გ

Research Article

Mohammed Bourhia*, Mouhcine Messaoudi, Hanane Bakrim, Ramzi A. Mothana, Nasir A. Sddiqui, Omer M. Almarfadi, Mohammed El Mzibri, Said Gmouh, Amin Laglaoui, Laila Benbacer

Citrullus colocynthis (L.) Schrad: Chemical characterization, scavenging and cytotoxic activities

https://doi.org/10.1515/chem-2020-0124 received May 19, 2020; accepted July 09, 2020

Abstract: Citrullus colocynthis (L.) Schrad (C. colocynthis) called colocynth is a wild species that belongs to the family cucurbitaceae. The present research work aimed to study the phytochemical composition, cytotoxic and antioxidant activities of C. colocynthis seed extract. The chemical characterization of C. colocynthis seeds was effectuated using a gas chromatograph coupled to a mass spectrometer (GC-MS). The cytotoxic activity of C. colocynthis seed extract against breast cancer cell lines (MDA-MB-231) and colon cancer cell lines (HT-29) was assessed using the WST-1 bioassay. The antioxidant power was evaluated by the DPPH assay. The phytochemical characterization of C. colocynthis seed extract showed the richness of C. colocynthis seed extract in several families of bioactive compounds. Regarding the cytotoxic activity, the IC₅₀ (the half-maximal inhibitory concentration) of *C. colocynthis* seed extract in inhibiting MDA-MB-231 and HT-29 were 170.34 and 132.31 µg/mL, respectively. The cancerous cell lines MDA-MB-231 seem

* Corresponding author: Mohammed Bourhia, Laboratory of Chemistry-Biochemistry, Environment, Nutrition, and Health, Faculty of Medicine and Pharmacy, Hassan II University, B.P. 5696, Casablanca, Morocco, e-mail: bourhiamohammed@gmail.com Mouhcine Messaoudi, Mohammed El Mzibri, Laila Benbacer: Laboratory of Pharmacology and Toxicology, Life Science Division, National Centre for Energy, Sciences, and Nuclear Techniques, B.P. 1382 RP, 10001, Rabat, Morocco

Hanane Bakrim, Amin Laglaoui: Research Team of Biotechnology and Biomolecular Engineering (ERBGB) Faculty of Sciences and Techniques, Tangier, Morocco

Ramzi A. Mothana, Nasir A. Sddiqui, Omer M. Almarfadi: Department of pharmacognosy, College of Pharmacy, King Saud University, P.O. Box 2457, Riyadh, 11451, Saudi Arabia

Said Gmouh: Laboratory of Engineering and Materials LIMAT, Faculty of Sciences Ben M'Sik, University Hassan II Casablanca, B. P. 7955, Casablanca, Morocco

to be more sensitive to C. colocynthis seed extract than HT-29 cell lines. C. colocynthis seed extract exhibited a strong antioxidant power with an IC₅₀ value of 1.37 mg/mL. Insight into the results obtained, C. colocynthis seed extract may be used as a promising weapon to fight against cancer and free radicals' damage.

Keywords: Citrullus colocynthis, seeds, phytochemical characterization, cytotoxic activity, antioxidant activity, GC-MS

When traditional medicine has not become of great interest

1 Introduction

for being used in the treatment, doctors and health organizations strongly call for its application in the treatment of diseases because of its promising therapeutic effects. About 80% of the world population and more than 90% of those based in developing countries depend on herbal medicine for primary health care [1-3]. For many decades, medicinal plants have played an essential role in pharmacological research studies and drug realizations. Plants contain many active compounds, the great majority of which are derived from secondary metabolism. These constituents are used as therapeutic agents, as raw materials for drug synthesis, or as models for pharmacologically active compounds [4]. Plants possess very interesting biological properties which are attributed to their content in secondary metabolites like polyphenols, alkaloids, terpenes, and essential oils that are applied in various fields like medicine, pharmacy, cosmetology, and agriculture [5].

The knowledge of medicinal plants goes to be lost since the younger generations have not been interested in keeping the natural heritage [7]. As a result, substances developed in laboratories turn out to be more expensive to be used in the treatment [6]. This type of knowledge has a real cultural value and may ultimately lead to the development of new pharmaceutical drugs. The sustainable exploitation of medicinal plants could contribute not only to the preservation of a significant part of biological diversity but also to the improvement in the living conditions of local communities by developing the trade in medicinal plants or their derivatives [8].

C. colocynthis called colocynth is a wild species that belongs to the family cucurbitaceae and is considered to be one of the most genetically diverse plant groups [9]. *C. colocynthis* fruits have naturally globular aspects, yellow or red color with a potential of poisonous content [10].

The traditional use of *C. colocynthis* has been largely described in the earlier literature. The plant studied in this research work has been used in the treatment of several diseases comprising diabetes, asthma, constipation, toothache, leprosy, bronchitis, jaundice, joint pain, mastitis, and skin infections [11,12].

To the best of our knowledge, no previous literature has investigated the medicinal properties of *C. colocynthis* seeds; therefore, the present study was undertaken to screen the phytochemical composition, the cytotoxic effect, and the antioxidant activity of *C. colocynthis* seeds.

2 Materials and methods

2.1 Plant material and extract preparation

The plant material was collected from the surrounding regions of Tangier city located in the north-west of Morocco. The plant was botanically identified by the taxonomist Pr M. Bakkali (Team of Research in Biotechnology and Biomolecular Genius – Faculty of Sciences and Techniques Tangier – Morocco) and the voucher specimen # LMB 06/04 has been deposited in the local herbarium. After drying the fruits at room temperature in the shade for ten days, seeds were salvaged and ground into a fine powder. One hundred milligrams of powder was extracted by maceration using ethanol for 72 h. Afterward, the mixture was filtered under reduced pressure using a rotary evaporator to obtain 2.4 g of crude extract and then kept at –20°C until further use [13].

2.2 Identification of bioactive constituents by GC-MS analysis

The analysis of *C. colocynthis* seed ethanolic extract was carried out using a GC-MS. The Clarus 580 chromatography

apparatus equipped with a capillary column (5% phenyl, 95% methypolysiloxane) (30.0 MX 250 μ m) and coupled to a mass spectrometer (Polaris Q) (EI 70 eV) was used in this assay. The carrier gas was helium at 1 mL/min. The split was 1/75 and the injection volume was 1 μ L. The injection and detection temperatures were set to 250 and 280°C, respectively. The temperature of the furnace regulating the temperature of the column was programmed as follows: from 50°C to 200°C at a rate of 11°C/min, then from 200°C to 240°C at a rate of 6°C/min. The spectra of the major unknown compounds were compared to the spectrum of the known component in the NIST library [13].

2.3 Cell culture

Breast cancer cell lines (MDA-MB-231) and colon cancer cell lines (HT-29) were used to perform the current research work. The cancer cell lines were kindly provided by Dr H. Morjani, UFR Pharmacy, Reims, France. Cells were cultured in the DMEM (Dulbecco's Modified Eagle Medium) with the following supplements: Glutamine and fetal calf serum, and a mixture of streptomycin/penicillin was added at the rate of 1% to each. The cancerous cells were kept at 37° C with 5% CO₂ and 95% moisture for 24 h (Figure 1).

2.4 Cell viability assay

Cell viability assay was performed using the WST-1 assay, according to the methods described in the earlier data [13]. Briefly, during the exponential growth of cells, MDA-MB-231and colon HT-29 were initially seeded on 96-well microplates. The *C. colocynthis* extract was applied at concentrations that ranged from 7.81 to 250 μ g/mL. At the end of the treatment period, 10 μ L of the medium was replaced with 10 μ L of the WST-1 reagent in each well and then the plates were incubated for further time. Cell viability was evaluated by reading the absorbance at 450 nm using a multiplate reader.

The percentage of cytotoxicity was calculated using the following equation:

Cell death (%) =
$$\frac{control \ OD - sample \ OD}{control \ OD} \times 100$$

In the present study, the concentration giving 50% cell growth inhibition (IC₅₀) was calculated from the

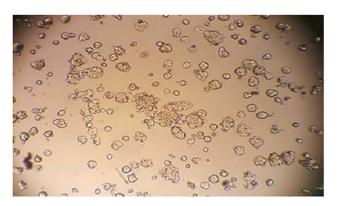


Figure 1: Cancerous cell lines (HT-29).

dose–response curve obtained by plotting the percentage of inhibition vs concentrations ($\mu g/mL$).

2.5 Antioxidant activity

The antioxidant activity was conducted, according to the earlier found protocols [14]. *C. colocynthis* extract was tested in different concentrations that ranged from 0.313 to 10 mg/mL. Briefly, each concentration was dropped in a microplate with 96 wells and then $50 \, \mu \text{L}$ of $1 \, \text{mM}$ DPPH was added to each well. The microplates were placed at room temperature for $30 \, \text{min}$ under dark conditions and then the absorbance was read at $517 \, \text{nm}$. BHT (butylated hydroxytoluene) was used as a positive control. The percentage of free radical inhibition was calculated as follows:

$$\%$$
 inhibition = $\frac{OD \text{ sample - OD control}}{OD \text{ control}} \times 100$

IC₅₀ (the required concentration for inducing 50% inhibition of free radical) was calculated from the graph.

2.6 Statistical analysis

Data were expressed as the means of duplicate assays \pm SD (standard deviation). The significant difference between the means was calculated using the Student's *t*-test. Statistically, a significant difference was considered, when P < 0.05.

Ethical approval: The conducted research work is not related to either human or animal use.

3 Results

3.1 Gas chromatography-mass spectrometry analysis

The results of *C. colocynthis* seed extract showed the presence of interesting bioactive molecules (Figure 2; Table 1).

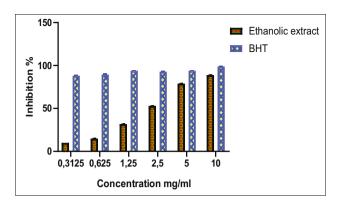
3.2 Antioxidant effect

C. colocynthis ethanolic extract showed a promising free radical inhibition in dose-dependent concentration. The IC₅₀ value (the required concentration for inhibiting 50% of free radicals) generated by *C. colocynthis* ethanolic extract was determined at 4.56 mg/mL by the time the BHT, which

Figure 2: GC-MS chromatogram of C. colocynthis seed extract.

Table 1: Bioactive molecules identified in C. colocynthis seed extract using a GC-MS

			Compound name	match	R. Match	Prob.	CAS	Library
1	3.420	1	Methylene chloride	665	887	83.6	75-09-2	mainlib
		2	Methane-d, trichloro-	545	747	4.4	865-49-6	mainlib
		3	1,3-Dioxolane, 2-heptyl-4-phenyl-	542	643	3.9	55668-40-1	mainlib
2	3.798	1	Hexanal	825	829	53.6	66-25-1	mainlib
		2	Cyclopentanol, 2-methyl-, trans-	794	812	14.6	25144-04-1	mainlib
		3	2-Hexen-1-ol, (<i>E</i>)-	774	776	6.7	928-95-0	mainlib
3	3.944	1	Tetrachloroethylene	763	826	95.1	127-18-4	mainlib
		2	1,4-Dichloro-2-fluorobenzene	533	594	0.9		mainlib
		3	1,2-Dichloro-4-fluorobenzene	525	560	0.7	1435-49-0	mainlib
4	4.130	1	4-[Dichloromethyl]-2-[[2-[1-methyl-2-pyrrolidinyl]ethyl]amino-6-trichloromethylpyrimidine	504	603	28.2		mainlib
		2	1,16-Cyclocorynan-17-oic acid, 19,20-didehydro-, methyl ester, (16 S,19 <i>E</i>)-	474	525	7.8	6393-66-4	mainlib
		3	Cyclopentanemethanol, 1-amino-	471	621	6.9	10316-79-7	mainlib
5	4.235	1	Methylene chloride	537	732	67.9	75-09-2	mainlib
		2	1,16-Cyclocorynan-17-oic acid, 19,20-didehydro-, methyl ester, (16 <i>S</i> ,19 <i>E</i>)-	471	516	10.7	6393-66-4	mainlib
		3	Dichloroacetaldehyde	450	626	4.6	79-02-7	mainlib
6	4.361	1	1-Heptanol, 3-methyl-	634	742	10.2	1070-32-2	mainlib
		2	2,4-Dimethylhept-1-ene	610	724	3.4		mainlib
		3	Octyl chloroformate	610	692	3.4	7452-59-7	mainlib
7	4.487	1	N-(2,2-Dichloro-1-hydroxy-ethyl)-2,2-dimethyl-propionamide	509	573	12.0	58956-78-8	mainlib
		2	1,3-Dioxolane, 2-heptyl-4-phenyl-	501	572	8.9	55668-40-1	mainlib
		3	Cyclopentanone, 2-(1-methylpropyl)-	491	676	6.3	6376-92-7	mainlib
8	4.663	1	Methylene chloride	534	688	7.4	75-09-2	mainlib
		2	2-Piperidinecarboxylic acid	531	631	6.5	535-75-1	mainlib
		3	Pyrrolidine, 2-ethyl-1-methyl-	529	765	6.0	26158-82-7	mainlib
9	4.703	1	Methylene chloride	531	694	27.8	75-09-2	mainlib
		2	Methane-d, trichloro-	528	746	24.6	865-49-6	mainlib
		3	1,16-Cyclocorynan-17-oic acid, 19,20-didehydro-, methyl ester, (16 <i>S</i> ,19 <i>E</i>)-	497	534	6.7	6393-66-4	mainlib
10	4.788	1	Butanoic acid, $4,4'$ -dithiobis[2-amino-,[S -(R^* , R^*)]-	390	400	9.2	626-72-2	mainlib
		2	Ethanethiol, 2-(3-(3-chloro-2- pyridyloxy)propyl)amino-, hydrogen sulfate	386	413	7.8	41286-95-7	mainlib
		3	DL-Homocystine	381	387	6.3	870-93-9	mainlib
11	4.884	1	<i>N</i> -(1-Hydroxy-4-oxo-1-phenylperhydroquinolizin-3-yl)carbamic acid, benzyl ester	560	582	22.8		mainlib
		2	Ethylbenzene	542	839	11.8	100-41-4	mainlib
		3	Benzaldehyde, 4-benzyloxy-2-fluoro-5-hydroxy-	528	606	7.4	141523- 16-2	mainlib
12	4.964	1	Methylene chloride	415	580	21.4	75-09-2	mainlib
		2	Aethylephedrin propionyl	388	630	6.3		mainlib
		3	2-[4-Chloro-2-nitrophenyl]-1-(2-diethylaminoethyl)- 3-formyl-1 <i>H</i> -indole	376	418	4.2	65287-47-0	mainlib
13	5.072	1	2-Cyclohexylpiperidine	460	570	5.2	56528-77-9	mainlib
	2.012	2	2-[p-Chlorobenzoyl]piperidine	456	615	4.4	63587-52-0	mainlib
		3	Pyrrolidin-2-one, 5-pentyl-	455	582	4.2	3817-18-3	mainlib
14	5.157	1	Nitrous acid, cyclohexyl ester	554	695	12.6	5156-40-1	mainlib
-	- ,	2	Cyclohexanol	548	620	9.9	108-93-0	mainlib
		3	2-Hexen-1-ol, (<i>E</i>)-	545	627	8.7	928-95-0	mainlib
15	5.242		Isonicotinic acid, 2-phenylethyl ester	579	730	6.4		mainlib
-		2	Nicotinic acid, 2-phenylethyl ester	578	731	6.2		mainlib
		3	Benzene, (nitromethyl)-	572	634	4.8	622-42-4	mainlib
16	5.307	1	3-Piperidinecarboxamide, 6-oxo-	504	672	30.8	189763- 34-6	mainlib
							J T U	


Table 1: Continued

Pk #	RT	Hit	Compound name	Match	R. Match	Prob.	CAS	Library
		3	2(3H)-Furanone, 3-(2-bromoethyl)-4,5-dihydro-	455	555	5.1	54815-24-6	mainlib
17	5.477	1	meso-3,4-Hexanediol	528	969	51.4	22520-39-4	mainlib
		2	Oxirane, 3-ethyl-2,2-dimethyl-	491	830	12.5	1192-22-9	mainlib
		3	2-Methoxyethoxymethyl chloride	458	654	3.3	3970-21-6	mainlib
18	5.567	1	1,16-Cyclocorynan-17-oic acid, 19,20-didehydro-, methyl ester, (16 <i>S</i> ,19 <i>E</i>)-	449	479	26.9	6393-66-4	mainlib
		2	4-Chlorobuten-3-yne	401	760	5.6	40589-38-6	mainlib
		3	N-Morpholinomethylidene-3-morpholino-2-(2-thienyl) thioacrylamide	398	402	4.9		mainlib
19	5.776	1	Ethanethioic acid, S-(1-ethylbutyl)ester	527	622	6.7	55590-84-6	mainlib
		2	2-Hexanol, 3,4-dimethyl-	509	645	3.5	19550-05-1	mainlib
		3	Methoxyacetic acid, 4-methylpentyl ester	508	612	3.3		mainlib
20	6.097	1	2-Heptenal, (E)-	570	736	9.9	18829-55-5	mainlib
		2	2-Pentenal, (E)-	560	634	7.0	1576-87-0	mainlib
		3	2-Butenal, 3-methyl-	559	744	6.7	107-86-8	mainlib
21	6.258	1	2-Heptenal, (Z)-	940	961	77.7	57266-86-1	mainlib
		2	2-Heptenal, (E)-	850	869	6.6	18829-55-5	mainlib
		3	1-Hexene, 3,5-dimethyl-	843	874	5.1	7423-69-0	mainlib
22	6.379	1	Benzoic acid 3-methyl-4-(1,3,3,3-tetrafluoro-2-methoxycarbonyl-propenylsulfanyl)-phenyl ester	471	520	9.6		mainlib
		2	3-Fluoro-3-(2-oxo-2-phenyl-ethylsulfanyl)-2-trifluoromethylacrylic acid methyl ester	460	520	6.6	329735- 34-4	mainlib
		3	Benzamide, N-(2-chloro-4-nitrophenyl)-	447	707	4.3	64160-38-9	mainlib
23	6.888		Decane, 2,5,6-trimethyl-	766	863	14.0	62108-23-0	mainlib
	0.000	2	Heptane, 2,3,6-trimethyl-	746	841	6.4	4032-93-3	mainlib
		3	Oxalic acid, isobutyl nonyl ester	742	849	5.4	,032 73 3	mainlib
24	7.878	1	N-Methyl-3-piperidinecarboxamide	535	657	8.3	5115-98-0	mainlib
	7.070	2	1,16-Cyclocorynan-17-oic acid, 19,20-didehydro-, methyl ester, (16 <i>S</i> ,19 <i>E</i>)-	533	564	7.7	6393-66-4	mainlib
		3	4-[(5-Oxopyrrolidin-2-yl)carbonyl]-morpholine	531	637	7.1	76284-13-4	mainlib
25	8.431		2,4,6,8-Tetramethyl-1-undecene	760	878	8.5	59920-26-2	mainlib
	01.132	2	Oxalic acid, allyl nonyl ester	746	825	5.3	3,720 20 2	mainlib
		3	1-Octanol, 2-butyl-	742	792	4.5	3913-02-8	mainlib
26	9.858	1	Dodecane	846	849	10.2	112-40-3	mainlib
	7.030	2	Undecane, 2,6-dimethyl-	824	857	4.1	17301-23-4	mainlib
		3	Undecane	822	833	3.7	1120-21-4	mainlib
27	10.577	1	1-Oxaspiro[2.2]pentane, 5-isopropylidene-2,2,4,4- tetramethyl-	548	640	7.7	15448-69-8	mainlib
21	10.5//	2	6,6-Dimethyl-2-vinylidenebicyclo[3.1.1]heptane	539	597	5.6	39021-75-5	mainlib
		3	1-Propene, 2-nitro-3-(1-cyclooctenyl)	534	579	4.5	80255-21-6	mainlib
28	10.769	1	2-Decenal, (<i>Z</i>)-	818	882	39.6	2497-25-8	mainlib
20	10.707	2	2-Decenal, (E)-	799	879	19.2	3913-81-3	mainlib
		3	cis-7-Decen-1-al	733	792	3.0	21661-97-2	mainlib
29	10.998		(Z)-3-Phenylacrylaldehyde	791	862	47.9	57194-69-1	mainlib
29	10.996	2	2-Propenal, 3-phenyl-	791 761	826	13.3	104-55-2	mainlib
			, , , ,					
20	11 200	3	Benzylidenemalonaldehyde	751	822	9.4	82700-43-4	mainlib
30	11.209	1	2,4-Decadienal	894	923	53.7	2363-88-4	mainlib
		2	2,4-Decadienal, (<i>E,E</i>)-	874	878	24.5	25152-84-5	mainlib
24	11 101	3	2,4-Nonadienal	798	848	3.1	6750-03-4	mainlib
31	11.496		2,4-Decadienal	911	939	53.9	2363-88-4	mainlib
		2	2,4-Decadienal, (<i>E,E</i>)-	893	902	27.8	25152-84-5	mainlib
22	40.045	3	2,4-Nonadienal	828	880	4.5	6750-03-4	mainlib
32	12.361	1	Germacrene D	752	823	8.0	23986-74-5	mainlib
		2	alfa-Copaene	751	774	7.7		mainlib
		3	Copaene	751	771	7.7	3856-25-5	mainlib
33	12.458	1	Heptadecane, 2,6,10,14-tetramethyl-	850	855	4.0	18344-37-1	mainlib

Table 1: Continued

Pk #	RT	Hit	Compound name	Match	R. Match	Prob.	CAS	Library
		2	Heptadecane, 2,6-dimethyl-	850	854	4.0	54105-67-8	mainlib
		3	Tetradecane	849	850	3.9	629-59-4	mainlib
34	14.697	1	7-Hexadecene, (Z)-	827	856	5.3	35507-09-6	mainlib
		2	9-Octadecene, (E)-	825	852	4.9	7206-25-9	mainlib
		3	Cetene	820	853	4.0	629-73-2	mainlib
35	14.769	1	Hexadecane	872	874	10.7	544-76-3	mainlib
		2	Pentadecane, 7-methyl-	848	849	3.6	6165-40-8	mainlib
		3	Tridecane	846	866	3.3	629-50-5	mainlib
36	15.942	1	Ethyl <i>trans</i> -α-cyanocinnamate	748	830	63.4	2169-69-9	mainlib
		2	2-Propenoic acid, 2-cyano-3-phenyl-, ethyl ester	727	803	27.0	2025-40-3	mainlib
		3	2-Propenoic acid, 3-(3-cyanophenyl)-, ethyl ester	662	736	4.3	87087-44-3	mainlib
37	16.843	1	2-Dodecanol	838	888	4.7	10203-28-8	mainlib
		2	Cetene	831	878	3.6	629-73-2	mainlib
		3	7-Tetradecene, (Z)-	831	871	3.6	41446-60-0	mainlib
38	16.908	1	Pentadecane	858	870	6.6	629-62-9	mainlib
		2	Hexadecane	847	859	4.5	544-76-3	mainlib
		3	Dodecane, 2-methyl-	846	883	4.3	1560-97-0	mainlib
39	18.951	1	n-Hexadecanoic acid	787	809	55.3	57-10-3	mainlib
,	10.731	2	Tridecanoic acid	723	755	9.1	638-53-9	mainlib
		3	Tetradecanoic acid	720	749	8.0	544-63-8	mainlib
40	19.168	1	9-Eicosene, (E)-	735	808	3.2	74685-29-3	mainlib
+0	19.100	2	E-14-Hexadecenal	734	785	3.0	330207-	mainlib
		2	L-14-Hexadecellat	734	765	5.0	53-9	IIIaIIIIID
		3	Trichloroacetic acid, tetradecyl ester	733	810	2.9	74339-52-9	mainlib
41	19.228	1	Dodecane, 2,6,10-trimethyl-	820	871	13.7	3891-98-3	mainlib
		2	Sulfurous acid, 2-ethylhexyl hexyl ester	819	922	13.2		mainlib
		3	Tridecane	797	850	5.2	629-50-5	mainlib
42	19.439	1	Ethanol, 2-(9-octadecenyloxy)-, (Z)-	552	556	6.0	5353-25-3	mainlib
		2	9-Hexadecenoic acid	544	571	4.5	2091-29-4	mainlib
		3	Dodecanoic acid, 3-hydroxy-	536	577	3.4	1883-13-2	mainlib
43	19.876	1	5-Heptyn-3-ol, 2-benzyloxy-7-methoxy-1-(t-	548	647	8.4		mainlib
			butyldimethylsilyl)oxy-					
		2	1,2-Propanediol, 3-benzyloxy-1,2-diacetyl-	540	717	6.2	13754-10-4	mainlib
		3	5-Methyl-6-phenyltetrahydro-1,3-oxazine-2-thione	540	602	6.2	86071-95-6	mainlib
44	20.207	1	1-fluorenecarboxylic acid, 2,2,2-trifluoroethyl ester	676	688	26.6		mainlib
		2	1H-Phenalene	671	800	21.4	203-80-5	mainlib
		3	9H-Fluorene, 9-bromo-	670	768	20.6	1940-57-4	mainlib
45	20.478	1	Heptadecane, 9-hexyl-	670	670	13.7	55124-79-3	mainlib
7.5	20.470	2	Octadecane, 3-ethyl-5-(2-ethylbutyl)-	646	646	4.6	55282-12-7	mainlib
		3	Dodecane, 5,8-diethyl-	643	662	4.1	24251-86-3	mainlib
46	21.200		Linoelaidic acid	851	881	10.3	506-21-8	mainlib
+0	21.200	2				6.8	2463-02-7	mainlib
		3	11,14-Eicosadienoic acid, methyl ester	839 823	878 828		34450-18-5	mainlib
	21 712		17-Octadecynoic acid			3.9		
47	21.712	1	Pentadecane, 2,6,10-trimethyl-	707	790	4.4	3892-00-0	mainlib
		2	Tetradecane	705	793	4.0	629-59-4	mainlib
		3	Pentadecane	703	783	3.7	629-62-9	mainlib
48	22.007		2,6-Nonadienal, 3,7-dimethyl-	513	579	16.9	41448-29-7	mainlib
		2	7-Heptadecene, 1-chloro-	481	496	4.5	56554-78-0	mainlib
		3	2-(4-Nitrobutyryl)-cyclopentanone	478	567	4.0	79630-91-4	mainlib
19	23.043	1	Disulfide, di- <i>tert</i> -dodecyl	683	712	4.8	27458-90-8	mainlib
		2	Tetradecane, 2,6,10-trimethyl-	666	716	2.6	14905-56-7	mainlib
		3	Ethanol, 2-(octadecyloxy)-	666	676	2.6	2136-72-3	mainlib
50	23.304	1	2,4-Heptadiene, 5-diethylboryl-2-methyl-4- trimethylsilyl-	494	553	15.6		mainlib
		2	$\textit{t-} \textbf{Butyl-} (2\text{-}[3\text{-}(2\text{,}2\text{-}dimethyl\text{-}6\text{-}methylene\text{-}cyclohexyl})\text{-}propyl]\text{-}$	474	483	7.1	95472-42-7	mainlib
			[1,3]dithian-2-yl)-dimethyl-silane					

992 — Mohammed Bourhia et al. DE GRUYTER

Figure 3: Inhibition percentage of the scavenging activity of *C. colocynthis* ethanolic extract (results are presented as means \pm SD).

was used as a reference, exhibited an IC₅₀ value of 1.37 mg/mL (Figure 3). A significant difference between the IC₅₀ value (4.56 mg/mL) of *C. colocynthis* ethanolic extract and BHT IC₅₀ 1.37 mg/mL was recorded (P < 0.05).

3.3 Cytotoxic effect of C. colocynthis seeds

The finding of the cytotoxic effects investigated in the current research work showed that all cancerous cell lines were sensitive to the plant extract. The ethanolic extract induced toxic effects on both HT-29 and MDA-MB-231 cell lines after 72 h of treatment with IC $_{50}$ values of 170.34 and 132.31 µg/mL, respectively. The MDA-MB-231 cell lines were more sensitive to *C. colocynthis* seed extract, compared to colon HT-29 cell lines (Figure 4).

Figure 4 shows that the extract studied induced pronounced cell toxicity in a dose-dependent manner. The statistical analysis showed a significant difference between the IC $_{50}$ value induced by the mitomycin used as positive control 0. 2 vs the IC $_{50}$ values generated by the extract on both cancerous cell lines HT-29 (170.34 mg/mL) and MDA-MB-231 (132.31 mg/mL). The statistical analysis also showed the presence of a significant difference between the IC $_{50}$ value of HT-29 vs MDA-MB-231 (P < 0.05).

4 Discussion

Cancer is a major burden worldwide, although the modern medicine has succeeded to limit its impact by involving large therapeutic categories, resistance to classical modern therapeutic agents continues to be a major challenge in cancer therapies. It is worth searching for new effective agents with no or few

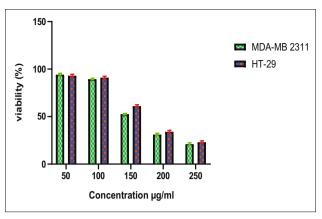


Figure 4: Dose-response curve of cell viability after 72 h of treatment with the *C. colocynthis* ethanolic extract (results are presented as means \pm SD).

secondary effects for cancer treatment which is highly appreciated. In this context, natural products have continued to receive increasing attention due to their potential preventive and therapeutic effects vs cancer. The role of medicinal plants in cancer treatment has been widely investigated [15]. As earlier described, the products derived from plants are good sources for bioactive compounds' discovery as well as drug conception and development [16,17].

The traditional use of the currently studied plant in North African alternative medicine has been documented in the earlier data, which showed the use of *C. colocynthis* for the treatment of diabetes and hypertension [18].

In the present research work, we investigated the chemical composition, antioxidant and cytotoxic activities of C. colocynthis ethanolic extract. Regarding the antioxidant activity, the DPPH scavenging method was used to screen this activity. The findings obtained showed that the ethanolic extract possesses a promising antioxidant power with an IC₅₀ value of 4.56 mg/mL. These results are highly justified by the presence of bioactive compounds in the plant extract characterized with a GC-MS (Table 1), which showed the presence of polyphenols and flavonoids as responsible agents for the antioxidant activity [19]. Isoorientin 3-O-methylether, isosaponarin, and isovitexin isolated from *C. colocynthis* possess a strong antioxidant power with an IC50 value ranging from 5.62×10^{-4} to 7.13×10^{-2} mg/mL [20]. The antioxidant power of C. colocynthis is in consent with those reported in the earlier data [21]. It was also revealed that the antioxidant activity is attributed to the cucurbitacin glycoside content in the ethanolic extract, as shown in the earlier literature [22].

In the current research work, we also investigated the toxic effects of C. colocynthis on both HT-29 and MDA-MB-231 cell lines. The results obtained showed that the studied extract possesses interesting cytotoxic effects with IC_{50} values of 170.34 and 132.31 µg/mL, respectively. These findings were in agreement with the earlier data which showed an important antiproliferative effect on human breast cancer cells induced by cucurbitacin, isolated from the leaves of C. colocynthis [22]. The cytotoxic effects of the fruit pulp of C. colocynthis against cancer breast cell lines MCF-7 were studied [23]. Some chemical compounds revealed in the current extract such as ethylbenzene and tetrachloroethylene could determine the cytotoxic effect of C. colocynthis on HT-29 and MDA-MB-231 cell lines as to whether their effects are due to a single molecule or due to a potential synergy between them, and therefore further studies that may lead to determining the responsible compounds for the current activities are still appreciated.

5 Conclusion

The present research work provides interesting data about the chemical characterization, antioxidant and cytotoxic effects of *C. colocynthis* ethanolic extract. Based on the results obtained, *C. colocynthis* seed extract may be used as a promising weapon to fight cancer and free radicals' damage.

Acknowledgment: The authors extend their appreciation to the Research Supporting Project (No. RSP2020/119), King Saud University, Riyadh, Saudi Arabia, for financial support.

Funding: The present research study was supported by the "Morrocan National Ministry of Higher Education, Scientific Research, and Staff training", and "the National Centre for Scientific and Technical Research", in agreement with project No. PPR/2015/41.

Conflict of interest: The authors declare no conflict of interest.

References

- [1] Cunningham AB. African medicinal plants. Paris Fr: UN Educ Sci Cult Organ; 1993.
- [2] Olsen CS. Trade and conservation of Himalayan medicinal plants: Nardostachys grandiflora DC. and Neopicrorhiza

- scrophulariiflora (Pennell) Hong. Biol Conserv. 2005;125(4):505-14.
- [3] Sheng-Ji P. Ethnobotanical approaches of traditional medicine studies: some experiences from Asia. Pharm Biol. 2001;39(supp 1):74-9.
- [4] Gurib-Fakim A. Medicinal plants: traditions of yesterday and drugs of tomorrow. Mol Asp Med. 2006;27(1):1–93.
- [5] Errajraji A, Ouhdouch F, El-Anssari N. Usage des plantes médicinales dans le traitement du diabète de type 2 au Maroc: use of medicinal plants for type 2 diabetes treatment, in Morocco. Médecine Mal Métaboliques. 2010;4(3):301-4.
- [6] Pamplona Roger JD. Guide des plantes médicinales. Dammariesles-Lys: Éd. Vie et Santé; 1996. (Encyclopédie vie et santé).
- [7] de Albuquerque UP, Monteiro JM, Ramos MA, de Amorim ELC. Medicinal and magic plants from a public market in northeastern Brazil. J Ethnopharmacol. 2007;110(1):76–91.
- [8] Maiga A, Diallo D, Fane S, Sanogo R, Paulsen BS, Cisse B. A survey of toxic plants on the market in the district of Bamako, Mali: traditional knowledge compared with a literature search of modern pharmacology and toxicology. J Ethnopharmacol. 2005;96(1-2):183-93.
- [9] Zaini NAM, Anwar F, Hamid AA, Saari N. Kundur [Benincasa hispida (Thunb.) Cogn.]: a potential source for valuable nutrients and functional foods. Food Res Int. 2011;44(7):2368-76.
- [10] Torkey HM, Abou-Yousef HM, Abdel Azeiz AZ, Hoda EAF. Insecticidal effect of cucurbitacin E glycoside isolated from Citrullus colocynthis against Aphis craccivora. Aust J Basic Appl Sci. 2009;3(4):4060-6.
- [11] Abo KA, Fred-Jaiyesimi AA, Jaiyesimi AEA. Ethnobotanical studies of medicinal plants used in the management of diabetes mellitus in South Western Nigeria. J Ethnopharmacol. 2008;115(1):67–71.
- [12] Adam SEI, Al-Yahya MA, Al-Farhan AH. Response of Najdi sheep to oral administration of Citrullus colocynthis fruits, Nerium oleander leaves or their mixture. Small Rumin Res. 2001;40(3):239-44.
- [13] Bourhia M, Laasri FE, Moussa SI, Ullah R, Bari A, Saeed Ali S, et al. Phytochemistry, antioxidant activity, antiproliferative effect, and acute toxicity testing of two Moroccan Aristolochia species. Evid Based Complement Altern Med. 2019;2019:9710876.
- [14] Bourhia M, Laasri FE, Moussa SI, Ullah R, Bari A, Saeed Ali S, et al. Phytochemistry, antioxidant activity, antiproliferative effect, and acute toxicity testing of two Moroccan Aristolochia species. Evid Based Complement Altern Med. 2019;2019:9710876.
- [15] Newman DJ. Natural products as leads to potential drugs: an old process or the new hope for drug discovery? J Med Chem. 2008;51(9):2589-99.
- [16] Butler MS. The role of natural product chemistry in drug discovery. J Nat Prod. 2004;67(12):2141-53.
- 17] Rodrigues T, Reker D, Schneider P, Schneider G. Counting on natural products for drug design. Nat Chem. 2016;8(6):531.
- [18] Ziyyat A, Legssyer A, Mekhfi H, Dassouli A, Serhrouchni M, Benjelloun W. Phytotherapy of hypertension and diabetes in oriental Morocco. J Ethnopharmacol. 1997;58(1):45-54.
- [19] Skrovankova S, Sumczynski D, Mlcek J, Jurikova T, Sochor J. Bioactive compounds and antioxidant activity in different types of berries. Int J Mol Sci. 2015;16(10):24673–706.

- [20] Kumar Gupta S, Sharma A. Medicinal properties of Zingiber officinale Roscoe-A review. J Pharm Biol Sci. 2014;9:124–9.
- [21] Marzouk B, Marzouk Z, Décor R, Mhadhebi L, Fenina N, Aouni M. Antibacterial and antifungal activities of several populations of Tunisian Citrullus colocynthis Schrad. immature fruits and seeds. J Mycol Médicale. 2010;20(3):179–84.
- [22] Tannin-Spitz T, Bergman M, Grossman S. Cucurbitacin glucosides: Antioxidant and free-radical scavenging activities. Biochem Biophys Res Commun. 2007;364(1):181–6.
- [23] Chowdhury K, Sharma A, Kumar S, Gunjan GK, Nag A, Mandal CC. Colocynth extracts prevent epithelial to mesenchymal transition and stemness of breast cancer cells. Front Pharmacol. 2017;8:593.