathode electrolyte. Applications
at 20 and 70°C was reported to produce the maximum
power density of 17.4 and 31.5mW cm 2, respectively
[97]. Compared to the use of O, as the cathodic oxidants,
the use of H,0, is proven to produce higher electrical
performance in DUFC application.

The difference in the cathodic oxidants leads to dif-
ferent exchange membrane used in the DUFC application.
Typically, anion exchange membrane was used as the
exchange membrane when O, was used as the cathodic
oxidants. It was reported that ammonia (a weak base)
will be produced during the hydrolysis of urea in this
application, because of which the cation exchange mem-
brane (commonly, Nafion) cannot be used since it is com-
patible in acidic medium. Therefore, anion exchange
membrane is more suitable to be used in DUFC applica-
tion when O, has a role of the cathodic oxidants [10]. In
this type of DUFC, the OH produced in the cathode
chamber will go over the anion exchange membrane
into the anode chamber. The OH ions then further react
with urea and release electrons which are transported
over the external circuit and could determine the elec-
trical performances [28]. The advantage of using anion
exchange membrane is that it is an alkaline-based elec-
trolyte which makes it compatible and enables it to pro-
vide the alkaline condition [98].

Meanwhile, when H,0, is used as the cathodic oxi-
dants, the cation exchange membrane (Nafion) is used as
the exchange membrane. In this situation, K" produced
from the reaction in the anode plays a role as the trans-
port ion through the Nafion and goes into the cathode
chamber and reacts with the SOZ~ ions and forms K,SO,
[97].
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5 Future challenges and
perspective

The DUFC has been proven to be a promising alternative
for the replacement of fossil fuel to produce electricity,
although some optimization is still needed to achieve the
optimum result. The very important part in this system is
the catalysts, both in cathode and anode. Catalyst with a
large surface area is desired to provide sufficient active
sites, especially for the anode catalyst since it will have a
direct contact toward urea as the fuel in this type of fuel
cells. Thus, modification to obtain large surface area is
highly desirable for anode catalyst in DUFC. Besides, the
use of H,0, cathode electrolyte has also been proven as
one effective method to achieve higher electrical perfor-
mances. However, H,0, in acidic medium is needed to
optimize the theoretical cell voltage. It means that two
different conditions are needed in this type of DUFC, alka-
line medium in the anode chamber and acidic medium in
the cathode chamber. Therefore, the anode catalyst which
has a good corrosion resistance is needed. The use of
anion exchange membrane is also required to be main-
tained due to its stability issue and also its low anionic
conductivities [99]. It is also very important to examine the
catalysts performance toward urea electro-oxidation using
electrochemical impedance spectroscopy [67]. It will give
information about the resistance value of the catalyst
system before being used as the anode catalyst in DUFC.

Besides its modification of Ni-based catalyst, which
are desired to optimize the performance of DUFC, the
stability test is also required to evaluate the performance
so it could be employed for a daily use or industrial scale.
Finally, this system also needs to be examined using the
wastewater sample, such as human or animal urine and
industrial waste. After the optimization of the importance
factors mentioned above, this type of fuel cell could be
applied as a promising replacement of the fossil fuel and
become the effective devices for wastewater treatment
and electricity production.

6 Conclusion

The purpose of this review is to report the recent progress
in DUFC, specifically for the anode catalyst progress in
DUEFC. It can be concluded that DUFC is a greatly pro-
mising substitution for the fossil fuel. The use of waste-
water that contains urea, which is further oxidized into
N,, CO,, and H,0, could help to generate electricity.
Despite highly promising for application in DUFC, some
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important factors need to be optimized to produce an
excellent performance. The optimization of anode cata-
lyst is desired to achieve higher performances toward
urea electro-oxidation. It is reported that Ni, a non-noble
and low-cost metal catalyst, is a better catalyst for urea
electro-oxidation compared to the noble metal catalyst,
such as Pt. However, the formation potential of NiOOH,
the active catalyst for urea electro-oxidation, is high.
Therefore, doping Ni with other metals, such as Co, Mn,
Zn, or Cr is needed. The morphologies of the catalyst are
also reported to increase the catalytic performances due
to the achieved larger surface area. Besides, using a sup-
porting electrode with greater surface area, such as Ni
foam, MWCNT, etc., is also important to improve the
DUFC performances. It is very important to modify the
anode catalyst to increase the surface area, so it could
provide sufficient active sites between the catalyst and
urea as the fuel. Moreover, it is also very crucial to opti-
mize the electrolyte condition in this DUFC system, such
as usage of H,0, over O, as the cathodic oxidant in the
cathode electrolyte, which theoretically produces higher
cathodic potential and also optimizes the use of exchange
membrane (cation or anion) to achieve a suitable envir-
onment in enhancing the performance of DUFC.
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