Open Chem., 2019; 17: 438-447

DE GRUYTER

Research Article

Muhammad Riza Ghulam Fahmi, Adroit T.N. Fajar, Nurliana Roslan, Leny Yuliati, Arif Fadlan,

Mardi Santoso, Hendrik O. Lintang*

Fluorescence study of 5-nitroisatin Schiff base
immobilized on SBA-15 for sensing Fe3*

https://doi.org/10.1515/chem-2019-0053
received September 11, 2018; accepted February 12, 2019.

Abstract: N’-(5-nitro-2-oxoindolin-3-ylidene) thiophene-
2-carbohydrazide (NH) was successfully synthesized as a
ligand, then grafted onto the surface of mesoporous silica
SBA-15 via an aminopropyl bridge. The successful grafting
of ligand NH onto the hybrid nanomaterial (SBA-15/
APTES-NH) was confirmed by infrared spectroscopy. On
excitation at 276 and 370 nm, the ligand NH and the hybrid
nanomaterial SBA-15/APTES-NH showed a strong and
narrow emission peak centered at 533 nm. By dispersing
SBA-15/APTES-NH in an aqueous solution containing
metal ions, the resulting solid materials showed a higher
binding of NH sensing site to Fe** ions as compared to
the others with a quench of the emission intensity up to
84%. This result showed that the hybrid nanomaterial is a
potential chemosensor that requires development for the
detection of metal ions.
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1 Introduction

Amongst heavy metals, iron plays an important function
in living organisms and their metabolism such as
oxygen-carrying and the formation of the hemoglobin
[1]. However, excessive Fe** in the human body causes
various problems such as cancers and dysfunction of
organs while an iron deficiency can lead to anemia
[2,3]. For these reasons, detecting iron ions have been
an interesting area of research. For example, several
analytical techniques for detecting iron ions have been
generally developed using instrumental techniques such
as Voltammetry, Inductively Coupled Plasma Atomic
Emission Spectrometry (ICP-AES), and Flame Atomic
Absorption Spectrometry (FAAS) [4,5]. However, these
techniques become inaccessible because of some inherent
limitations such as being expensive, complicated sample
pretreatments and due to usage of harmful solvents [2,6].
Recently, fluorescent chemosensors have significantly
became an interest because these compounds or materials
can be used in environmental research with high sensing
capabilities such as easy detection, quick response, good
selectivity, high sensitivity, and low costs [7,8].

Schiffbase derivatives have played animportantroleas
a chemosensor due to their chromogenic and azomethine
groups [9,10]. Schiff base could be easily prepared by
condensation between a primary amine and an aldehyde
or a ketone group [11]. The lone pair of electrons at the
cyanide and carbonyl groups provided a good possibility
for chelating to transition metal ions. It is due to the
formation of 7 electrons in the six-membered rings [12—
14]. Therefore, Schiff base can be applied as a chelating
agent for the detection of many metal ions. For examples,
Schiff base derived from isatin has been widely reported
for chemosensors such as isatin N-phenylsemicarbazone
[15], rhodamine-isatin [16], 2’,7’-diamino-2-oxo-1’,4’-
dihydrospiro[indoline3,4’-quinoline]-3’-carbonitriles [17],
and N-methyl isatin [18].

Functionalized mesoporous silica has gained wide
attention due to their applications such as membranes,
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drug delivery, chemosensor, and biosensor [19-22].
SBA-15, one of the mesoporous silica, is a promising
material to be used as inorganic support because of the
high thermal stability, large pore size and high surface
area [20,23,24]. Besides that, the presence of OH groups
from the silanol on the surface of SBA-15 can be attached
by various organic chromophores [25,26]. Moreover, for
chemosensor applications [27-33], the regularly arranged
pores in its SBA-15 mesostructure can enhance the
selectivity to particular guests like organic substance and/
or metal ions [34]. For Schiff base ligands as fluorescent
chemosensors in the hybrid mesoporous silica materials,
several reports have been published for sensing AI** [35],
Hg?* [36], Pb* [37], Zn* [38-40], and Cu* ions [41-43].
In particular, Wang et al. [44] and Afshani et al. [45]
have reported that the grafting of bis-Schiff base N,N’-
(1,4-phenylenedimethyli-dyne)bis(1,4-benzenediamine)
(PMBA) and salicylaldehyde with SBA-15 can be used for
sensing Fe’** at a less intense blue-emission peak of the
binding site consisting of a broad peak. By using isatin-
isonicotinohydrazide functionalized SBA-15, Lashgari et
al. in 2017 [46] showed that the hybrid nanomaterial can be
used as a chemosensor of the same metal ion. However, the
sensing capability was only found up to 70% quenching of
its less intense and broad emission peak at 420 nm. Hence,
it is necessary to develop chemosensors with more bright
emission especially in the area closed to near infrared so
that the identification and evaluation can be easily carried
out and is more sensitive. On the other hands, Schiff-
base from 5-nitroisatin type fluorescent chemosensors
have been rarely reported [44-46] and 2-thiophene
carboxylic acid hydrazide was reported as Schiff base for
the fluorescent probe of 2-hydroxy-l-naphthaldehyde in
the detection of AI** ions with a broad green-emission at
476 nm [47]. To the best of our knowledge, 5-nitroisatin
Schiff base immobilized on SBA-15 hybrid nanomaterials
for sensing Fe* is one of the potential chemosensor
with bright fluorescence and high sensing capability.
Herein, we report the first example of hybrid fluorescent
chemosensors with strong and intense emission at the
green-to-red (533 nm) area using SBA-15 with a Schiff-
base nitroisatin based on 2-thiophene carboxylic acid
hydrazide, called as N’-(5-nitro-2-oxoindolin-3-ylidene)
thiophene-2-carbohydrazide, for the detection of Fe** ions.
In particular, the new hybrid chemosensor shows high
sensing capability up to 84% with low limit of detection
and high reusability.
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2 Experimental

2.1 Materials and Method

The materials, 5-nitroisatin  (Aldrich = N17807),
2-thiophenecarboxylic acid hydrazide (Aldrich T1388),
aquades, dimethyl sulfoxide anhydrous (Merck 8.02912),
ethanol (Merck 1.00983), sulfuric acid, ethyl acetate,
acetone, n-hexane, chloroform, and SBA-15 were
obtained in the previous study [48]. Infrared spectra are
measured using FT-IR JASCO 6800 with ATR disc, UV-Vis
spectra were measured using spectrophotometer JASCO
V760, and fluorescence analysis were measured using
spectrofluorometer JASCO FP-8500ST. 'H-NMR spectra
were obtained at 500 MHz and “C-NMR spectra were
measured at 125 MHz using JMN-ECA 500 NMR machine.
DMSO-d6 was used as an internal standard and solvent.
Mass spectra were obtained using Waters LCT Premier XE
instrument.

2.2 Synthesis of Schiff base

Schiff base ligand NH was synthesized by diluting
5-nitroisatin (0.15 g; 0.80 mmol) in 20 mL of ethanol and
placed in a round bottom flask as shown in scheme 1. Three
drops of sulfuric acid were added and then refluxed for
20 minutes. 2-Thiophenocarboxylic acid hydrazide (0.11 g;
0.80 mmol) in 10 mL ethanol was added to the mixture
and it was refluxed further at 78°C for 2 hours (the current
reaction was monitored with thin layer chromatography).
The mixture was cooled to room temperature and the
solvent was evaporated. The remaining solid was washed
with cold ethanol (2x5 mL), dried thoroughly desiccator,
and identified by FT-IR, NMR and MS spectrometers.

2.3 Synthesis of SBA-15/APTES

The mesoporous silica, SBA-15, was prepared in the
previous study [48]. 3-Aminopropyl triethoxysilane
(APTES) was used as the silylation reagent on the
aminopropyl grafting onto SBA-15. Typically, one gram of
SBA-15 was mixed to APTES (2.2 mL) in 50 mL chloroform
and then stirred at room temperature for 12 hours. After
that, the mixture was filtered, washed with chloroform
and dried at room temperature. The resulting white solid
was characterized by using FT-IR spectrometer.
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2.4 Synthesis of SBA-15/APTES-NH

For the grafting of an organic compound, SBA-15/APTES
(200 mg) and ligand NH thiophene-2-carbohydrazide
(57 mg) were refluxed in ethanol solution (50 mL) for 24
hours. This mixture was filtered with a Whatman paper
and washed with ethanol until the filtrate did not show
yellow color. The resulting yellow solid was dried at room
temperature and characterized by FT-IR and fluorescent
spectrometers.

2.5 Fluorescent Chemosensor of Metal lons

Sensing properties of SBA-15/APTES-NH were evaluated
by using the solid method. Iron ions in chloride salt
(FeClB) were dissolved in water with a concentration of
50, 100, 150, and 200 mM. After that, 1 mL of Fe3** ion was
mixed with 5 mg of SBA-15/APTES-NH and sonicated for
5 minutes. The mixture was centrifuged for 15 minutes,
decantated and dried at 50°C. The resulting solid sample
was measured their changes in emission and excitation by
using fluorescence spectroscopy. Other metal ions such as
Ca%*, Co*, Cu*, Fe*, K*, Mg*, Mn*, and Zn* in 100 mM
were also evaluated with the same experiment procedure.

3 Result and Discussion

The synthesis of ligand NH was prepared by adapting the
previous method [49]. Typically, as shown in Scheme 1,
5-nitroisatin was refluxed with 2-thiophenocarboxylic
hydrazide in ethanol under acidic conditions using
sulfuric acid to give ligand NH in 92% yield. Figure 1 shows
the FT-IR spectrum of the ligand NH, SBA-15, SBA-15/
APTES and the hybrid materials SBA-15/APTES-NH. The
vibration peaks at 3149 and 1529 cm™ were assigned to N-H
and C=N functional groups, indicating the formation of
Schiff base as the ligand NH. Other important vibration
peaks of the ligand NH were identified at 1662 and
1340 cm® for carbonyl (C=0) and C=C aromatic groups.
Moreover, the 'H-NMR spectrum shows a singlet signal of
NH hydrazide proton at chemical shift (§) of 13.12 ppm and
NH isatin proton at 6 of 11.93 ppm. In addition, aromatic
protons have shown their signals at & of 7.15, 7.31, 7.97,
8.10, 8.29 and 8.30 ppm with a number of protons for 6H
from isatin and thiophene rings. Mass spectrum shows
the molecular ion peaks [M+H]|*at m/z 317.3164 Da and
[M+Na]* at m/z 339.3615 Da. The calculation of exact mass
for ligand NH shows the molecular ion peaks [M+H]* at
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Scheme 1: Synthesis route of N’-(5-nitro-2-oxoindolin-3-ylidene)
thiophene-2-carbohydrazide.
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Figure 1: FT-IR spectrum of SBA-15 (black line), SB-15/APTES (red
line), SBA-15/APTES-NH (blue line) and ligand NH (pink line).

m/z 317.3000 Da and [M+Na]* at m/z 339.2818 Da that are
closed to the observed ones. These results confirm that the
ligand NH has been successfully formed.

In the synthesis of hybrid nanomaterial, the
unmodified SBA-15 was firstly characterized using FT-IR
spectrometer. It showed the vibration bands at 3300-3750,
1080, 970-950 and 461 cm? for OH, Si-0-Si, Si—OH, and
Si-0, respectively. When compared with SBA-15, the
intensity of silanol groups at 3467 cm* was decreased in
SBA-15/APTES concomitant with increasing intensity of
N-H bands of the APTES aminopropyl groups. Besides
that, the presence of original vibration bands in the range
of 2881-2990 cm for stretching of methylene vibrations
from the propyl chain were still observed, indicating the
successful grafting of APTES with SBA-15 to give SBA-15/
APTES. Moreover, since the characteristics of vibration
peaks for ligand NH and SBA-15/APTES were still
observed, the ligand NH was successfully grafted onto the
surface of SBA-15/APTES to give SBA-15/APTES-NH.

Figure 2 shows the fluorescent studies of ligand NH
and hybrid material SBA-15/APTES-NH. The fluorescence
of these hybrid materials appears at a definite excitation
wavelength because the ligand NH can produce strong
fluorescence. Commonly, SBA-15 did not show fluorescence
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Figure 2: Excitation (dash line) and emission (straight line) spectrum of (a) ligand NH and (b) hybrid material SBA-15/APTES-NH.

due to the absence of chromophore groups. By excitation
at 276 and 370 nm for the ligand NH, it gave emission
peaks centered at 308 and 533 nm from respective isatin
and thiophene chromophores [47,50]. By using the same
excitation peaks, the monitoring spectrum for the hybrid
materials showed the same narrow and intense emission
peak. Such small decrease in the emission intensity in
the hybrid material can be observed due to the degree of
loading for the organic moieties not only onto the surface
but also in the silicate channels as found in many reports
of functionalization mesoporous silica with functional
groups [51].

The sensing properties of SBA-15/APTES-NH were
conducted by the solid method. Solid methods or solid-
contact have major advantages such as minimizing
waste from organic solvents when compared to
chemosensors which were used as organic solvents such
as dimethylsulfoxide and acetonitrile [52,53]. Besides that,
the organic solvent can interfere with the sensing process
and change the responsive optical properties of certain
chemosensors [54]. Figure 3 shows that the changes in
excitation and emission properties of hybrid material
SBA-15/APTES-NH after getting mixed with the solution
of 100 mM metal ions (Ca*, Co*, Cu*, Fe3, K*, Mg?, Mn%,
and Zn*). By using the same excitation for monitoring
emission properties of the hybrid material, it was found
that the SBA-15/APTES-NH showed a decrease in its
emission intensities for Fe’* in 77% (Figure 3a) and 84%
(Figure 3b) at 276 and 374 nm. In this case, DI/I, described
as the sensing capability of the host (SBA-15/APTES-NH)
for sensing same guest (metal ions) [25,55] where the
value Al is I-1, (IO is the fluorescent intensity for the only
composite SBA-15/APTES-NH while I is the fluorescent
intensity for the sensor with metal ions). As can be seen

in Figure 4a, the largest AI/I, (approximately 0.84) is
observed in the presence of Fe**, whereas a small change
was observed in the presence of other metal ions. Thus,
hybrid material SBA-15/APTES-NH shows a remarkable
sensitivity for the fluorescent chemosensor of Fe**ions.

Interestingly, as shown in Figure 4a, the SBA-15/
APTES-NH showed the second highest in the decrease
of emission intensity for sensing Cu* ions in 33% and
45% upon monitoring at 276 and 370 nm. Such sensing
capability is almost half of the performance in the
detection of Fe**. Of interest to the real sample, the SBA-15/
APTES-NH was used to detect the mixture of both ions with
the same concentration (100 mM) in order to evaluate the
selectivity and/or interference. Since the decrease of the
emission intensity is between the response of the hybrid
chemosensor for sensing sample containing Cu* and Fe**
ions, the presence of Cu* ions in the mixture was found to
reduce the performance of the hybrid material around 7%
only in the detection of Fe** ions (as shown in Figure 4b).
From this finding, it can also be concluded that the hybrid
chemosensor is more selective to detect Fe** than Cu?* ions
with only small interference to the presence of Cu?" ions.

The sensing capability of SBA-15/APTES-NH was
studied by addition of various concentrations of Fe** ions
in the range of 50200 mM. Figure 5a and 5b shows the
changes in the emission intensities of SBA-15/APTES-NH
upon monitoring at excitation wavelengths of 276 and
370 nm. From that evaluation, the chemosensor showed
gradually quenching of its emission intensity with an
increasing concentration of Fe** ions up to 200 mM.
Moreover, the Stern-Volmer plot (as shown in Figure 5c)
with a variation of the concentration indicates that the
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Figure 3: Emission spectral changes of the hybrid material SBA-15/APTES-NH with excitation wavelengths at (a) 276 and (b) 370 nm after

sensing various metal ions.
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Figure 4: (a) Sensing capability (DI/1)) of SBA-15/APTES-NH for the detection of various metal ions and (b) changes in emission intensity in
the presence of a mixture of Fe** and Cu?* in an equal concentration of 100 mM with an excitation at 370 nm.

changes in emission intensities upon detection of the
Fe** ions are linearly dependent on the increase in the
concentration of the guest for both excitation wavelengths.
Such changes can be identified as dynamical interaction
of the sensing site toward the presence of Fe** ions. The
limit of detection (LOD) of SBA-15/APTES-NH can be
calculated with the equation LOD = 3 SD/K_ [56,57],
where SD is the standard deviation of the blank signals
and K_ is the quenching constant of Stern-Volmer. The
result of SD and K_ is 0.006905426 and 0.0139 mM,
respectively. Therefore, the detection limit of SBA-15/
APTES-NH is 1.49 mM, which indicates that the SBA-15/
APTES-NH is potentially used for detection of Fe** ions
even in the lower concentration. Otherwise, the SBA-15/
APTES-NH sensor can be potentially applied to detect
Fe’* ions in the environmental and pharmaceutical fields
[58,59]. Moreover, limit of quantification (LOQ) can be

also calculated with the equation of LOQ = 10 SD/K_, [60].
The LOQ value of SBA-15/APTES-NH is 6.32 mM. By using
the calibration curve as the relative emission intensity of
SBA-15/APTES-NH at 533 nm versus Fe3* concentration,
the quantitative analysis can be performed in the presence
of real samples. In the linear range between 50 to 200 mM,
the calibration curve is not straightforward with a high
relative coefficient due to the inhomegenous distribution
of organic moieties in the grafting with SBA-15/APTES.
Such drawback in the loading of organic functional groups
has been discussed in many reports [52]. Of interest, the
good reproducibility of SBA-15/APTES-NH was shown
with the small RSD value in 2.7 and 7.4% for both excitation
wavelengths of 276 and 370 nm (Figure 5d).

Reusability testing is important factors for the
development of novel chemosensors in practical
applications. Previously, chemosensors for the detection
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of Fe* ions based on functionalized SBA-15 have not yet
reported the reversibility testing [44,61]. In this study,
the reversibility of the Fe** was treated by the addition
of the binding agent of potassium thiocyanate (KSCN) in
hydrochloric acid (HCI) (pH = 1) to the hybrid chemosensor
consisting of Fe* ions. The testing was performed until
the color of the solution of KSCN in HCI changes from red
to a colorless solution. As shown in Figure 6, the hybrid
chemosensor can be recycled up to three times with only a
small decrease in the performance. Such reusability result
is an important achievement for the fabrication of Fe**
fluorescent chemosensors.

The FT-IR spectrum of the SBA-15/APTES-NH with
the absence and presence of Fe’* ions was particularly
analyzed in the range of 1800-400 cm® using ATR (Figure
7a). The FT-IR spectrum of SBA-15/APTES-NH shows
characteristicvibration peaksat1707,1662,1341and 751cm?,
which are assigned to the vibrations of carbonyl amide,
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C=N, C-N and C-S groups, respectively. Moreover, the
vibration peak of N-H bending from isatin ring, Schiff
base, and aminopropyl (from APTES) groups were
observed at 1624, 1603, and 1530 cm?. Upon addition of
Fe’* ions to the chemosensor, the N-H bending of Schiff
base and C=0 peaks slightly shifted with small changes
in their intensities from 1707 to 1706 cm?, 1603 to 1605 cm?
and 1530 to 1529 cm™. In shall be noted that the vibration
peak of the N-H from Schiff base was increased in 1.25
times of its intensity while vibration peak for C=N was
broadened and vibration peaks for C-N and C-S were
reduced significantly. Such changes clearly suggest that
Fe’* ions have formed strong interactions with the Schiff
base and thiophene ring while a weak interaction can also
be possible with aminopropyl-bridged nitro isatin group

[53]. Further analysis with Job’s plot for binding analysis of
the ligand NH to Fe** ions in the solution phase as shown
in Figure 7b confirmed that the interaction were initially
closed to 1:1 of Fe* ions to ligand NH and then gradually
changed to 1:4 to form the stable binding interactions.
Based on the above finding, the interactions of Fe** ions
with the sensing site of hybrid material SBA-15/APTES-NH
can be proposed as shown in Figure 8.

4 Conclusion
The organic-inorganic hybrid SBA-15/APTES-NH was

synthesized and characterized using the mesoporous
silica SBA-15 and the new nitroisatin (ligand NH). This
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hybrid SBA-15/APTES-NH was successfully applied as
a chemosensor and showed a good sensing capability
towards Fe** ions from its emission changes at 533 nm
with an quenching phenomenon up to 84%, low LOD, and
RSD as well as high reusability. From the Stern-Volmer
diagram, the SBA-15/APTES-NH showed a linear graphic
with the excitation of wavelengths at 276 and 370 nm
for a good relationship of the emission changes with the
increasing concentration of Fe** ions. All of the obtained
results suggest that the new hybrid material SBA-15/
APTES-NH with an intense and narrow emission peak is
a potential fluorescent chemosensor for the detection of
Fe* ions.
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