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Abstract: A novel series of mixed-ligand complexes of the
type, [M(L1)(L2)Cl]·2H2O [L1 = 2-(α-methyl salicylidene
hydrazine) benzimidazole (primary ligand), L2 = 2,2′-
bipyridine (bipy; secondary ligand), M = Co(II), Ni(II),
Cu(II) and Zn(II)], were based on the physicoanalytical
studies. The spectroscopic findings revealed tridentate
nature of the Schiff base ligand (L1) and its coordination
to the metal ions via azomethine nitrogen, ring nitrogen
and the deprotonated phenolic oxygen atoms. Furthermore,
the synthesized compounds were evaluated for antimicro-
bial activity against Bacillus subtilis, Escherichia coli and
Salmonella typhi microorganisms. In addition, molecular
docking studies were carried out against Middle East
respiratory syndrome coronavirus (PDB ID: 4ZS6) and
severe acute respiratory syndrome coronavirus 2 main pro-
tease (PDB ID: 6W63).

Keywords: Schiff base, ternary complexes, spectral, anti-
microbial, molecular docking studies

1 Introduction

Benzimidazole, an important precursor of the hetero-
cyclic compounds, exhibits a wide range of biological

applications, i.e., antiviral, antifungal, antipyretic, anti-
depressant and inhibitory activities in various cancers
[1–5]. The broad biological activity of these compounds
is supposed to be due to the presence of sp2 hybridized
nitrogen donor atoms [6]. The ligational behavior of
benzimidazole and its derivatives has been explored in
coordination chemistry to form stable complexes through
various modes of coordination [7]. The benzimadazole-
based metal complexes exhibit broad spectrum of
pharmaceutical activities, such as zinc complexes of ben-
zimidazole find usage in anticancer activity, and reveal
remarkable antimicrobial activity [8]. In addition, several
benzimadazole complexes have been reported as anti-
cancer agents [9,10]. It is also reported that the transition
metal ions form stable complexes and have displayed
several properties [11,12]. Over the years, bipy and its
derivatives have received immense importance as bind-
ing blocks and ligands in the construction of various
homo- and heteroleptic metal complexes with broad
spectrum of applications in the area of both material
and biological science [13–17].

Mixed-ligand complexes, which have two different
ligands, find significant consideration in coordination
chemistry because of their structural variation and
diverse applications [18,19]. Besides, mixed-ligand com-
plexes also exhibit various biological applications [20].
Recent outbreak due to severe acute respiratory syn-
drome coronavirus 2 (SARS-CoV-2) has destroyed the
economy and various socioeconomic sectors worldwide
[21–23]. So far, not a single approved drug is available to
treat the caused infection. Therefore, scientists are trying
to find a drug to combat the COVID-19 pandemic. Several
reports suggest that the progression of this pandemic can
be controlled by targeting the main protease (Mpro) to
develop the potential inhibitor. Molecular docking, a
computational strategy to predict the binding site to
assist drug repositioning for several diseases, plays a sig-
nificant role in the pharmaceutical industry to bring new
drugs to the market [24]. The HIV-1 protease inhibitors as
the repurposed drugs for SARS-CoV-2 Mpro are discussed
in literature [24–26]. Therefore, considering the versatile
nature of mixed-ligand complexes, we are reporting four
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new mixed-ligand complexes of Co(II), Ni(II), Cu(II) and
Zn(II) ions with benzimidazole-based Schiff base ligand
(L1) as the primary ligand, and bipy as the co-ligand, (L2)
in 1:1:1 molar ratio, and investigated them by various phy-
sicochemical studies. The synthesized metal complexes
exhibited moderate antibacterial activity when screened
against Bacillus subtilis, Escherichia coli and Salmonella
typhi. In addition, we analyzed the molecular docking
of the complexes of protein obtained from Middle East
respiratory syndrome coronavirus (MERS-CoV; PDB ID:
4ZS6) and SARS-CoV-2 Mpro (PDB ID: 6W63).

2 Experimental

2.1 Preparation of the benzimidazole
derived Schiff base ligand, L1

The precursor, 2-hydrazinobenzimidazole, was prepared
following the previously reported protocol [27]. The pri-
mary ligand, L1, was prepared by the condensation reac-
tion of 2-hydrazinobenzimidazole with o-hydroxyaceto-
phenone in equimolar ratio in ethanol [27].

Yield 80%, color yellow; anal. calc. (%): C, 63.83; H,
4.96; N, 19.86, found (%): C, 63.76; H, 4.92; N, 19.82.

2.2 Preparation of mixed-ligand complexes

An ethanolic solution of the Schiff base ligand, L1
(0.01 mol and 20mL), metal(II) chloride (0.01 mol and
20mL) and bipy, and L2 (0.01 mol and 20mL) were mixed
in 1:1:1 molar ratio and refluxed for 2.5 h at pH = 7–8 by

adding catalytic amount of solid NaOH. A colored preci-
pitate was obtained, which was separated by filtration.
The precipitate was washed with methanol and dried in
vacuo. The schematic representation of the synthesis of
mixed-ligand complexes is given in Scheme 1.

2.3 In vitro antibacterial activity

The in vitro antimicrobial activity of the studied mixed-
ligand complexes was reported by Agar Well diffusion
method [27] at 100 μgmL−1 concentrations against B.
subtilis, E. coli and S. typhi with ciprofloxacin as the stan-
dard antibacterial drug.

2.4 Molecular docking study

In order to evaluate the biological activity, molecular
docking was analyzed on CLC Drug Discovery Workbench
Software to obtain accurate predictions about the structure
and interactions with a protein/enzyme receptor [28]. Some
protein/enzyme receptors were imported from protein data
bank (http://www.rcsb.org/:PDB): MERS-CoV (PDB ID:
4ZS6 [29]) and SARS-CoV-2 Mpro (PDB ID: 6W63 [30]).

In the docking simulation, the compounds (Figure 1)
were placed into a predictable binding site on the surface
of a protein target. The CLC Drug Discovery Work bench
utilized MMFF94 (Merck Molecular Force Field [MMFF])
force field to generate 3D structure on import. Rotation
around bond generates several conformations. Thus, the
ligand optimizer was realized by geometry minimization
using MMFF94 force field [31], conforming the binding
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Scheme 1: Schematic representation of preparation of mixed-ligand complexes.
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Figure 1: (a) Tube representation and (b) wire representation of the optimized molecular structure of ligand and mixed-ligand metal
complexes (numbering of the atoms was done according to the software).

Molecular Docking of Mixed-ligand complexes against SARS-CoV-2 main-protease  1497



pocket geometry. The protein–ligand interactionwas scored,
and the best score-bindingmodewas returned for individual
ligand and collected with the score. The ligand-binding
mode search is effectuated inside the binding site (green
sphere with a radius large enough to comprise the ligands
docked to the receptor protein). After the import of the pro-
tein receptor from the PDB bank, the next step involved the
setting up of the binding site and the binding pockets;
binding pockets are necessary to guide the docking simula-
tion. After the setup of the binding site and the binding
pocket, the co-crystallized-natural ligand was extracted and
redocked in the active binding site of the protein receptor to
validate the method and the docking parameters obtained
from the molecular docking studies.

Ethics approval: The conducted research is not related to
either human or animal use.

3 Results and discussion

All the synthesized mixed-ligand complexes are stable at
room temperature, non-hygroscopic and soluble in dimethyl
sulfoxide and N,N-dimethylformamide. The physicoanaly-
tical data are shown in Table 1.

3.1 Fourier-transform-infrared (FT-IR)
spectra

The FT-IR spectra revealed the coordination of the metal
ion through the deprotonated phenolic oxygen atom
by the disappearance of the band at ∼3,300 cm−1 due to
the phenolic –OH stretching vibration [32,33]. This was
further confirmed by the hypsochromic shift of phenolic
v(C–O) band at ∼1,280 cm−1 in the free ligand and L1 to
∼1,500 cm−1 in the spectra of the mixed-ligand complexes
[33,34]. However, the position of the band due to vN–H

(exocyclic) remains practically unaltered in the spectra,
suggesting its noninvolvement in coordination [33] (Figure S1).
Furthermore, noncoordination of ring nitrogen atom
v(–C═N) of benzimidazole moiety in the spectra of the com-
plexes is also ascertained by finding no change in the
positions of the characteristic IR bands at ∼1,540 and
∼1,320 cm−1 due to v(C═N) (cyclic) and v(C–N) (cyclic) modes
of vibration, respectively [33]. On the other hand, the posi-
tion due to benzimidazole v(N–H) at ∼3,150 cm−1 reduced
to lower frequency of ca. 20–25 cm−1, suggesting participa-
tion of –NH group of benzimidazole in coordination
[33,35]. However, the bands due to v(C═N) and v(N–N) vibra-
tions also show negative shift of ca. 10–20 cm−1 in the
spectra of the complexes, suggesting their role in coordi-
nation [33,36]. Moreover, the vibration at ∼3,450 cm−1 is
assigned to v(O–H) of the lattice water [33,34]. In addition, a
sharp band at 655–680 cm−1 due to ν(C═N) of pyridine is
observed in the spectra of the complexes [33,37].

3.2 Electronic spectra

The electronic spectral data and the magnetic moment
values of the mixed-ligand complexes are listed in Table S1.
The electronic spectrum of Co(II) complex showed two
main bands at ∼10,745 cm−1 (broad) and ∼22,136 cm−1

(strong) due to 4T1g(F) → 4T2g(F) (v1) and 4T1g(F) → 4T1g
(P) (v3) transitions, respectively [38,39]. However, 4T1g(F)
→ 4A2g(F) (v2) transition was not observed because of its
association with a large amount of energy cause by two
electron transitions (t52g e2g → t32g e

4
g) [39,40]. Furthermore,

the observed magnetic moment, µeff (4.72 BM), supported
an octahedral geometry around Co(II) ion [39,41]. The stu-
died mixed-ligand complex of Ni(II) complex showed split
bands at ∼8,850 and ∼ 10,420 cm−1 assigned to 3B1g → 3Eg
and 3B1g → 3B2g transitions, respectively. In addition, two
characteristic bands at ∼15,350 and ∼24,575 cm−1 were
assigned to 3A2g(F) → 3T1g(F) (v2) and 3A2g(F) → 3T1g(P)
(v3) transitions, respectively, and suggested an octahedral

Table 1: Physicoanalytical data of the compounds

Sl. no. Compounds Molecular mass Yield (%) Λam C found (calcd) H found (calcd) N found (calcd) M found (calcd)

1 [CoL1L2Cl]2H2O 533.5 66 14.5 53.92 (53.98) 4.08 (4.12) 15.69 (15.74) 11.01 (11.06)
2 [NiL1L2Cl]2H2O 538 71 11.3 53.69 (53.53) 4.02 (4.09) 15.55 (15.61) 11.75 (11.80)
3 [CuL1L2Cl]2H2O 533 68 12.7 53.96 (54.03) 4.07 (4.12) 15.71 (15.76) 10.93 (10.97)
4 [ZnL1L2Cl]2H2O 539.5 65 9.2 53.32 (53.38) 4.03 (4.07) 15.50 (15.57) 11.98 (12.04)

aOhm−1 cm2 mole−1.
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geometry around Ni(II) ion, which was confirmed by the
observation of magnetic moment at 2.98 BM [39,42]. The
mixed-ligand complex of Cu(II) displayed two bands at
∼14,320 and ∼16,775 cm−1 attributed to 2B1g → 2B2g (v2)
and 2B1g → 2Eg (v3) transitions, respectively, thus sug-
gesting a distorted octahedral geometry [39,43]. However,
the band due to 2B1g → 2A1g was not observed in the stu-
died copper complex [39,44]. The µeff value for copper
complex at 1.88 BM also suggested an octahedral geometry
[39,45].

3.3 Thermal analysis

The thermogravimetric analysis (TGA) data for the stu-
died mixed-ligand complexes displayed similar pattern of
thermal decomposition. The lattice water degraded at tem-
perature below 100°C in all the studied complexes. This is
followed by the degradation of the anhydrous complexes
in two distinct stages at temperatures 250–280°C and
360–390°C. However, the degradation of organic consti-
tuents continued until the formation of stable metal
oxide as the end product. The temperature ranges of
decomposition, peak temperature and the possible frag-
ments removed are presented in (Table 2).

3.3.1 Proton nuclear magnetic resonance (1H-NMR)
spectra

The 1H-NMR spectra of Schiff base ligand, L1, and its
mixed-ligand complex of Zn(II) displayed a multiplet
due to the aromatic protons at δ 7.3–8.1 ppm. The signals
at δ 6.7 and δ 9.0 ppm were attributed to the ring NH and
exocyclic NH protons, respectively (Figure S2). However,
the observed de-shielding in the ring –NH proton at
δ 7.0 ppm indicated its participation in coordination.
Furthermore, disappearance of phenolic –OH proton in
the metal complexes confirmed its role in coordination.
Moreover, –CH3 signal was also observed at δ 2.4 ppm.

3.4 Antibacterial activity

The in vitro antibacterial activity was reported by Agar
well diffusion method [27] against B. subtilis, E. coli and
S. typhi at 100 μgmL−1 concentrations. The zone of inhi-
bition data was studied using ciprofloxacin as the stan-
dard antibacterial drug as shown in Figure 2. The studied
complexes exhibited better activity than the free ligand,
which is likely due to the presence of –C═N linkage and
its involvement in coordination. Furthermore, coordina-
tion through the metal ions reduces the electron density
due to the partial sharing of its positive charge with the
donor groups and possible π-electron delocalization [46].
In addition, solubility, dipole moment, the nature of the
ligand and geometry are supposed to be the possible
factor for the higher antibacterial activity displayed by
the mixed-ligand complexes [47]. However, the mixed-
ligand Zn(II) complex remained inactive against E. coli
and S. typhi.

3.4.1 Docking evaluation against MERS-CoV

Docking studies were performed to obtain accurate pre-
dictions on the optimized conformations for both the
ligands and protein target to form a stable complex. All

Table 2: TGA data for the ternary compounds

Compounds Temp. range of
water loss (°C)

% of water loss Decomposition
temperature (°C)

% of residue Composition
of the residue

Found Calc. Found Calc.

[CoL1L2Cl]2H2O 60–110 6.69 6.74 270 14.01 14.05 CoO
[NiL1L2Cl] 2H2O 55–110 6.70 6.75 260 13.92 13.98 NiO
[CuL1L2Cl]2H2O 45–95 6.65 6.69 255 14.72 14.77 CuO
[ZnL1L2Cl]2H2O 50–100 6.62 6.67 240 14.93 15.01 ZnO
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E. coli
S. typhi
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Figure 2: In vitro antibacterial activity of the ligand and its mixed-
ligand complexes.
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the compounds were docked on the crystal structure of
MERS CoV (PDB ID: 4Z6S). The docking pose of the
co-crystallized N-acetyl-D-glucosamine (NAG) interacting
with the residues of amino acid of active site are listed in

Figure 3. The co-crystallized NAG displayed the occur-
rence of six hydrogen bonds: two with GLU 382 (3.078
and 2.866Å), two with LYS 413 (3.333 and 3.082Å), PHE
385 (3.016Å) and SER 386 (3.043Å). The co-crystallized

Figure 3: Docking pose of the compounds interacting with the residues of amino acid of binding site of 4Z6S; (a) co-crystallized NAG,
(b) Schiff base ligand, (c) Ni(II) complex, (d) Zn(II) complex, (e) Co(II) complex and (f) Cu(II) complex.
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NAG was considered as the reference ligand to compare
the docking results of the studied compounds. The dock-
ing studies revealed that the docking score of all the
metal complexes are greater than the co-crystallized
NAG (docking score: −21.63; root-mean-square deviation
[RMSD]: 0.04Å) but smaller than L1 (docking score:
−41.40; RMSD: 0.05Å; Table 4). The L1 showed the pre-
sence of six hydrogen bonds: three with GLU 382 (3.077,
3.018 and 2.696Å), two with LYS 413 (3.155 and 3.084Å)
and one with ASN 410 (2.849Å). The Ni(II) complex with
the best docking score (−26.64; RMSD: 0.04) displayed
one hydrogen bond with LYS 413 (3.140Å). With LYS
413 amino acid, Zn(II) complex (3.156Å) and Cu(II) com-
plex (3.014Å) realized one more hydrogen bond. How-
ever, Co(II) complex realized one hydrogen bond with
ASN 410 (3.044Å). The docking pose of the compounds
interacting with amino acid residues is presented in
Figure 3. The amino acid residues that formed the inter-
acting group of each compound are listed in Table 3. After
analyzing the data, it was noticed that all the studied
compounds were placed in the same binding site (repre-
sented by a green sphere) of 4ZS6 as the co-crystallized
one and have the same orientation as the co-crystallized
NAG (Figure 4).

3.4.2 Docking evaluation against SARS-CoV-2 Mpro

All the compounds were docked on the crystal structure
of SARS-CoV-2 Mpro (PDB ID: 6W63). The docking pose of
the co-crystallized X77 interacting with amino acid resi-
dues of the active site and the hydrogen bonds created
with GLU 166 (2.721Å) and GLY 143(3.202Å) is shown in
Figure 5. The co-crystallized X77 (N-(4-tert-butylphenyl)-
N-[(1R)-2-(cyclohexylamino)-2-oxo-1-(pyridin-3-yl)ethyl]-
1H-imidazole-4-carboxamide)was considered as a standard
ligand to compare the docking results of the studied com-
pounds. The docking studies revealed that the docking
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Figure 4: (a) Docking pose of the co-crystallized NAG and all com-
pounds in the binding site of 4Z6S and (b) docking pose of the co-
crystallized X77 and all compounds in the binding site of 6W63.
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score of all the metal complexes are close to that of the
co-crystallized X77 (docking score: −56.57; RMSD: 1.53Å)
and greater than the Schiff base ligand, L1 (docking score:
−49.91; RMSD: 0.87Å; Table 5). The Schiff base ligand, L1,

showed the occurrence of four hydrogen bonds: one with
GLN 192 (3.028Å), two with THR 190 (2.558 and 2.924Å)
and one with ARG 188 (3.025Å). The Co(II) complex with
the best docking score (−52.52; RMSD: 0.002) displayed

Figure 5: Docking pose of the compounds interacting with the amino acid residues of binding site of 4Z6S; (a) co-crystallized X77, (b) Schiff
base ligand, HL, (c) Co(II) complex, (d) Ni(II) complex, (e) Zn(II) complex and (f) Cu(II) complex.

Molecular Docking of Mixed-ligand complexes against SARS-CoV-2 main-protease  1503



one hydrogen bond with GLN 189 (3.143Å). With the
GLN189 amino acid, Ni(II) complex (3.145Å), Zn(II) com-
plex (3.145Å) and Cu(II) complex (3.134Å) realized one
more hydrogen bond. The docking pose of the com-
pounds interacting with amino acid residues is presented
in Figure 5. The amino acid residues that formed the
interacting group of each compound are listed in Table 4.
After analyzing the data, it was noticed that the all
studied compounds were placed in the same binding
site (represented by a green sphere) of 6W63 as the co-
crystallized one and have the same orientation as the co-
crystallized X77 (Figure 5).

According to Lipinski’s rule of five, the calculated
parameters (Table S2) may predict the property of a
molecule to turn into an active drug [48] on the basis
of the number of violations made. It is observed that
all metal complexes have two violations of Lipinski’s rule
of five (Lipinski violation is 2), namely, molecular weight
>500 Da and octanol–water partition coefficient (log P) > 5.

3.5 Electrostatic potential (ESP) surface
analysis

The ESP surface of Schiff base ligand, L1, was analyzed by
using Argus Lab 4.0.1 software as shown in Figure 6. The
surface contains a number of possible sites for electro-
philic attack. The ESP surface displayed a specific data
about the charge distribution. The negative regions were
mainly over phenolic oxygen, azomethine nitrogen and
benzimidazole ring nitrogen atoms as indicated in red
and were involved in coordination. However, the other

nitrogen atom was not involved in coordination likely
due to the steric effect.

4 Conclusion

A series of mixed-ligand complexes with Cu(II), Co(II),
Ni(II) and Zn(II) ions were investigated. The antibacterial
activity suggested the moderate antibacterial activity
for all the complexes in comparison to the Schiff base
ligand. However, the Zn(II) complex was inactive against
E. coli and S. typhi. Moreover, molecular docking studies
recorded against MERS-CoV (PDB ID: 4ZS6) and SARS-
CoV-2 Mpro (PDB ID: 6W63) revealed that all the studied
metal complexes demonstrated two violations of all the
parameters involved in the Lipinski’s rule of five. The
Ni(II) complex displayed the best docking score (−26.64;
RMSD: 0.04) against MERS-CoV whereas the Co(II) com-
plex displayed the best docking score (−52.52; RMSD:
0.002) against SARS-CoV-2 Mpro. This study may be
helpful for the researchers in designing new potent drugs.
In addition, the ESP surface of the Schiff base ligand, L1,
was analyzed to understand the possible sites for electro-
philic attack.
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