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Abstract: Dithiocarbamate complexes are of immense
interest due to their diverse structural properties and
extensive application in various areas. They possess two
sulfur atoms that often act as the binding sites for metal
coordination in a monodentate, bidentate, or anisodentate
fashion. These different coordination modes enhance the
possibility for complex formation and make them useful in
different areas especially in biomedical fields. A synergy
exists in the metal ions and dithiocarbamate moieties,
which tends to exert better properties than the respective
individual components of the complex. These improved
properties have also been attributed to the presence of
the C–S bonds. Zinc and nickel ions have been majorly
found to bind to the dithiocarbamate in bidentate modes,
and consequently different geometries have resulted from
this interaction. The aim of this review is to present some
studies on the synthesis, structural chemistry, and the
relevance of zinc and nickel dithiocarbamates complexes
especially in biological systems.

Keywords: zinc complexes, nickel complexes, dithiocarb-
amates, coordination geometry, biological application

1 Introduction

Dithiocarbamates have provided a platform for the syn-
thesis of a wide range of compounds with interesting
applications in different areas such as medicine, catalysis,
and material science (where they are used as precursors for
the synthesis of nanomaterials). The ease of altering the
functional groups on the dithiocarbamate group affords
the opportunity for structural modifications [1,2]. A variety
of factors such as nature of ligand, the type of metal ions,
and its oxidation state can affect the complexation reaction
and also play significant roles in determining the coordina-
tion geometry of the resulting complex. In biology, for
instance, the ligands control the activity of metals and
also influence the array of molecules in the secondary
coordination sphere, which determines the biological
targets such as DNA protein and enzymes of interest [1,2].

Dithiocarbamate compounds have received increasing
attention in the last few decades due to the ease of prepara-
tion, ability to stabilize different metals in the periodic table
(even at a varying oxidation states), and adopting a wide
range of structural geometry upon coordination to a metal
[3]. The ligand possesses sulfur atoms, which are capable of
adding a pair of electrons to the metal center during the
complexation reaction. This feature has led to the existence
of a large catalogue of dithiocarbamate complexes [4]. They
have the propensity to form complex structures, which may
be due to the low bite angle of the –CSS group; hence,
ability to interact with almost all metals in the periodic table
[3]. Nickel and zinc dithiocarbamates complexes are some
of the common complexes that have been studied exten-
sively over the years due to their relatively nontoxic nature
and application in areas such as biology, agriculture, and
medicine. Thus, in this study we focus on the structural
chemistry of Ni and Zn dithiocarbamate complexes and
highlight the effect of their chemistry and structural varia-
tion on their biological properties.
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1.1 Zinc, nickel, and their ions

Zinc is a naturally occurring trace element with a white-
silvery appearance. It is a strong, hard and ductile metal
[5], and the 24th most abundant metal that is mostly
produced by electrolysis of aqueous zinc sulfate. Zinc(II)
ion has a d10 electronic configuration and displays different
coordination arrangements including four coordinate tetra-
hedral or square planer, five coordinate trigonal pyramidal,
and six coordinate octahedral geometries [6,7]. The most
common four coordinate geometry is tetrahedral [8].
In some of the catalytic binding sites, Zn(II) ions are found
in penta-coordinated and hexa-coordinated arrangements.
Due to its flexibility, Zn(II) ion is capable of coordinating to
six water molecules in aqueous solution [9]. It is borderline
between a hard-soft ion, which favors the complexation
among a wide range of ligands bearing donor atoms such
as soft S–, and hard N– and O– donor groups [10]. It has a
zero ligand-field stabilization energy in all coordination
environments.

Nickel appears as a hard silver-white ferromagnetic
metal up to 358°C. It possesses a common face-centered
cubic structure [11]. Its malleablility, ductility, strength,
and corrosion resistance properties make it a choice
metal. Nickel is also a good conductor of electricity and
heat. It is mostly known in its +2 oxidation state, although it
also exists in oxidation states between −1 to +4. However,
these are not so common. Ni(II) ion forms complexes in
which the Ni is in coordination numbers of four, five, and
six and displays all the main structural geometries such
as square planer, square pyramidal, tetrahedral, trigonal
bipyramidal, and octahedral [12]. Among these coordina-
tion geometries, Ni(II) complexes form the least number of
complexes in the five coordinate entity using other stereo-
chemical arrangements [11]. After the formation of 4 or
5 coordination arrangements, the complexes could also
attain the maximum coordination number of 6 by reacting
with neutral ligands, especially amines which are quite
unstable [11].

2 Dithiocarbamate complexes

Dithiocarbamates are organosulfur compounds, described
as the half amides of dithiocarbonic acids. They are the
analogs of carbamate anions ( −R NCO2 2), with the general
formula of −R NCS2 2 , and also display a resonance structure
as shown in Figure 1 [13].

They are soft donor ligands with the ability to stabi-
lize low and high valent metal ions [15]. The presence of

resonance between the two sulfur atoms gives them a
strong metal binding property and the ability to form
chelates with all transition metal ions [16]. Dithiocarba-
mates could bond as monodentate (a), bidentate (b), or
anisobidentate (c) (chelating or bridging ligands) as pre-
sented in Figure 2 and stabilize a wide range of both
transition metal and main group elements in different
oxidation states [17]. As they possess a small bite angle
in the range of 65–80°, the bidentate chelate form is more
favored thermodynamically due to the entropic gain [18].
In some cases, although within the expected range for a
bond interaction, the two metal-sulfur bonds may pos-
sess different bond angles and lengths [19].

Due to their strong metal binding capacity, dithiocar-
bamates have been used as high-pressure lubricants,
accelerators in vulcanization, fungicides, and pesticides
[20]. Recently, different types of dithiocarbamate ligands
have been synthesized and their metal complexes have
generated much research attention [14]. The complexes
have interesting structural, magnetic, electrochemical,
thermal, and biological properties, which inform their
diverse applications [21]. They are mostly insoluble in
water, but soluble in nonpolar solvents [22].

Different techniques such as IR, NMR, UV-vis, and
mass spectrometry have been employed in the characteri-
zation of dithiocarbamate as these techniques offer import-
ant information on the structural arrangement in dithiocar-
bamates [23]. For instance, in the infrared spectra, the
characteristic bands for groups such as the thioureide
υ(C]N), the υ(C–S), and υ(M–S) are established in the
range 1,450–1,550, 950–1,000, and 350–450 cm−1, respectively.
A shift in the vibrational frequency usually accompanies
either a new coordination or change in geometry. A move-
ment of the thioureide band to a higher frequency by
about 15 cm−1 is suggestive of electron cloud delocalization
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Figure 1: Resonance structure of the dithiocarbamate anion(II) [14].
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Figure 2: Different coordination modes of dihtiocarbamate
complexe (a) monodentate, (b) bidentate and (c) anisobidentate
modes [19].
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from the thioureide group towards the metal center [24],
which then confers a partial double bond character on the
C–N [24]. Furthermore, the identity of the bands in the
range 1,055 to 961 cm−1, attributed to the C–S group, could
determine if the C–S is asymmetric or symmetric. This is
significant in the description of the types of coordination
that exist between the metal and the ligands [25]. In this
region, a strong singlet or a split band (with a splitting
distance of 20 cm−1) is indicative of bidentate or monoden-
tate coordination, respectively [25,26]. Another important
band in the characterization of metal complexes of dithio-
carbamate is the υ(M–S) band, usually found in the far
infrared region, which confirms the formation of a metal-
sulfur bond in a complex [27].

Similarly, the NMR spectroscopic technique is also
valuable in the structural studies [28]. Spectral para-
meters such as the coupling constant and the chemical
shifts (δ) could offer useful information on the geometry
of the complexes [29]. The characteristic short –CS2 peak
of the thioureide is usually found in the downfield region
(185–210 ppm) in the spectra of most dithiocarbamate
ligands, and it shifts upfield upon complexation to metal
ions [30]. Furthermore, upon the introduction of a Lewis
base into a dithiocarbamate complex, thereby increasing
the coordination, these peaks could shift upfield or low-
field depending on the nature of the Lewis base. With
nitrogenous bases, a lowfield shift is observed due to
the additional deshielding in the adduct compared to
the parent complexes [31]. The additional coordination
to the metal by the nitrogenous bases results in further
decrease in the partial double bond character which
causes a displacement of the electron density from carbon
to nitrogen in the dithiocarbamate group [31,32].

The absorption spectra of dithiocarbamate complexes
are characterized by three main bands, derived from the
(C]N) bond, the electron pair of sulfur, and the (M–L)
bond [33]. In the dithiocarbamate ligand, the absorption
band of (C]N) chromophore associated with the intramo-
lecular π–π∗ transition has been found around 300 nm.
However, changes in this position, either to a lower or
shorter wavelength upon complexation, signify the contri-
bution of NCS bond [33]. The peaks found in the region
between 240–261 nm are attributed to the existence of
n–π∗ transition in the nonbonding electron pair of the S
atom, while the often broad shoulder peak found above
the 300 nm is indicative of the charge transfer transition
from metal to ligand [33]. The absorption spectra suggest
the existence of a conjugated system emerging from the
electronic transition between p-orbitals and d orbitals of
transition metals [33,34].

Single crystal X-ray is another important charac-
terization technique and employs scattered (diffracted)
X-ray to create a three-dimensional (3D) structure of the
molecules [35]. This analytical technique is the most reliable
method of characterization of any known molecule, as it
gives useful information such as bond angles and bond
length and can clearly show the geometry of the understudy
molecules [35,36]. Hence, in this review, a lot of attentionwill
be on the structural description based on data obtained from
single crystal X-ray analysis of dithiocarbamate compounds.

2.1 Zinc(II) dithiocarbamate complexes

Different approaches have been established for the syn-
thesis of zinc dithiocarbamates. They proceed via the
reaction of secondary or primary amines with carbon dis-
ulphide in the presence of a strong base such as sodium,
potassium, or ammonium hydroxide (equations (1) and (2))
[19]. The prepared dithiocarbamate salt is then reacted with
zinc salts to produce zinc dithiocarbamates as shown in the
reaction scheme of equation (2) [37]. The synthesis of dithio-
carbamate is often achieved under a very reduced tempera-
ture [38].

+ + → +

−

+RNH CS XOH RNHCS X H O,2 2 2 2 (1)

+ + → +

−

+R NH CS XOH R NCS X H O,2 2 2 2 2 (2)

+ → +R NCS X ZnCl R NCS Zn XCl ,2 2 2 2 2 2 (3)

where X = Na, K or NH4.
The geometry of Zn(II) dithiocarbamate complexes

has been established by X-ray crystallography, FTIR,
NMR, and mass spectrometry. Most Zn(II) dithiocarba-
mates, irrespective of the type of dithiocarbamate ligands
used, possess tetrahedral geometry and are sometimes
dimeric in the solid state [15]. The complexes could react
with nitrogen-donor ligands, resulting in the formula-
tion of adducts with the general formula [Zn(S2CNR2)
(N-donor)x] (x = 1 or 2) [30]; either octahedral or square
pyramidal geometries around the zinc atom are obtained
[39]. This has resulted in various reports on the synthesis
and geometry of Zn(II)dithiocarbamate complexes and
their N-based adducts. Gomathi et al. prepared a zinc
complex derived from bis(N-benzyl-N-(4-methoxybenzyl)-
dithiocarbamato-S,S) [40]. The obtained crystallographic
data from the complex showed that it existed as a monomer
unit, in which all the four sulfur atoms coordinated to the
zinc atom to form a distorted tetrahedral complex as shown
in Figure 3 [40].
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Similar studies [41] also confirmed this geometry, in
which the crystallographic structure of bis(N-isobutyl-
N-propyl-dithiocarbamato-κ2 S,S′)zinc(II) complexes showed
that two S,S′-bidentate ions from the dithiocarbamate ligand
formed a chelate with the Zn(II) ion in a tetrahedral geo-
metry. The alkyl chains of the ligands were also disordered
(Figure 4) over two sets of sites [41].

The structure of Zn(II) bis(N-alkyl-N-phenyldithiocar-
bamate) showed a different geometry, with a bridging
bond between Zn and an adjacent S atom to form a
bridged dimeric complex as presented in Figure 5 [42].
In this case, a centrosymmetric dimeric structure around
the central Zn atom was observed. The dithiocarbamates
were found to be chelated in a bidentate fashion to the
metal center and nonsymmetrically coordinated to the
other dithiocarbamate anion.

Ferreira et al. [43] reported a similar structure with a
slightmodification. The dithiocarbamate ligands coordinated
to the Zn ion in a bidentate fashion, another one formed a
monodentate bond with one of its sulfur atoms, while the

third was involved in a bridging bond to form a bridged
dimeric complex. This dimeric bridging coordination also
resulted in the formation of an eight-membered ring, with
a chair conformation, between [ZniS1S2C and ZnS1iS2iC] as
shown in Figure 6 [43].

When one or two Lewis bases are reacted with zinc
dithiocarbamate complex, there is a possibility for the
formation of an adduct of higher coordination number.
The adduct of zinc(II) bis(N-ethyl-N-phenyl dithiocarba-
mate) with pyridine [ZnL2(py)] has been reported. The
crystal structure showed that this compound formed a
five coordinate geometry about the central Zn ion, with
four sulfur atoms bonded from two units of the dithiocar-
bamate ligand and one nitrogen from pyridine to create a
distorted square pyramidal geometry [44]. This distorted
square pyramidal geometry contained one monodentate
pyridine ligand and two bidentate dithiocarbamate ligands,

Figure 3: Molecular structure of bis(N-benzyl-N-(4-methoxybenzyl)
dithiocarbamato-S,S) zinc(II). Redrawn from ref. [40] with permission
from “Taylor and Francis” (Copyright 2020).

Figure 4: Molecular structure of bis(N-isobutyl-N-propyl-dithio-
carbamato-κ2 S,S′) zinc(II). Redrawn from ref. [41], with permission
of the “International Union of Crystallography” (Copyright 2020).

Figure 5: Molecular structure of the [Zn(II) bis(N-ethyl-N-phenyl
dithiocarbamate] complex. Redrawn from ref. [42], with permission
from “Taylor and Francis” (Copyright 2020).

Figure 6: Molecular structure of the centrosymmetric dimer of [Zn
(S2CNMeCH2CH(OMe)2)2. Redrawn from ref. [43], with permission
from Elsevier (Copyright 2020).
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which were symmetrically arranged as two-fold rotational
axis as shown in Figure 7. The bond length of Zn–S was
longer than that of Zn–N bond length, while the bond
angles of the two dithiocarbamate ligands and the phenyl
group were in acute angles with 47.16(6)°, 72.07(7) Å, and
73.11(16)°, respectively [44].

Three heteroleptic zinc(II) complexes of phenylpiper-
azine dithiocarbamate [Zn(ppdtc)2(bipy)], 2-methoxy-
phenylpiperazine dithiocarbamate [Zn(2-mppdtc)2(py)], and
methylpiperazine dithiocarbamate [Zn(mpdtc)2(py)] have
been reported by Bharti et al. [39]. [Zn(mpdtc)2(py)] and
[Zn(2-mppdtc)2(py)] exhibited a distorted square pyra-
midal geometry as shown in Figure 8a and b via the
bonding of the nitrogen atom from the pyridine molecule
to the Zn ion and the four sulfur atoms from the dithio-
carbamato ligands [39]. On the other hand, [Zn(ppdtc)2
(bipy)] was found to be in an octahedral environment as
presented in Figure 8c. This geometry was also attained by
the coordination of two nitrogen atoms of the bipyridyl
moiety and four sulfur atoms present in the dithiocarba-
mato ligands. The structures of [Zn(2-mppdtc)2(py)] and
[Zn(mpdtc)2(py)] (Figure 8a and b respectively) have some
differences in the bond length of the pair of Zn–S and C–S
bonds. The shorter bonds of the Zn–S were associated with
the longer C–S bonds, while the longer Zn–S bonds were
associated with shorter C–S bonds. These were attributed to
the combined effects of the steric constraints induced by the
dithiocarbamato ligands, electron pair repulsion, and the
presence of pyridine. Two groups of Zn–S distances were
also noted in the [Zn(ppdtc)2(bipy)] complex as shown in
Figure 8c. Some Zn–S bonds were relatively shorter than
others due to the steric influence of the bipyridyl ligand.
Furthermore, the bond length of C–S bond was also shorter
compared to a typical bond length of C–S bond. Thus, as

established in most dithiocarbamate complexes, all the car-
bon–sulfur bonds in the current structure possess a partial
double bond character [45].

Other alkyl derivatives of five and six coordinate zinc
dithiocarbamate complexes involving 2,2-bipyridine and
Zn(II) N-alkyl-N-phenyl dithiocarbamates have been reported
by Onwudiwe et al. [15]. The reported alkyl derivatives were
methyl, ethyl, and butyl, and the resulting adducts were
represented as [Zn(mpdtc)2bpy], [Zn(epdtc)2bpy], and [Zn
(bpdtc)2bpy], respectively. The structures of [Zn(mpdtc)2bpy]
and [Zn(epdtc)2bpy] showed unusual fashion. The [Zn
(mpdtc)2bpy] possessed a five coordinate trigonal bipyr-
amidal geometry as shown in Figure 9a, with one methyl
dithiocarbamate bonded to the zinc atom in a mono-
dentate fashion, while another dithiocarbamate ligand
and the bipyridine molecule were in a bidentate (S,S)
coordination via two sulfur and two nitrogens. Both
bidentate-coordinated ligands have acute angles, which
is the reason for the trigonal bipyramidal structure. All
the bond angles between N–Zn–S were different from
the expected ones, except N(1)–Zn(1)–S(3) [90.05(4)°]

Figure 7: Molecular structure of [ZnL2(py)]. Redrawn from
ref. [44], with permission from Royal society of Chemistry
(Copyright 2020).

Figure 8: Molecular structure of (a) [Zn(2-mppdtc)2(py), (b) Zn
(mpdtc)2(py), and (c) [Zn(ppdtc)2(bipy)]. Redrawn from ref. [39],
with permission from Elsevier (Copyright 2020).
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and N(1)–Zn–S(2) [87.71(4)°], which were very close to
the ideal value of 90°, and the angle of S(3)–Zn–S(2)
[129.62(2)°] was greater than 120°. This could be ascribed
to the presence of the bipyridine and the steric require-
ment of the dithiocarbamate moiety. The Zn–S bond
lengths in [Zn(mpdtc)2bpy], S(3)–Zn(1) [2.3444(6)°], and
S(4)–Zn(1) [2.4228(6)°] were close to those found in other
penta-coordinated complexes with similar ligands [39],
while the Zn–N showed similar bond lengths in both
complexes. The structure of [Zn(epdtc)2bpy] was obtained
in a ZnS4N2 format and the two nitrogen atoms from the
bipyridine molecule along with the four sulfur atoms from
the dithiocarbamate ligands generated an octahedral geo-
metry (Figure 9b) [15]. The C–S bond length was shorter in
comparison to a typical C–S single bond. This then suggests
that the C–S bonds in the complex possess a partial double
bond character, which is common in most dithiocarbamate
compounds.

2.2 Nickel(II) dithiocarbamate complexes

The synthesis of nickel dithiocarbamate complexes usually
involves a similar procedure typical of most metal dithio-
carbamate complexes [24], whereby the ligands (in aqueous
or ethanol solution) react in stoichiometric ratio with the
metal salt to form a precipitate of themetal complex. Onwu-
diwe et al. reported the addition of the aqueous solution of
nickel salt into a cold solution of freshly prepared N-butyl-
N-phenyldithiocarbamate ligand. The green precipitate,

obtained after stirring for a few minutes, was then washed
thoroughly and recrystallized using a mixture of solvents to
give dark green crystals [46]. Some recent studies [47] have
reported a slight modification in the synthetic procedure
such as in situ synthesis, which involved a one–pot pre-
paration of the metal complex without necessarily isolating
the ligands.

Studies on Ni(II) dithiocarbamate complexes have
shown that they exist as square-planar geometry and
exhibit diamagnetic property [48]. Masnovi et al. [47]
reported some homoleptic mixed-organic bis-dithiocarb-
amates of [Ni(S2CN(ethyl)(n-butyl)]2 and [Ni(S2CN(phenyl)-
(benzyl))]2 [47]. The structural studies showed that both
complexes appeared to give a slightly distorted square-
planar coordination environment, as shown in Figure 10a
and b, with the nickel ion at the center, coordinated to two
dithiocarbamate ligands on opposite sides of the metal.
The Ni–S bond lengths were between 2.2020–2.2084Å [47].
A heteroleptic mixed ligand complex of [NiP(C6H5)3(S2CN
(C6H5)(CH2C6H5))Cl] was also reported (Figure 11), with a
somewhat longer Ni–S bond length. Furthermore, in the
mixed ligand complex, the Ni–S(1) trans bonding of
chloride (electron-withdrawing) was shorter than the
Ni–S(2) trans bonding of phosphine by 0.0464(8) Å.
This was because phosphine-based ligands are stronger
trans-influencing ligands than chloride as reported also
in other similar square-planar metal-based complexes
[49]. The chelated S–Ni–S bond angle for the homoleptic
compounds was between 79.28(2)° and 79.55(2)°, while
the heteroleptic compound has a smaller bite angle of
78.31(12)°. The S–C–S bond angle was approximately

Figure 9: Molecular structure of (a) [Zn(mpdtc)2bpy] and (b) [Zn(epdtc)2bpy]. Redrawn from ref. [15], with permission from Elsevier
(Copyright 2020).
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110.04° for all homoleptic asymmetric complexes which
were comparable to those of similar reported homoleptic
compounds [48].

Amine-based Ni(II) dithiocarbamate complex of 3-((pyri-
dine-2-yl)methylamino)propanenitrile has been prepared
and characterized by Halimehjani et al. [50]. The obtained
single crystal structure showed that the Ni(II) complex
contained four coordinate distorted square-planar con-
figurations through four sulfur atoms from two chelating

((2-cyanoethyl)((pyridine-2-yl)methyl)-yl)(methyl)carbamo-
dithionate ligands as shown in Figure 12 [50].

Anastasiadis et al. [51] prepared a series of nickel and
zinc bis(dithiocarbamate) complexes with functionalized
backbones such as derivatives of isoindoline, tetrahydro-
isoindoline, 1,2,3,4-tetrahydroisoquinoline, and several
functionalized piperazines [51]. Only the nickel dithio-
carbamate was reported to exhibit suitable sized single
crystals structure, which was identical to other structurally
characterized nickel bis(dithiocarbamate)complexes [52].
The geometry of the structure obtained from Ni(II) dithio-
carbamate complex of 1,2,3,4-tetrahydroisoquinoline showed
that the Ni atom lies on an inversion center, bonded to
two dithiocarbamate moieties in a square-planar geo-
metry (Figure 13) [51].

Other geometries, apart from the square-planar environ-
ment, have been reported for Ni(II) dithiocarbamate adducts.
Sharma et al. [53] prepared some piperidine and morpholine
adducts derived from bis(morpholinedithiocarbamato) Ni(II)
complex Ni(C4H8ONCS2)2. The magnetic susceptibility
measurement showed that the 1:1 adducts of Ni(C4H8-
ONCS2)2L2 (L =morpholine and piperidine) displayed dia-
magnetic properties with the zero magnetic momentum,

Figure 10: Molecular structure of (a) Ni(S2CN(phenyl)(benzyl))2 and
(b) Ni(S2CN(ethyl)(n-butyl))2. Redrawn from ref. [47], with permission
from Elsevier (Copyright 2020).

Figure 11: Molecular structure of [Ni(P(phenyl)3(S2CN(phenyl)
(benzyl)Cl]. Redrawn from ref. [47], with permission from Elsevier
(Copyright 2020).

Figure 12: Molecular structure of Ni(S2CN(3-((pyridin-2-yl)methyl-
amino)propanenitrile). Redrawn from ref. [50], with permission from
Elsevier (Copyright 2020).

Figure 13: Molecular structure of [Ni(S2CN(C3H6C6H4)2]. Redrawn
from ref. [51], with permission from Elsevier (Copyright 2020).
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which consequently resulted in a low spin square pyra-
midal Ni(II) complexes. Furthermore, the 1:2 adducts of
(Ni(C4H8ONCS2)2)L2 were found to be paramagnetic in
nature with 3.09 and 3.16 B.M, similar to the values
reported for octahedral complexes of Ni(II) [53]. Although
there are relatively less reports on the octahedral geo-
metry of nickel dithiocarbamate complex, Pastorek et al.
reported three different nickel dithiocarbamate complexes,
[Ni(hmidtc)(bpy)2]ClO4, [Ni(hmidtc)(phen)2]ClO4, and [Ni
(hmidtc)(phen)2]SCN, derived from hexamethyleneimine-
dithiocarbamate (hmidtc), 2,2′-bipyridine (bpy), and 1,10-
phenanthroline (phen) [54]. Out of the three complexes,
[Ni(hmidtc)(bpy)2]ClO4 gave a distorted octahedral arrange-
ment in the vicinity of the metal center. As shown in Figure
14, the structure showed a three bidentate ligand attach-
ment to the Ni center, with one hexamethyleneimine dithio-
carbamato anion (hmidtc) attaching through the S-donor
atoms, while two bipyridine moieties formed an unusual
attachment with the metal center. A NiN4S2 donor set and
an octahedral geometry about the Ni center were formed.
The bond lengths between the Ni(II) center and donor atoms
(S1, S2, N2, N3, N4, and N5) were comparable to others
deposited in the Cambridge Structural Database (CSD)
[55], while the bond angles were almost equal among
(hmidtc and bpyA), (hmidtc-bpyB), and (bpyA-bpyB).

Furthermore, other octahedral nickel(II) dithiocarb-
amate complexes involving bidentate and tetradentate
nitrogen-donor ligands (phen = 1,10-phenanthroline,
bpy = 2,2′-bipyridine, and cyclam = 1,4,8,11-tetraaza-
cycloteradecane) have been synthesized by Trávníček et al.
[55]. Different homoleptic parent nickel(II) dithiocarbamate
complexes of [Ni(BzMetdtc)(phen)2]ClO4, [Ni(Pe2dtc)
(phen)2]ClO4, [Ni(Bzppzdtc)(phen)2]ClO4·CHCl3, and

[Ni(Bz2dtc)2(cyclam)] (whereBzMetdtc=N,N-benzyl-methyl-
dithiocarbamate(1–), Pe2dtc = N,N-dipentyldithiocarbamate
(1−), Bzppzdtc = 4-benzylpiperazinedithiocarbamate(1−),
and Bz2dtc = N,N-dibenzyldithiocarbamate(1−) anions)
have been reported. The obtained crystallographic data
revealed that [Ni(Bzppzdtc)(phen)2]ClO4·CHCl3 and [Ni
(Bz2dtc)2(cyclam)] gave a distorted octahedral geometry
as shown in Figure 15a and b upon the addition of 1,10-
phenanthroline [55]. The structure of [Ni(Bzppzdtc)
(phen)2]ClO4·CHCl3 revealed a mixture of [Ni(Bzppzdtc)
(phen)2]+ cation, solvent molecule of CHCl3, and anion of
perchlorate (ClO4)−. Thecentralnickel(II) ionwascoordinated
by four nitrogen atoms from the 1,10-phenanthroline moiety
and two sulfur atoms from 4-benzylpiperazinedithiocarba-
mate anion, along with the 1,10-phenanthroline, thereby
creating an octahedral environment [55].

On the other hand, the structure of Ni(Bz2dtc)(cyclam)
consists of a centrosymmetric Ni1/2(Bz2dtc)(cyclam)1/2
moiety which is connected to its second part by means
of inversion center. Thus, the Ni1 atom and some atoms
of cyclam adopt non-unit occupancy factors. The crys-
tallographically independent part of the complex mole-
cule connects with the second centrosymmetric part
through partially disordered cyclam ligand. Hence, as
seen in Figure 15, the structure showed six coordinations
about each of the two nickel atoms, which stemmed from

Figure 14: Molecular structure of [Ni(hmidtc)(bpy)2]ClO4. Redrawn
from ref. [54], with permission from Elsevier (Copyright 2020).

Figure 15: Molecular structure of (a) [Ni(Bzppzdtc)(phen)2]
ClO4.CHCl3 and (b) [Ni(Bz2dtc)2(cyclam)]. Redrawn from ref. [55],
with permission from Elsevier (Copyright 2020).
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the coordination of four N atoms from the cyclam group
and two S atoms from a bidentate coordinated dithiocarb-
amate ligand [55].

3 Effect of structural variation on
the biological potentials of Zn
and Ni complexes

Different factors such as coordination geometry, oxida-
tion number of metal, and the type of ligand used in the
complexation reaction play significant roles in the pro-
perties of metal complexes, which also influence their
biological relevance and applications [56]. Generally,
the action mode of most metal complexes in biological
systems is due to the synergy between the metal ion and
ligand moiety. Thus, the chemistry and the biological
activity of metal dithiocarbamate complexes are the con-
sequence of both the individual properties of the central
metal and dithiocarbamate ligand [36]. The ligand plays
a modulating role for the associated metal toxicity, while
enhancing its own properties. Furthermore, the possibi-
lity for the derivation of a dithiocarbamate compound via
the C–N backbone and the presence of the C–S bonds
have provided a platform for fascinating chemistry,
which in turn brings about an improved biological effi-
ciency [56]. Consequently, this has led to a wide range of
useful biological properties due to the construction of
diverse biologically useful organic intermediates from
the wide array of new compounds.

Metal complexes, including those of dithiocarbamate,
have been reported to enhance the retention time for the
organic ligands and also reduce the bioavailability of
metals for undesired side reactions that could harm the
host organism [57]. These organic ligands play amajor role
in determining the nature of the secondary coordination
sphere (involved in determining useful biological sites
[36]) due to the weak metal ligand interaction. These
weak interactions give rise to a possibility for ligand sub-
stitution and redox reactions, which enhance the possibi-
lity of organic ligands getting to targeted sites [1,58].

Other reasons proposed for the useful biological pro-
perties of metal complexes involve the formation of che-
lating rings. Studies have shown that the delocalization
of electron density over the chelating ring favors the
permeability of the complexes through the cell mem-
brane or cellular membranes of most organisms [12,48].
In the formation of chelating complexes, metal ions bind
to two or more donor group atoms from the same ligand.

The chelate prefers metal ions to form a ring complex as
opposed to non-chelates, in which two ligands form
bonds with similar strength [59]. Hence, chelates formed
from donor groups bearing sulfur, oxygen, and nitrogen
atoms have generated research interest due to their use-
fulness in physiochemical processes and their impact on
biological systems, especially as models for metallo-
enzymes dynamic sites [59].

According to Tweedy’s chelation theory, chelation
about the metal center tends to reduce the polarity asso-
ciated with the central metal atom due to the partial
sharing of their positive charge with donor group atoms,
which in turn causes the delocalization around the ring
chelate [60]; thus, allowing for easier permeation due to
the now increased lipophilic character of the chelate via
the cellular membrane. Although most of the dithiocarb-
amate complexes have generally shown great antimicro-
bial properties, they vary in their biological potential due
to their permeability through the cell membrane [59]. For
instance, Mamba et al. [61] reported that the parent
dithiocarbamate complexes of Zn and Ni showed better
antimicrobial properties than their phosphine adduct
derivatives when screened against E. coli, S. aureus, S. typhi,
E. faecalis, P. aeruginosa and B. cereus, A. flavus, A. carbo-
narius, A. niger, and A. fumigatus [61]. These parent com-
plexes showed a wide variety of antimicrobial properties
compared to their adduct derivatives. Similarly, our recent
studies involving N-substituted dithiocarbamate nickel(II)
complex revealed that the parent complex exhibited better
antimicrobial properties than its derivatives bearing the
PPh3, CN, and SCN donor groups [46]. This trend in which
the parent complexes show broader and better activity than
their adduct derivatives have been corroborated by other
related reports in literature [61–63]. Based on these studies,
therefore, the four coordinate structures (tetrahedral/
square-planar) of these complexes generally represent
the least optimally strained structure among the various
derivatives of Ni and Zn dithiocarbamate complexes,
which may be due to the structural role played by the
four coordinate geometries [64]. The stronger biological
activities observed for the four coordinate complexes
have been attributed to their ability to form a stable
square-planar dithiocarbamate complex with S-donor com-
pounds such as methionine and cysteine. This stems from
the stability of the trans-arrangement between the S-donor
compounds and the dithiocarbamate backbone of –NCSS
[65,66]. With the use of the same type of ligand derivatives,
in most cases Zn has shown better biological potential than
its Ni counterpart [62].

Furthermore, different homoleptic Zn and Ni dithio-
carbamate complexes have also shown similar patterns in
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their cytotoxicity properties against different cell lines
similar to their antimicrobial activities. The improved
activity of the homoleptic complexes compared to the
adducts (with heteroleptic system) has been attributed
to the four coordinate geometries of the complexes. Rani
and Thirumaran [60] reported that four coordinated Zn
dithiocarbamate complexes possessed better biological
activity against the HeLa cell line than the adducts com-
posed of nitrogen-donor Lewis bases [60]. This agrees with
different studies that reported the higher efficiency of four
coordinate geometries compared to the six coordinated
compounds [60,67].

The exact targeted protein or enzymes by dithiocarb-
amate compounds have remained evasive till date and
continued to remain a subject of much research interest.
However, different studies have suggested that dithiocarb-
amate-based compounds proceed via a mechanism invol-
ving the inhibition of proteasome, inhibition of RNA and
DNA synthesis, and eventual apoptosis of cancerous cells
[56]. Thus, in most biological studies, the DNA seems to be
the main targeted action site, except for Au(III) dithiocarb-
amate complexes, where it has been hypothesized that the
mechanism of action does not essentially involve the DNA
interactions when examined for anticancer activity[68].
This hypothesis was brought about because the cross-
resistance phenomenon that usually accompanies cis-
platin and other known anticancer drugs was not observed,
even though these Au complexes gave better anticancer
properties [68–70]. Other mechanisms of action may
emerge due to the presence of S− group with the mole-
cule. This is because compounds bearing sulfur donor
group like dithiocarbamate have been found to act as
chemo-protectant in chemotherapy due to their poten-
tial to modulate nephrotoxicity, even in harsh acidic
conditions [71]. This tendency makes them crucial in
cancer treatment, especially in those that involve the
secretion of acids such as solid tumors [71]. Further-
more, dithiocarbamates have also been found capable
of modulating key proteins involved in many biological
processes such as oxidative stress, transcription, degra-
dation, and apoptosis, which in turn make them useful
against cancerous cells [72].

4 Conclusion

The interesting structural properties and biological effi-
ciency of multifaceted, mono-anionic chelating dithio-
carbamate ligands have necessitated the investigation
of their numerous pharmacological properties in recent

decades. This review concisely described the structural
chemistry of Zn(II) and Ni(II) dithiocarmate complexes.
The complexes displayed different bonding modes and
varieties of structural configurations, suggestive of their
flexibility and ability to adopt a range of coordination
structures. Both complexes exert some pharmacological
activities including antibacterial, antifungal, antioxidant,
and anticancer due to the synergistic effect of both
the metals and the dithiocarbamate ligands. They may
become useful pharmaceuticals in combating many dis-
eases with different bioactive platforms and improved
efficiency in future.
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