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Abstract: Molecular dynamics (MD) analysis of methane
hydrateisimportant for the application of methane hydrate
technology. This study investigated the microstructure
changes of simethane hydrate and the laws of stress—strain
evolution under the condition of compression and tension
by using MD simulation. This study further explored the
mechanical property and stability of sI methane hydrate
under different stress states. Results showed that tensile
and compressive failures produced an obvious size effect
under a certain condition. At low temperature and high
pressure, most of the clathrate hydrate maintained a
stable structure in the tensile fracture process, during
which only a small amount of unstable methane broke
the structure, thereby, presenting a free-motion state.
The methane hydrate cracked when the system reached
the maximum stress in the loading process, in which the
maximum compressive stress is larger than the tensile
stress under the same experimental condition. This study
provides a basis for understanding the microscopic stress
characteristics of methane hydrate.
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1 Introduction

Methane hydrate [1, 2] (hereinafter referred as “hydrate”)
is a kind of ice-like clathrate crystalline, which is widely
distributed in continental margin, continental slope and
permafrost zone. Hydrate is regarded as a promising
alternative energy source and has gradually attracted the
attention of scholars. The study of hydrate has a potential
application in the fields of energy source development
[3-5], gas storage and separation [6-8] and desalination
of sea water [9-11]. Geological hazards and environmental
problems caused by gas exploration are simultaneously
discussed [12, 13]. Hydrate is formed by methane gas
(guest molecule) and water (host molecule) under high
pressure and low temperature. When small gas molecules
exist, the water molecules bind to each other via hydrogen
bond interactions; thereby forming a cage-shaped
structure with different shapes and sizes with the gas
molecule wrapped in it. Gas and water molecules interact
with one another through the van der Waals force, which
reduces the energy of the entire structure and achieves a
stable state [14, 15]. If the polyhedron cage-shaped hydrate
lattice formed by the water molecule is not occupied by
the guest molecule, then the empty hydrate lattice can be
regarded as a special kind of ice, but it is unstable and
prone to collapse. The filling of a guest molecule is helpful
to the stability of the hydrate lattice, and the hydrate will
be more stable when many guest molecules are filled.
Currently, various experimental measurements are
performed to explore the mechanical characteristics of
hydrate. However, experimental hydrate samples often
have defects (e.g. porous, vacancy and polycrystalline)
[16-18] or contain impurities, such as sand sediments and
silicas, which result in errors. Also, keeping the hydrate
at a certain temperature and pressure through experiment
equipment is difficult. Therefore, the mechanisms
of hydrate deformation, defect formation and crack
propagation still lack systematic in depth research results,
especially for the mechanical properties of pure hydrate
from a microcosmic perspective. The micro-mechanisms
of the mechanical properties of hydrate is a basic task
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in natural gas exploration and production. However,
studies that have been carried out on it are limited. The
properties of materials would vary with different sizes at
micro/nanoscale. Thus, in this study, we investigate the
size effect by molecular dynamics (MD). The normalized
stretching force also affect the size relevant properties at
nanoscale because the definition of force (pressure) have
the parameter of length.

sl methane hydrate is a common type of hydrate,
which is a unit cell of body-centred cubic (bcc) structure
that contains 46 water molecules [19-21]. In this study, MD
simulation is used to perform compression and tension
of sI methane hydrate in different scales based on the
experimental data. MD simulation is a useful method in
investigating the micro-mechanisms of materials [22-26].
This method has been successfully applied in the study
of the thermal and interfacial properties of hydrate [27,
28]. Ning et al. [29, 30] investigated the compressibility of
CH,/CO, hydrate mixtures and mechanical instability of
mono/poly-crystalline hydrate, recently, and revealed the
mechanical behaviour of hydrate at the molecular level.
This study is intended to investigate the changes in the
microstructure of pure sl methane hydrate and the laws of
stress—strain evolution under the condition of compression
and tension by MD simulation. Thus, the mechanical
characteristics and the microstructure evolution
mechanism of sI methane hydrate under different stress
conditions are explored to provide theoretical guidance
for the practical exploitation of hydrate.

2 Model and Computational
Method

2.1 Simulation Model

Hydrate is the compound in which the hydrogen-bonded
cages formed by water molecules hold the methane
molecules. So far, the lattice structures of hydrate have
three types, including sI (cubic) [31], sII face-centred
cubic [32] and sH (hexagonal) [33] lattice structures. The
sl hydrate was employed to carry out the compression and
tension tests and build the simulation model in this study.
Its unit cell is composed of 8 guest molecules (methane
molecules) and 46 host molecules (water molecules)
arranged in the cubic box of 12x12x12 A3. Combined MD
simulation with compression and tension tests, 2x2x4,
2x2x6, 2x2x8, 2x2x10, 2x2x12, 2x2x17 and 2x2x22 unit cells
(XxYxZ axis) of sI hydrate were constructed to investigate
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Figure 1: Molecular geometry of TIP4P model for water.

their dynamic characteristics under various compression
and tension.

The methane molecules fully occupied the cage
structures. Thus, the coordinates of the atoms of the sl
hydrate unit cell were determined by X-ray experiments
[34]. The MD simulations were performed using large-
scale atomic/molecular massively parallel simulator
software [3537]. The Lennard-Jones (L]) potential and
the TIP4P model [38, 39] were adopted as the force field
for methane and water because of its computational
simplicity, respectively. Although TIP4P and SPCE models
were widely used in describing water interactions,
the LJ potential was usually adopted as the force field
for methane. The 12-6 L] potential equation [40, 41] is
expressed as
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where U is the potential energy; rij is the distance between
two interplay particles i and j; and € and o are the energy
and length scales for the interaction, respectively. The
equation of the TIP4P model [42, 43] is shown as
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Where g is the partial charge, and ¢, is the dielectric
constant. Figure 1 shows the molecular geometry of
the TIP4P model for water. Table 1 shows the force field
parameters for methane and water.

The O-H bond length is r_,=0.9572 A, the H-O-H angle
is 6, , ,=104.52° and the O-M length is r,=0.15 A. The cross
interactions amongst different types of particles were
described by the Lorentz-Berthelot compositing rules
[44], and the electrostatic interactions of the systems were
calculated by using the Ewald sum method [45].
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Figure 2: Simulation model for 2x2x4 unit cells of sl methane hydrate.

Table 1: Force field parameters for methane and water.

Atom o (A) E (k})/mol) q(e)
0 3.1536 0.648

0.52
M -1.04
CH, 3.7327 1.2465

2.2 Computational Parameters

Initially, the simulation systems based on energy
minimization were established, with the whole equilibrated
at 200 K in NVT ensemble for 1,000,000 steps. Notably,
in all of the simulations of the present study, periodic
boundary conditions were applied in the X, Y and Z axes.
Then, the time-step was set as 0.2 fs, and the temperature
was controlled by Nose-Hoover algorithm. Next, the
systems were equilibrated at 200 K and 10 MPa in NPT
ensemble for 1,000,000 steps to produce the test samples,
such as the 2x2x4 hydrate system shown in Figure 2, for
compressing and stretching. Afterwards, the samples were
used for the tension test to verify the simulation.

The stretching test was loading in the Z axis because
the stress—strain relationships of sI hydrate were almost
same in the X, Y and Z axes [30]. More specifically, the

stretching test changed the Z dimension of the simulation
box at a constant engineering strain rate of 1x107/s at
200 K and 10 MPa. The tests lasted from 2,000,000 to
4,000,000 steps for different samples to break the hydrate.
Meanwhile, the compression tests were performed using
the original samples with the same constant engineering
strain rate of 1x107/s at 200 K and 10 MPa, which lasted
2,000,000 to 4,000,000 steps for different samples.

Ethical approval: The conducted research is not
related to either human or animal use.

3 Results and Discussions

3.1 Strain-stress curves during stretching

Herein, the simulation systems are denoted as Systems
4, 6, 8, 10, 12, 17 and 22 for 2x2x4, 2x2x6, 2x2x8, 2x2x10,
2x2x12, 2x2x17 and 2x2x22 unit cells of sI methane
hydrate, respectively. The stretching of the tension test is
homogenous and isotropic based on the study of Wu et al.
[30]. The stretching stress causes the cracks in the hydrate.
Herein, e.g. 2x2x8 unit cells are shown in Figure 3,
in which the strain of hydrate in the Z axis before the
stretching is 0. As the stress was gradually loaded, the
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Figure 3: Snapshots of 2x2x8 unit cells during stretching.
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Figure 4.: Strain—stress curves (a) in Z axis during stretching, and the maximum stress of different systems (b) in Z axis during stretching.

hydrate strained in the Z direction. When the strain
reached 0.19, a clear microcrack (hydrate hydrogen bond
rupture) at nanoscale appeared in the hydrate system.
Then, the crack expanded rapidly to the entire hydrate
when the strain was 0.22. Some methane molecules were
released in free movement state due to the hydrogen bond
rupture of the hydrate cage structure. In addition, under
the stable state of low temperature and high pressure, no
phenomenon of complete decomposition of hydrate was
observed. Most hydrate cage structures remained stable.
The stress of the test region in the Z axis is the main
stress because the hydrate deforms along the Z axis, as
presented in Figure 4. Stress increased with strain, which
was similar to elastic deformation. Then, the hydrate
reached its maximum stress and cracked rapidly. This
maximum value was less than that in the experiments [13],
but close to that in the simulation results presented by
Ning et al. [29, 30]. Stress is calculated on the basis of the
pressure tensor of the atoms in the Z direction. However, it
did not correspond with practice that the hydrate system
still had residual stress in the Z direction when the hydrate
broke. Therefore, the stress of the strain-stress curves in
Figure 4 (a) is zero when the length of the cracks exceeded
2 A, considering the interactions of hydrogen bonds.
Thehydratessynthesised by the process of experiments
contained impurities; whereas the sI hydrate studied here
was pure. Further, the maximum stress decreased with an
increase in the size of hydrate in the Z axis from 4 to 10
cells (Figure 4 (b)). This finding indicates that the hydrate
follows the size effect when the system size is under 10
cells. However, the maximum stress fluctuated when the
size was over 10 cells. The maximum tensile stress of the
hydrate was in the Z direction, and the cells at a size of

4, 6, 8 and 10 decreased, thereby demonstrating the
existence of a size effect. When the hydrate size exceeded
10 cells, the maximum stress value was smaller than that
before. Compared with the cells at a size of 4, 6, 8 and 10,
no regularity, but value fluctuation, were found.

3.2 Strain-stress curves during compressing

The strain—stress curves in the Z axis during compressing
are presented in Figure 5. Similar to the stretching
process, the compressive stress increased with strain and
reached its maximum with strain larger than that of the
maximum stress during the stretching process and the
maximum tensile stress in the corresponding hydrate
system. The explanation is given as follows. The hydrate
crystal is composed of a hydrogen bond network of water
molecules, in which the hydrogen bond is attributed to
the physical intermolecular interactions. Therefore, the
physical intermolecular interactions are weaker than
the intramolecular interactions, and thus the hydrogen
bond is easy to break when stretching. However, when
the hydrogen bond is compressing, the microstructure
will be adjusted at a certain angle to increase the strain.
The microstructure of hydrate will change to fit the
compression. Compressive stress is large when the
distance between particles is small.

The structure of the hydrates was destroyed after
reaching the maximum compressive stress, and stress
decreased sharply and, finally, reached stability when the
compression system continued to be compressed. This
phenomenon was attributed to the periodic boundary
conditions in the MD simulation in this research. After
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Figure 5: Strain—stress curves (a) in Z axis during compressing, and the

the hydrate was destroyed under pressure, the destroyed
particle structure was still compressing until the system
could not be compressed any more. In addition, the
maximum stress of the hydrate under compression varied
with the system size, which was similar to that of the
tension. A certain size effect in the 4, 6, 8, 10-cell system
was observed, and no regularity was found when the size
exceeded 10 cells (Figure 5 (b)).

4 Conclusions

The stress characteristics of hydrate particles are vital
in the investigation of the microscopic properties of
hydrate particles. In terms of the mechanisms of hydrate
deformation, defect formation and crack propagation are
still inconclusive, especially for the pure hydrate from the
perspective of mechanical properties microscopically.
Moreover, the micro-mechanisms of hydrate’s mechanical
properties are scarce. In this study, the mechanical
properties of hydrates are investigated by MD simulation,
which was built by the classic sI methane hydrate. The
compression of s methane hydrate with different sizes and
the relationship of stress—strain between the stretching
and compressing process were discussed.

In the stretching and compressing process, similar to
elastic deformation, stress increased with strain. Then, the
hydrate reached its maximum stress and cracked rapidly.
In the case of tensile fracture under low temperature and
high pressure in a pure hydrate system, the cage-shaped
structure of most hydrates was stabilized. Only a small
amount of methane broke through and detached from the
cage-shaped structure, which exists in a free-motion state.
In the case of compressive fracture of this system, after
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the hydrate was destroyed under pressure, the destroyed
particle structure was still compressing until the system
could not be compressed any more. Under the 10-cell
size (simulation condition), the tensile and compressive
failures of the hydrate showed large correlation with
the system size. In other words, obvious size effect was
observed under certain conditions. When the hydrate size
exceeded 10 cells, the maximum stress was smaller than
before. Compared with the cells with the size of 4, 6, 8
and 10, no regularity, but value fluctuation, were found.
The compressive stress reached its maximum, which was
larger than that of tensile stress in the corresponding
hydrate system. Furthermore, the strain value of the
maximum compressive stress was also larger than that of
the maximum tensile stress.

This study aims to investigate the change in
microstructure of sI methane hydrate and the law of
stress—strain evolution under the condition of stress and
tensile tests at low temperature and high pressure. It not
only expounded the mechanical characteristic mechanism
of sI methane hydrate under a pressured state, but also
microscopically obtained the law of stability of natural gas
hydrate structure initially. Hopefully, a deepened study
of micro-stress mechanism of hydrate particles would
provide theoretical guidance and lay a basis for the efficient
exploitation of natural gas hydrate in practical projects.
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