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Abstract: In this study, two ethanolic extracts, from Stokesia
aster (Slae26) and Geranium pratense (Gpre36) respectively,
were evaluated in order to assess the cytotoxic activity and
potential antiproliferative activity upon the nontumorigenic
human epithelial cell line derived from the mammary gland
(MCF-12A) and the human breast tumor cell line (BT-20).
The selection of the plant species was done on the basis
of their chemical composition, specifically combinations
of luteolin derivatives with caffeic and gallic acid
derivatives. Therefore, the S. laevis ethanolic extract
proved its capacity to inhibit the viability of both normal
and tumor breast cell lines (i.e., up to 90% cell viability
inhibition, ICsq = 42pg/mL). On the contrary, the G.
pratense ethanolic extract proved weak stimulatory effects
on the viability of the two human breast cell lines studied.
The obtained results were discussed in the contexts of
computational studies and drug-likeness bioactivity of
seven common luteolin derivatives: luteolin, luteolin-7-0-
glucoside/cynaroside, luteolin-5-O-glucoside/galuteolin,
luteolin-6-C-glucoside/isoorientin, luteolin-8-C-gluco-
side/orientin, luteolin-3’,4’-di-O-glucoside and luteolin-
7,3’-di-O-glucoside. Computational studies have revealed
that the hydrophilic behavior of luteolin derivatives (log P
values) does not follow other tested parameters (e.g.,
polar surface area values), possibly explaining different
efficacy concerning the biological properties in vitro.
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These predictions could be a starting point for studies
on the biochemical mechanism by which luteolin
derivatives induce biological effects.
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1 Introduction

Scientific data of recent years indicate a greater attention
to luteolin derivatives, especially as a result of in vitro
evidence attesting their inhibitory potential upon breast
(cancer) cell line development.

In this context, two ethanolic extracts found to contain
luteolin derivatives aside caffeic and gallic/ellagic acid
derivatives, from Stokesia laevis and Geranium pratense
plant species, were studied concerning their in vitro
cytotoxic activity and potential antiproliferative activity of
two cell lines: a nontumorigenic epithelial cell line derived
from mammary gland (MCF-12A) and a human breast tumor
cell line (BT-20). The results were discussed in the context
of computational studies and drug-likeness bioactivity of
some of the most common luteolin derivatives usually
found in plant species.

Regarding the two plant species selected, S. laevis
(J. Hill; family Asteraceae), commonly known as “Stokes’
aster”, is a perennial species native to the United States
(southeastern region) and mainly used as a decorative
plant [1]. In the 1980s, there was an increased economical
interest on this plant species as a result of Stokes’ aster
achenes content in vernolic acid, which is used in the
chemical industry [2,3]; vernolic acid is an epoxide-type
structured compound acting as a nonvolatile solvent
useful for manufacturing oil-based paints, varnishes,
adhesives and other industrial coatings. Data on the
phytochemical composition and potential biological
effects of S. laevis are scarce; the only data found argue
the way in which the copigment luteolin and the
pigments petunidin, pelargonidin and cyanidin result in
the final coloration of Stokesia aster flower heads [1].
Aster species are reported to be nontoxic to dogs, except
for the woody aster, Xylorhiza orcuttii [4].
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Geranium species (over 280 species are found world-
wide) are particularly known for their geraniol (a volatile
oil) and geraniin (a gallic/ellagic acid derivative) contents.
The former has been shown to have antimicrobial [5-8] and
antitumor potencies [9-11], while the latter shows aug-
mented antioxidant and anti-inflammatory activities [12,13]
and antitumor potency [14]. Geraniin compound also
demonstrated antiviral properties on herpes simplex virus
types 1 and 2 [15] and human enterovirus 71 [16] in vitro and
the capacity to reduce the development of Alzheimer’s
disease by inhibiting -secretase activity [17]. Geraniol has
been proved to be an effective insecticidal and antimosquito
compound [18]. Owing to their specific phytochemical
content, the extracts from Geranium species proved to
have numerous biological effects and health benefits on
human. For example, G. schiedeanum extracts demonstrated
hepatoprotective properties against ethanol-induced hepatic
injuries [19]; G. robertianum and G. molle extracts showed
toxicity against breast, lung, cervical and hepatocellular
carcinomas [20,21]; G. robertianum demonstrated strong
antioxidant and anti-inflammatory properties [22]; and
G. ayavacense indicated antidiabetic activity [23]; while
G. carolinianum demonstrated antiviral properties on
hepatitis B virus [24].

G. pratense L. plant species (commonly known as
“meadow craneshbill”) are proved to be effective against free
radical-induced impairment of endothelium-dependent
relaxation in isolated rat aorta [25]. The methanol extract
from the roots of G. pratense decreased the area with scab
lesions on potato tubers; its impact against the pathogen
Streptomyces scabies has been attributed to the anti-
microbial activity of the geraniin compound [26]. The
aqueous extract from the aerial part of G. pratense subsp.
finitimum (Woronow) Knuth significantly inhibited the
formation of carrageenan-induced hind paw edema (dose
of 100mg/kg) and also proved to have antinociceptive
activity [27]. Finally, the Encyclopedia of Traditional Chinese
Medicine recommends the utilization of the aerial parts of
G. pratense in order to dispel wind damp, free channels and
network vessels and treat dysentery and diarrhea [28].

2 Experimental procedure

2.1 Materials
2.1.1 Plant material description

S. laevis plant material was purchased from an author-
ized distributor in Romania, while G. pratense plant
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material was collected from Romanian Moldavian
Carpathians. Taxonomic identification of the two plant
species was done by the botanist’s team at the National
Institute of Chemical-Pharmaceutical R&D (ICCF), Bucharest,
Romania. Voucher specimens (codified Sla26 and Gpr36)
were deposited in the ICCF Plant Material Storing Room.

The two plant materials (the aerial part, herba et
flores) were shade dried, ground to medium-size powder
and then used in technological studies.

2.1.2 Vegetal extract preparation

S. laevis plant powder of 50 g was extracted with 1,000 mL
of 70% (v/v) ethanol, after 1h at the reflux temperature.
After paper filtering, 750 mL of the whole ethanolic extract
with a content of 0.70 mg gallic acid equivalent (GAE) per
1mL extract was obtained. Furthermore, 300 mL of the
whole ethanolic extract was concentrated at the residue,
which was dissolved into 42mL of 40% (v/v) ethanol, and
then filtered on a glass fiber filter. The resultant extract,
codified as Slae26, presents as a homogeneous brown liquid
having a content of 5 mg GAE per 1 mL sample.

Similarly, 50 g of G. pratense plant powder was
extracted with 500 mL of 70% (v/v) ethanol solvent after
1h at reflux temperature. The whole ethanolic extract of
330 mL with a content of 3.50 mg GAE per 1mL extract
was obtained. The whole ethanolic extract of 100 mL was
further concentrated as the residue, which was dissolved
into 70 mL of 40% (v/v) ethanol and then filtered on the
glass fiber filter. The resultant extract, codified as Gpre36,
presents as a homogeneous light brown liquid with the
exact content of 5mg GAE per 1 mL sample.

The standardized extracts, Slae26 and Gpre36, were
used in pharmacological studies.

Figure 1 shows the general method for obtaining the
two standardized extracts.

2.1.3 Chemicals, reagents and references

Chemicals (aluminum chloride, sodium carbonate and
sodium acetate), reagents (Folin—Ciocalteu, Natural Product-
NP/PEG), solvents (ethanol, ethyl acetate, formic acid and
glacial acetic acid) as well as the reference (ref.) compounds
(rutin of min. 95%, quercitrin-3-O-rhamnoside >90%,
luteolin >98%, luteolin-7-0-glucoside >98%, luteolin-8-C-
glucoside >97%, caffeic acid 99%, chlorogenic acid >95%
and gallic acid 95%) were purchased from Sigma-Aldrich,
Romania. Cell culture reagents, Dulbecco’s Modified
Essential Medium, fetal bovine serum and antibiotics were
also purchased from Sigma-Aldrich, Romania.
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Figure 1: General method for the preparation of vegetal extracts.

2.2 Experimental design

2.2.1 Estimation of total phenol content in the test
vegetal extracts

The total phenol content was estimated by the Folin—
Ciocalteu reagent, the standard method described in

Romanian Pharmacopoeia [29], and the results were
expressed as milligram GAEs per 1mL sample (R* = 0.970).

2.2.2 Qualitative high-performance thin-layer chromato-
graphy [(HP)TLC] analysis of test vegetal extracts

Chemical qualitative analyses were performed according
to Wagner and Bladt [30] and Reich and Schibli [31]
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chromatography atlases using two solvent systems:
system A (ethyl acetate—glacial acetic acid-formic
acid-water/100:12:12:26) recommended for polyphenol
assessment and system B (chloroform-glacial acetic
acid—-methanol-water/64:32:12:8) used for saponin
assessment, as described in the work of Pirvu et al.
(first author of this study) [32].

2.2.3 In vitro pharmacological studies

The cell lines selected for in vitro pharmacological studies
consisted of the nontumorigenic epithelial cell line derived
from mammary gland MCF-12A (ATCC CRL-10782) and the
human breast tumor cell line BT-20 (ATCC HTB-19).

The evaluation of in vitro cell cytotoxicity and
antiproliferative effects was done by the MTS test (also
known as the viability test), according to the Technical
Bulletin of Promega Corporation CellTiter 96 AQueous
One Solution Cell Proliferation Assay [33], as described in
the work of Pirvu et al. (first author of this study) [34].
The MTS test allows evaluation of either the cytotoxic
effect or the antiproliferative effect. For the (anti)
proliferation assay, the application of the modulating
factor (in this case the two vegetal extracts, Slae26 and
Gpre36) is done on “sub-confluent” cell cultures (about
30%), and the determination of the cell population is
performed after at least one division cycle (population
doubling interval); for the cytotoxicity assay, the cells
are exposed to “semi-confluent” cultures (about 70%)
and the activity is measured for a shorter time period,
rather than a doubling time (usually 6-12h). Briefly,
each test vegetal extract and dilution point series were
prepared as triplicates and compared to a control sample
with identical concentration of test vegetal solvent
sample, at 40% (v/v) ethanol solution. After 20h
(cytotoxicity test) and 20 and 44h (antiproliferative
test) of exposure, the culture medium was removed.
After another 2h of incubation with the MTS solution,
the viability of the adherent cells was determined via
CellTiter 96 AQueous One Solution Cell Proliferation
Assay (Promega, USA). The absorbance of the treated
and control samples was measured at 490 nm with a
Microplate Reader (Chameleon V Plate Reader; LKB
Instruments, Australia) and the recorded values were
used for cell viability estimation (see formula below).
The results are calculated as mean + SD, n = 3:

Ayugo of treated cells
Augo of control cells

% cell viability = x 100.
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2.2.4 Computational studies

Computational studies have been done on luteolin
aglycone and several common luteolin derivatives/
glucosides, namely, luteolin-7-0-glucoside/cynaroside,
luteolin-5-0-glucoside/galuteolin, luteolin-6-C-glucoside/
isoorientin, luteolin-8-C-glucoside/orientin, luteolin-
3",4’-di-O-glucoside and luteolin-7,3’-di-O-glucoside.
Computational calculations have been carried out using
Spartan ’18 software [35,36], based on the density
functional theory (DFT) using Becke’s three-parameter
hybrid functional with Lee, Yang, and Parr parameter
(LYP) correlation functional (B3LYP) and 6.31G(d,p) basis
sets [36,37]. The aims of DFT computations were to reveal
site-selective and global chemical reactivity descriptors of
the studied luteolin derivatives and to achieve a
quantitative structure property relationship/quantitative
structure-activity relationship (QSPR/QSAR) analysis of their
calculated properties. The calculated properties were based
on the optimized structures of molecules, thus presenting
the configuration of minimum energy and an optimized
geometry, in vacuum conditions; no solvent corrections
were done. From their energy values, several descriptors
important to assess the global chemical molecules reactivity
were calculated by applying the Koopmans theorem [38,39],
with the following relations: ionization potential (I =
—Enomo), electron affinity (A = —Ejymo), electronegativity
(x = I + A)/2), global hardness (n = (I — A)/2), local softness
(0 =1/n) [40,41], chemical potential (4 = (Egomo + Erumo)/2)
and global electrophilicity index (w = u?/2n). Also, a drug-
likeness analysis was done based on the structural features
correlated with Lipinski’s rule of five [42]. The molecular
descriptors included in this approach were calculated, for
comparison, using the Molinspiration online platform
(https://www.molinspiration.com/). In addition, the bioac-
tivity scores toward G protein-coupled receptor (GPCR)
ligand, ion channel modulators, kinase inhibitors, nuclear
receptor ligands, protease inhibitors and other enzyme
targets were predicted online through the Molinspiration
virtual screening toolkit miscreen. The results of the seven
luteolin derivatives were compared and discussed.

2.2.5 Instruments used

The instruments used for chemical analyses included the
UV/Vis spectrophotometer (Hélios y; Thermo Electron
Corporation, UK) and Linomat5 TLC visualizer (CAMAG,
Muttenz, Switzerland). Pharmacological in vitro cell
proliferation tests were done by xCELLigence®DP Real-
Time Cell Analysis (ACEA Biosciences, USA).
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Ethical approval: The conducted research is not related
to either human or animal use.

3 Results and discussion

3.1 Polyphenol profile of the two-test
vegetal extracts

In Figure 2, chromatograms A and B present the
polyphenol profiles of S. aster ethanolic extract, i.e.,
Slae26 test sample. System A setting study of Slae26 test
sample (chromatogram A, tracks T2) face to eight
reference compounds (tracks T1, T3, T4, T5, T6 and T7),
which indicated the occurrence of two main polyphenol
classes: luteolin derivatives (yellow fluorescent/fl. spots
s2, s4 and s8) and caffeic acid derivatives (blue fl. spots
sl1, s3, s5 and s6), mainly chlorogenic acid and several
chlorogenic acid isomers, respectively. Proved to be very
useful for separation and assessment of polyphenol
aglycones[32]. Subsequently system B setting studies of
the Slae26 test sample, before hydrolysis in 4N HCl
medium (chromatogram B, tracks T2) and after hydrolysis
in 4N HCl medium (chromatogram B, tracks T2H),
both confirmed the presence of luteolin-7-O-glucoside/
cynaroside (A/s4/Rf ~ 0.68 and B/s1/Rf ~ 0.36), luteolin
(A/s8/Rf ~ 0.94 and B/s2/Rf ~ 0.72) and caffeic acid
(A/S7Rf ~ 0.92/and B/s3, Rf ~ 0.76).

m™ T2 T2 T3 T2 T2 T4 5 ™

T2 T2 T6 7 T3
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In Figure 3, chromatograms A, B and C present the
polyphenol profile of the G. pratense ethanolic extract i.e.,
Gpre36 test sample, compared to several reference compounds
(tracks T1, T3, T4 and T5). System A setting study of the Gpre36
extract (chromatogram A, tracks T2) reveals an important
number of polyphenol compounds, namely, luteolin (yellow
fl., spots s5, s8), ellagic (light blue fl., spots s1, s2 and s4) and
caffeic acid (blue fl., spots s7 and s10) derivatives and at least
one kaempferol derivative (blue-green fl., spot si1).

System B setting study of the Gpre36 test sample,
before and after hydrolysis in 4 N HCl medium (chroma-
togram B, tracks T2 and chromatogram C, tracks T2H)
confirmed the presence of gallic acid aglycone (intense
blue-indigo fl. spot s7, Rf ~ 0.55) and condensed
derivatives, ellagic acids (intense blue-indigo fl. spot
s1, s2 and s4); chromatogram C also revealed augmented
quantities of luteolin (yellow fl. spot s8, Rf ~ 0.75) and
kaempferol (green-blue fl. spot s9, Rf ~ 86) aglycones as
well as low quantities of caffeic acid aglycone (blue fl.
spot s8’ covered by luteolin s8). Other high-performance
liquid chromatography studies [25] of extracts of
G. pratense indicated the presence of quercitrin-3-0-a-
arabinopyranoside, quercitrin-3-0-B-glucopyranoside,

quercitrin-3-0-B-galactopyranoside, quercitrin-3-0-(2-O-
galloyl)-B-glucopyranoside, quercitrin-3-0-(2-0-galloyl)-
[B-galactopyranoside, kaempferol-3-0-B-galactopyranoside,
kaempferol-3-0-B-glucopyranoside and also myricetin-3-O-
(2-O-galloyl)-B-glucopyranoside and (-)-6-chloro-epicatechin
polyphenols.

T2H T2H

Figure 2: (HP)TLC studies of Stokesia laevis ethanolic extract (Slae26). Chromatogram A (system a) — track T4, rutin, chlorogenic acid and
caffeic acid (ref.); tracks T2 — ethanolic extract from S. laevis (Slae26) - two series; track T3, luteolin-8-C-glucoside/orientin (ref.); track
T4, quercitrin-3-0-galactoside/hyperoside, quercitrin-3-O-rhamnoside/quercitrin and gallic acid (ref.); track T5, luteolin-7-0-glucoside/
cynaroside and luteolin (ref.). Chromatogram B (system b) —track T1, rutin, chlorogenic acid and caffeic acid (ref.); tracks T2 — ethanolic
extract from S. laevis (Slae26); track T6, luteolin (ref); track T7, luteolin-7-O-glucoside/cynaroside (ref.); track T3, luteolin-8-C-glucoside/
orientin (ref.); track T2H, the hydrolyzed extract from ethanolic extract Slae26.
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Figure 3: (HP)TLC studies of the G. pratense ethanolic extract (Gpre36). Chromatogram A (system a) — track T1, rutin, chlorogenic acid and
caffeic acid (ref.); tracks T2, ethanolic extract from G. pratense (Gpre36); track T3, quercitrin-3-0-glucoside/isoquercitrin and quercitrin-3-
O-rhamnoside/quercitrin (ref.); chromatogram B (system b) — track T1, rutin, chlorogenic acid and caffeic acid (ref.); tracks T2 — ethanolic
extract from G. pratense (Gpre36); track T4, luteolin-8-C-glucoside/orientin (ref.); chromatogram C (system c) — track T1, rutin, chlorogenic
acid and caffeic acid (ref.); track T2H, the hydrolyzed extract from ethanolic extract Gpre36; track T5, gallic acid (ref.).

By comparison, qualitative (HP)TLC studies revealed
that the ethanolic extract from S. aster plant species,
caffeic acid/s7, chlorogenic acid/s3 and one luteolin
monoglycoside (likely luteolin-7-O-glucoside/s4) were
found, and the ethanolic extract from G. pratense plant
species confirmed numerous gallic/ellagic acid deriva-
tives/sl1, s2, s4 and one augmented luteolin polyglyco-
side/s5. Concerning the quantitative aspects, the two
ethanolic extracts, Slae26 and Gpra36, were made in a
manner to assure the exact content of 5mg total phenol
content, GAEs per 1 mL sample.

3.2 Cytotoxic and antiproliferative potential
assays in vitro

In vitro cytotoxicity and antiproliferative assessments
were done on Slae26 and Gpre36 test vegetal extracts
(characterized by 5mg GAE/mL sample) by using six
dilution series, that is, 1, 5, 10, 25, 50 and 100 ug GAE/
mL samples. The two test vegetal dilution series and the
corresponding control sample dilution series (40%
ethanol solvent series) were applied on “semi-confluent”
and “sub-confluent” mammary gland cell culture MCF-
12A and human breast tumor cell culture BT-20, as
described in Section 2.2.3. As described, the cytotoxic
and antiproliferative activities essentially consist in a
colorimetric test based on the selective ability of the
viable cells to reduce the tetrazolium component of MTS
into a purple-colored formazan crystal; the quantity of

the formazan product, as measured by absorbance at
490 nm, is directly proportional to the number of living
cells in culture and thus the effect of the two-test vegetal
series on the cytotoxic and proliferation tests can be
computed as the cell viability percentage (%).

Figures 4 and 5 show the results on the S. laevis and
G. pratense test vegetal extracts, Slae26 and Gpre36
dilution series, respectively.

Comparison with the control negative cell series
indicated the following results: during cytotoxicity test,
Slae26 test sample applied on the normal epithelial
mammary gland cell line MCF-12A (Figure 3a) led to the
stimulation of cell viability up to 50 pg/mL concentration
level (up to 33% cell viability stimulation), followed by a
severe decline in the cell viability at higher concentrations
(up to 75% cell viability inhibition at 100 pg/mL); during the
antiproliferative test, Slae 26 induced important inhibitory
effects on MCF-12A viability (up to 52% and 70% cell
viability inhibition at 24 and 48h, respectively); Slae26
tested on human breast tumor cell line BT-20 (Figure 3b)
revealed either cytotoxic effects (88% cell viability inhibition
at 24h) or antiproliferative activity (87% and 89% cell
viability inhibition at 24 and 48 h, respectively), concluding
that Stokesia aster ethanolic extract has inhibitory potential
on the growth and proliferation of normal and tumor
human breast cells. The antiproliferative effect (IC5y) was
estimated at around values of 68 pg GAE/mL sample at 24 h
and 42 pg GAE/mL sample at 48 h.

Due to the combination of luteolin derivatives with
gallic or ellagic acid derivatives, which were shown to
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Figure 4: Cytotoxic and antiproliferative effects (cell viability, %) of Slae26 tested on (a) mammary gland cell line MCF-12A and (b) human
breast tumor cell line BT-20, compared to the control negative cells; n = 3, + SD(%).
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Figure 5: Cytotoxic and antiproliferative effects (cell viability, %) of Gpre36 tested on (a) mammary gland cell line MCF-12A and (b) human
breast tumor cell line BT-20, compared to the control negative cells; n = 3, + SD(%).

have strong antitumor, antimetastatic and antiangiogen-
esis activities [43,44], it is expected that the G. pratense
ethanolic extract (Gpre36) has a strong antiproliferative
potential. However, when applied on the normal
mammary gland cell line MCF-12A (Figure 4a), it
indicated a weak stimulatory activity in the cytotoxicity
test (up to 15% cell viability stimulation); during the
antiproliferative test, at first stimulatory effects were
noticed (up to 50% cell viability stimulation at 24 h),
followed by inhibitory effects (up to 8% cell viability
inhibition at 48 h). Gpre36 test sample tested on human
breast tumor cell line BT-20 (Figure 4b) indicated weak
cytotoxic effects (up to 16% cell viability inhibition at

24 h), and no antiproliferative activity; in fact, 7% and
8% cell viability stimulatory effects were measured at 24
and 48h, respectively. The results are available in
Supplementary Tables 1s, 2s, 3s and 4s.

3.3 Computational results

Computational study of the seven luteolin derivatives,
molecular descriptors and physicochemical properties
was planned in order to find a possible explanation for
the differences in pharmacological activity of the two-
test vegetal extracts. Although the G. pratense ethanolic
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extract has a theoretically more efficient chemical
composition, in vitro assessments indicated the lack of
antiproliferative activity of Gpre36 versus certain anti-
proliferative activity of S. aster ethanolic extract, Slae26.
Therefore, it appears that the specific chemical structure
of luteolin derivatives (the position and the number of
substituents) and less combination with caffeic or gallic/
ellagic acid derivatives lead to the final antiproliferative
potential of the two vegetal extracts.

Table 1 summarizes the quantum chemical para-
meters for luteolin and the six most common luteolin
derivatives: luteolin-7-O-glucoside/cynaroside, luteolin-
5-0-glucoside/galuteolin, luteolin-6-C-glucoside/isoor-
ientin, luteolin-8-C-glucoside/orientin, luteolin-3’,4’-di-
0-glucoside and luteolin-7,3’-di-O-glucoside.

First of all, it is obvious that the energy of the
highest occupied molecular orbital (HOMO) orbital
(Enomo) of all studied compounds is significantly smaller
than that of the energy of the lowest unoccupied
molecular orbital (LUMO) orbital (Erymo). Energetically,
from the HOMO orbital, it is easiest to donate electrons
to form new bonds to be involved in oxidation. The
LUMO is energetically more able to receive electrons,
possibly involved in reduction reactions.

Second, the AEg,, parameter (the energy difference
between HOMO and LUMO) providing information about
chemical reactivity and kinetic stability of the molecules
indicated close values, ranging between 4.14 and
4.26 eV.

Table 2 presents the values obtained for physico-
chemical properties and molecular descriptors involved
when discussing the drug-likeness and matching with
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the statements of Lipinski’s rule of five concerning oral
bioavailability. For each structure, the first line of values
corresponds to Spartan computations, and on the
second line are the values obtained from the Molinspira-
tion platform. A small difference is due to the methods
used for computation. Molinspiration employed the
semiempirical AM1 method for the optimized 3D mole-
cular geometries, wherein volumes and polar surface
area (PSA) are approximated based on the fragment
contributions.

Table 2 clearly demonstrates luteolin aglycone as the
most feasible drug candidate due to zero violation of
Lipinski’s rule [42]. Although not sufficient and manda-
tory to send a potential drug compound forward for
pharmaceutical development, these limits of physico-
chemical parameters are used, rather than excluding
from screening the compound with poor success rate. As
observed from the results of computations, the correla-
tion between the molecular weight and the PSA
indicated that, generally, by increasing the molecular
weight, from luteolin to luteolin diglucoside, the number
of added hydroxyl groups and PSA increases. The
biggest structures with the highest hydrophilicity,
luteolin-3’,4’-diglucoside and luteolin-7,3’-di-glucoside,
showed the most deviations from drug-likeness criteria
(Lipinski’s rule), also presenting the highest number of
flexible bonds (Nrotb).

Yet, even if luteolin derivatives present a more
augmented lipophilic character due to the lack of one
hydroxyl group in position 3, the comparison of log P
values (the calculated values of octanol-water partition
coefficient log P by Spartan computations) with those

Table 1: Calculated quantum chemical parameters of the studied compounds

Studied Luteolin Luteolin-7-0- Luteolin-5-0- Luteolin-6-C- Luteolin-8-C- Luteolin-3",4’-  Luteolin-7,3’-
parameter glucoside/ glucoside/ glucoside/ glucoside/ di-O-glucoside di-O-glucoside
cynaroside galuteolin isoorientin orientin

Enomo —-6.05 -6.00 -6.46 —-6.09 -6.11 -6.20 -6.56

ELumo -1.84 -1.82 -2.29 -1.83 -1.89 -1.89 -2.42

AEg,, 4.21 4.18 4.17 4.26 4.22 4.31 4.14

/ 6.05 6.00 6.46 6.09 6.11 6.20 6.56

A 1.84 1.82 2.29 1.83 1.89 1.89 2.42

X 3.94 3.91 4.37 3.96 4.00 4.04 4.49

n 2.105 2.09 2.08 2.13 2.11 2.15 2.07

g 0.47 0.48 0.48 0.47 0.47 0.46 0.48

u -3.94 -3.91 -4.37 -3.96 —-4.00 —4.04 —4.49

W 3.68 3.66 4.59 3.68 3.79 3.79 4.87

Enomo, the energy of the HOMO orbital; Eymo, the energy of the LUMO orbital; AEg,,, difference between frontier molecular orbitals;
I(ionization potential), (—Enomo); A (electron affinity), (—E umo); X (electronegativity), (/ + A)/2; H (global hardness), (I — A)/2; o (local
softness), I/n; p (chemical potential), (Eyomo + ELumo)/2 and w (global electrophilicity index), u?/2 n, expressed in eV.
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Table 2: Drug-likeness predicted parameters for luteolin and its derivatives?

Name Molecular Molecular Nrotb logP PSA HBD HBA No. of Lipinski
weight volume violations
LuteolinP
H o
[
. | 286.239 261.11 1 -3.46 97416 4 6 0
o o

“ | 232.07 197 11112

| \| 448.380 399.02 4 -5.45 168.657 7 11 2
‘ 364.19 0.19 190.28
H o o
D
N g
‘0
Luteolin-5-O-glucosideb/galuteolin
o
!) ‘ (4] | ' ‘||| 0”
| ‘[ || 448.380 398.71 4 -0.83 163.463 7 1 2
o o1 364.19 ~0.07 190.28
YL
N O
H
Luteolin-6-C-glucosidet/isoorientin
HO
H H H
O a0 o' o
LR
<o & ” 448.380 394.22 3 -1.61 164602 8 11 2
0 X No” || I 363.22 0.03 201.27
H
H
| o
H
Luteolin-8-C-glucosideP/orientin
Mo 0
L
yee
L“ 0 || l 448.380 397.09 3 -6.39 178.988 8 1m 2
; . o 363.22 0.03 201.27
I
ov" ""., Ou
H ‘ 1
HO H
Luteolin-3',4'-di-O-glucosidec
OH
:‘:/n;_] (‘o‘:uu
0 _on 610.521 533.18 7 -2.67 214904 10 16 3
OT \-/nu
CH,0M

oy
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Table 2: continued
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Name Molecular Molecular Nrotb logP PSA HBD HBA No. of Lipinski
weight volume violations
Luteolin-7,3'-di-O-glucosidec
o/ ;
L _om 610.521 535.08 7 -7.45 221728 10 16 3
| 496.31 -1.83 269.43

Nrotb, number of rotatable bonds; HBD, number of hydrogen bond donors; HBA, number of hydrogen bond acceptors; PSA, polar surface

area; log P, water—octanol partition coefficient.

@Values on the first line were calculated using Spartan software and values listed on the second line were obtained using Molinspiration
tools. ® https://pubchem.ncbi.nlm.nih.gov/#query=luteolin. “https://tinyurl.com/qo2me42.

computed for quercitrin derivatives [34] indicates that
(1) luteolin derivatives are more hydrophilic compounds
capable of exhibiting greater oral bioavailability and (2)
their log P values do not follow PSA values, possibly
explaining their different efficacies concerning the
biological properties and function of test conditions.
The correlation between PSA, molecular volume
(vol) and water—octanol partition coefficient (logP) for
the seven luteolin derivatives studied (Figure 6) indi-
cated that luteolin, luteolin-5-0-glucoside, luteolin-6-C-
glucoside and luteolin-3’,4’-0-diglucoside have signifi-
cantly different log P values in comparison with luteolin-
7-0-glucoside, luteolin-8-C-glucoside and luteolin-7,3’-
O-diglucoside, which could support the differences

Luteolin

600

Luteolin-7,3'-di-O-glucoside ‘

Luteolin-3',4™-di-O-glucoside <__

isoorientin

Luteolin-8-C-glucoside
orientin

between the pharmacological activity of the vegetal
extracts.

In Table 3 are listed the bioactivity scores predicted
using the Molinspiration software toward GPCR ligands,
ion channel modulators, kinase inhibitors, nuclear
receptor ligands, protease inhibitors and enzyme targets.
It is known that if the bioactivity score is larger than 0.0,
the drug candidate is classified as active; if score range
is between -5 and O, then the structure is moderately
active and if the score is less than -5, then inactive.
Therefore, luteolin exhibits larger score values for kinase
inhibitor (0.26 —the largest of all the tested structures),
nuclear receptor ligand (0.39, also the highest score,
compared with its derivatives) and enzyme inhibitor

—PSA

vol
IogP(xldz)

Luteolin-7-0O-glucoside

cynaroside

Luteolin-5-O-glucoside

galuteolin

Luteolin-6-C-glucoside

Figure 6: The correlation between molecular volume (vol), PSA and water-octanol partition coefficient (log P) for several common luteolin

derivatives.



498 —

Lucia Pirvu et al.

Table 3: Bioactivity scores for luteolin and its derivatives predicted with Molinspiration toolkit

Enzyme inhibitor

Nuclear receptor ligand bind Protease inhibitor

Kinase inhibitor

lon channel modulator

GPCR ligand

Name/ChemSpider ID

0.28
0.42
0.41

-0.22
-0.01
-0.01

0.39

0.26

-0.07
-0.02
0.00

-0.02
0.09

in ID 4444102

0.27
0.29
0.20

0.15
0.18
0.20
0.16
-0.11

0.12
0.12

ucoside/Cynaroside 4444241
ucoside/Galuteolin 10306091
ucoside/Orientin 4444994
ucoside/Isoorientin 102753
-O-glucoside 4590322

in 7-0-g
in 5-0-g
in 8-C-g

0.45

0.01

-0.14

0.46
0.07

0.01
-0.04

0.20
-0.06

0.01
-0.50

0.11
-0.03

in 6-C-g|
in-7,3’-d

Luteo

Luteo
Luteo

Luteo

Luteo
Luteo
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(0.28), thus being considered as the most promising
structure, the lead compound.

This conclusion is also supported by the results
presented in Table 2, showing no deviation from the
limiting criteria postulated by Lipinski’s rule of five. On
the contrary, luteolin-7,3’-di-O-glucoside, the most
flexible molecule presenting seven rotatable bonds and
three violations from Lipinski’s rule (molecular weight
larger than 500 Da; more than five hydrogen bond
donors, more than ten hydrogen bond acceptors), shows
the lowest scores for all targets. Thus, it is classified as a
moderately active candidate. None of the luteolin
derivatives can be considered inactive, as they all show
scores larger than -5.0.

Table 3 also indicates that all compounds show
greater scores for enzyme inhibition, all values being
positives, acting as active drug candidates. Based on
this, we can declare that the most active ligand is
luteolin 6-C-glucoside with 0.46 score for enzyme
inhibition. Concerning protease inhibition, the most
active ones are luteolin 6-C-glucoside and luteolin 8-C-
glucoside (score = 0.01). Luteolin aglycone is the most
active when compared with its derivatives, because it is
the ligand that is capable of binding to nuclear receptor
(score = 0.39) and kinase inhibitor (score = 0.26).
Luteolin 5-O-glucoside and luteolin 8-C-glucoside were
found to be highly bioactive toward GPCR ligand (score =
0.12). Regarding ion channel modulator bioactivity,
luteolin 6-C-glucoside shows a promising score (0.01).

Considering all the above observations of the drug-
likeness parameters (Table 2) and bioactivities (Table 3),
it can be concluded that all compounds show great
potential in terms of bioactivity as ligands for the tested
targets, starting with their lead compound, luteolin.
Therefore, the interest in luteolin and luteolin deriva-
tives in the recent years is argued. The advantages
offered by luteolin derivatives as opposed to other
flavonoid subclasses are drawn from their chemical
structures: they are more resistant to the (auto)oxidation
process explained by the lack of a hydroxyl group in
position 3 of the flavan ring. They are resistant to acidic
hydrolysis [32], at the same time more stable and safe
and able to pass through the cell membranes more
easily, while also showing great bioactivity potential.

Proving these, scientific data indicate that luteolin
stimulates breast cancer cell apoptosis [45] and inhibits
fatty acid synthase (FASN) activity [46-49], essential for
normal and tumor breast cell growth and function. FASN
is the only enzyme capable of inhibiting the novo
synthesis of fatty acids with long chains (starting from
acetyl-CoA, malonyl-CoA and nicotinamide adenine
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dinucleotide phosphate). At the same time, it is
significantly activated in many types of malignant
tumors, especially in the case of human mammary
tumor growth and metastasis.

Moreover, due to the complex actions that compete
for the final effect, luteolin aglycone was proved to be an
effective inhibitor of mammary and prostate cancer
metastases [50]. For instance, luteolin inhibits the
angiogenesis process induced by the vascular endothe-
lial growth factor, which reduces the chance of
colonization of metastatic targets [51]; luteolin inhibits
the expression of specific matrix metalloproteinases
involved in basement membrane degradation, a key
step in the neovascularization and tumor invasion
process [52]; luteolin inhibits the secretion of interleukin
(IL)-8 [53] and IL-6, acting as an amplifying signal of
cancer cell growth and invasion [54]; luteolin inhibits
epithelial-mesenchymal transition considered as a
pinnacle step in the process of cancer cell invasion and
metastasis [55]; luteolin acts as a p90 ribosomal S6
kinase inhibitor that suppresses Notch4 signaling [56];
luteolin promotes cell cycle arrest in breast cancer and
inhibits the expression of human epidermal growth
factor receptors HER2 [57] and EGFR/aka HER1 [58],
related to the new breast cancer cases; luteolin acts as
an insulin-like growth factor-mediated proliferation
antagonist [59] and stimulates breast cancer cell
apoptosis through extrinsic (via caspase 9) [60] and
intrinsic (via caspases 8 and 10) [61] pathways, thus
being the subject of numerous review articles [62-64].

Regarding aspects of bioavailability, luteolin deri-
vatives appear to be generally degraded to smaller
metabolites by the intestinal bacterium Eubacterium
cellulosolvens within 24 h; in contrast, luteolin C-poly-
glycosides appear unchanged when they are absorbed in
the intestine, before being distributed to the body
tissues [65].

Another aspect to be mentioned is the capacity of
polyphenols, especially of flavonoid subclasses, to bind
iron from the medium; flavonoid C-glycosides fulfil the
role of siderophores in plant tissues [66,67]. The
sequestration of iron from the intestine by polyphenol-
based supplements leads to several shortcomings in
humans: the inhibition of heme iron absorption possibly
promotes anemia [68], the intestinal inflammation and
colon tumor development. Data suggest that good
intestinal bacteria are significantly affected by iron
depletion. This is because their metabolism is dependent
on numerous iron enzymes, while pathogenic bacteria
necessitate low or no levels of iron to survive and
proliferate [69]. A possible way to oppose iron
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sequestration by polyphenol-based supplements is by
the addition of Fe and EDTA in tea in a molar ratio of 1:2,
to avoid iron sequestration by green tea catechins [70].

4 Conclusion

The present study aims to evaluate the antiproliferative
potencies of two vegetal extracts combining luteolin
derivatives with caffeic and, respectively, gallic/ellagic
acid derivatives isolated from S. laevis and G. pratense
plant species.

In vitro pharmacological studies indicated that the
ethanolic extracts of S. laevis have the ability to inhibit
the viability of both sub-confluent and semi-confluent
nontumorigenic epithelial mammary gland cell line
MCF-12A and sub-confluent and semi-confluent human
breast tumor cell line BT-20. This suggests both potential
toxic effects and potential antiproliferative activity of
human breast (cancer) cell development. Also, the fact
that Stokes’ aster ethanolic extract inhibited either
normal or tumor breast cell line sustains the involve-
ment of luteolin derivatives, which proved to inhibit the
activity of FASN involved in both normal and tumor
mammary cell metabolism.

G. pratense ethanolic extract yielded in vitro results
that rather seem to suggest stimulatory effects on normal
and tumor human breast cell development.

Computational studies made on luteolin and several
common luteolin derivatives conducted to a reactivity
analysis and to drug-likeness and bioactivity prediction
approaches. For example, it was shown that luteolin, the
structure that respects all limitations imposed by
Lipinski’s drug-likeness criteria, is a promising drug
molecule, with a potential for higher activity against
several biological targets. The predictions also indicate
that all of its studied derivatives could exhibit good or
moderate activity toward used receptors. The fact that
log P values computed for luteolin derivatives do not
follow the PSA values also explains to some extent the
results of in vitro pharmacological studies, and anti-
proliferative effectiveness of Slae26 and Gpre36.

In summary, prediction studies are key factors for
developing new drugs, giving a preview of the hydro-
philic-lipophilic character, absorption, transport and
distribution through the physiological media of the
modeled compounds; it must be noticed that the
computational scores are based on experimental data
collected from the medicinal chemistry literature (about
10,000 data points for every target class) [71].
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Overall, for the first time in the literature, the
potential antiproliferative activity of the S. aster etha-
nolic extract was proved on tumor human breast cell
line MT-20, but further studies are required to assess the
exact chemical composition and to separate more active
fractions to decrease the ICs, value. This way, the
S. laevis plant species turns out to be a good source of
luteolin derivatives for pharmaceutical purposes, but not
for alimentary or phytomedicine purposes, since in vitro
studies on the normal human epithelial mammary cell
line MCT-12A indicate potential toxic effects (up to 88%
cell viability inhibition) of the polar extracts from the
aerial part of Stokes’ aster.
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