

Research Article

Muhammad Nadeem Zafar*, Muzna Saeed, Raziya Nadeem*, Sajjad Hussain Sumrra, Syed Salman Shafqat, Muhammad Abdul Qayyum

Chemical pretreatments of *Trapa bispinosa*'s peel (TBP) biosorbent to enhance adsorption capacity for Pb(II)

<https://doi.org/10.1515/chem-2019-0031>

received April 16, 2018; accepted August 24, 2018.

Abstract: In this study, *Trapa bispinosa*'s peel (TBP) biomass is exploited as an effective, low cost and new adsorbent to remove Pb(II) from aqueous solution. TBP is pretreated and modified with HNO_3 , HClO_4 and H_2O_2 to enhance the Pb(II) removal and it is perceived that chemical modifications enhance the adsorption capacity of TBP. The adsorption behavior of Pb(II) is studied under different conditions, including pH (3-6), TBP dose (0.05–0.8 g), stirring speed (100–200 rpm), initial Pb(II) ion concentration (25–400 mg L⁻¹) and contact time (0–1440 min). Kinetic study reveals sorption is fast in first 15 to 30 min achieving equilibrium in 60 min with q_{max} (mg g⁻¹) are 77.09, 105.40 and 123.82 for NT-TBP, NA-TBP and HCA-TBP respectively. The Langmuir model successfully defines the sorption data having higher R^2 and good agreement between theoretical and experimental uptake capacity of Pb(II). The kinetic study exhibits that the pseudo-second order rate equation is better portrayed sorption process. TBP modified with HClO_4 shows the highest metal uptake in comparison to HNO_3 , H_2O_2 modified TBP and native TBP.

Keywords: *Trapa bispinosa*; Pb(II); isotherm models; kinetics; chemical pretreatments.

***Corresponding authors:** Muhammad Nadeem Zafar, Department of Chemistry, University of Gujrat, Gujrat, 50700 Pakistan, E-mail: nadeem.zafar@uog.edu.pk, znadeempk@gmail.com; Raziya Nadeem, Department of Chemistry, University of Agriculture, Faisalabad, 38000 Pakistan, E-mail: raziyaanalyst@uaf.edu.pk, raziyaanalyst@yahoo.com

Muzna Saeed: Department of Chemistry, University of Agriculture, Faisalabad, 38000 Pakistan

Sajjad Hussain Sumra: Department of Chemistry, University of Gujrat, Gujrat, 50700 Pakistan

Syed Salman Shafqat: Department of Chemistry, University of Management and Technology, (Sialkot Campus), Lahore, Pakistan

Muhammad Abdul Qayyum: University of Education (Lahore) Faisalabad Campus, Faisalabad 38000 Pakistan

1 Introduction

Toxic metals appear in immobilized form and as ores in nature. In the rationalized industrial world, toxic metals have become a serious threat in forthcoming days [1,2] and cause severe degradation in mesosphere, hydrosphere, and atmosphere. These inorganic pollutants largely originate from industrial wastes. Without proper treatment, these metals possess a significant peril to public health as being non-biodegradable and persistent [3]. Pb(II) is a deleterious metal, detected in waste streams from mining, storage batteries of lead acid, allied product, chemicals, glass, ceramic, electronics, tanneries, electroplating and petrochemical industries [4,5]. In human, Pb(II) poisoning causes acute harm to brain, kidney, liver, nervous system and reproductive system. Severe contact with Pb(II) has been coupled with neo-natal deaths, abortion, sterility, and stillbirth [6,7]. World Health Organization (WHO) and Environment Protection Agency (EPA) consider Pb(II) as hazardous and important pollutant and define that Pb(II)'s maximum permissible level is 0.01 and 0.43 mg L⁻¹ in drinking water and wastewater respectively [3].

Several remediation techniques for the removal of toxic metal ions such as precipitation, coagulation, membrane process and electrolytic method have been in practice [8]. But they are prohibitive for the removal of toxic metals [9,10]. Toxic metals treatment becomes inevitable and in this endeavor, biosorption seems to be an efficient alternative for the eradication of metal pollutants in streams and have been recommended as cheaper and effective technique [9, 11]. Biosorption of toxic metals involves physiochemical linkage, mainly complex formation or ion exchange among the functional groups present on surface of biomass and metal ions. Different functional groups are involved such as carboxyl, phosphates, amines, amides hydroxyl carbonyl, sulphonates, phosphonates, and sulphydryl [12]. Biosorbents are prepared from naturally plentiful and

waste biomass and a variety of cheap and easily available biosorbents reported [5,8,11,13-27].

The attractiveness of using plant wastes for removing pollutants is due to simplicity in technique, less processing, selective adsorption for metals, high uptake capacity, low cost, easy availability and regeneration ability [28]. However many problems are associated when untreated plant wastes were used as adsorbents including high chemical oxygen demand (COD), biochemical oxygen demand (BOD) and low uptake capacity as well as discharge of soluble organic compounds from plant wastes. Therefore, it is important to modify or treat the plant-based adsorbents before their application to remove toxic metals.

An wide survey of the available literature discloses very few articles on the adsorption activity of *Trapa bispinosa*'s towards dyes and metals [29-32] and no reports towards Pb(II) removal. *Trapa bispinosa* (locally known as Singhara) is an aquatic edible plant and member of *Trapaceae* family. The crop yield is approximately 3751 Kg with 6-8 months of growth cycle. The inner edible white part has an average weight of 5 Kg is covered by a thin and hard brown spermoderm. It is a good source of minerals matters, potassium, calcium, phosphate, iron, copper, manganese, magnesium, and sodium and also contains plentiful B vitamins including B1, B2, B5 and B6 and vitamin C [33]. In current research work, this low cost and easily available, *Trapa bispinosa*'s peel (TBP) waste material was selected as a new biosorbent for the removal of Pb(II). The TBP was chemically treated and Pb(II) removal on native and chemically pretreated TBP was investigated and compared. The pretreatments of TBP plant waste were expected to enhance the uptake capacity of adsorbents for Pb(II).

2 Material and method

2.1 Reagents

All the chemicals $\text{Pb}(\text{NO}_3)_2$, HNO_3 , HClO_4 and H_2O_2 utilized in this research work were of analytical grade and acquired from Fluka chemicals (Buchs, Switzerland). Pb(II) atomic absorption spectrometry standard solutions were also purchased from Fluka Chemicals (Buchs, Switzerland). All sample bottles and glassware was washed by overnight soaking in 10% (w/v) HNO_3 and then for several times rinse with distilled water.

2.2 Pretreatment of TBP adsorbent

The plant material TBP was collected from different zones of Faisalabad, Pakistan. TBP was washed with deionized distilled water (DDW) to remove soluble and adhering dirt impurities and dried out in the sunlight. The dried TBP biomass was slash, ground by food processor (Moulinex, France), followed by sieving with Octagon siever (OCT-DIGITAL 4527-01, Endecotts Ltd. London, UK) to particles of 0.25 mm size before use. To investigate the influence of different chemical pretreatments on the uptake capacity of TBP, 10 g of TBP was pretreated with 0.1 M of HNO_3 , HClO_4 and H_2O_2 for 24 hrs. After each pretreatment, the TBP biomass was washed with DDW until the pH of solutions becomes neutral. The chemical pretreated TBP biomass was then dried at 80°C for 8 hrs in an oven, sieved again and then kept in desiccators until further use for the adsorption studies of Pb(II). The resulting chemically pretreated biomasses were named as HNO_3 treated *Trapa bispinosa*'s Peel (NA-TBP), HClO_4 treated *Trapa bispinosa*'s Peel (HCA-TBP), H_2O_2 treated *Trapa bispinosa*'s Peel (HPO-TBP) and non-treated *Trapa bispinosa*'s Peel (NT-TBP).

2.3 Batch biosorption studies

The Pb(II) stock solution was made up by dissolving $\text{Pb}(\text{NO}_3)_2$ salt in DDW. The ion concentration was 1.59 g L^{-1} in stock solution. Solutions of different Pb(II) concentrations were made by suitable dilution of the prepared Pb(II) stock solution with DDW. For all groups of experiments, 100 mL volume of Pb(II) solutions were thoroughly mixed with TBP biosorbent having particle size of 0.25 mm at 30°C and stirred for 4 hrs. To study the influence of chemical pretreatments, pH, TBP dose, stirring speed, initial Pb(II) concentrations and contact time; different conditions of pH (3 to 6), TBP dose (0.05 to 0.8 g), stirring speed (100 to 200 rpm), initial metal concentrations (25 to 400 mg L^{-1}) and contact time (0 to 1440 min) were assessed. The pHs of the solutions were adjusted with 0.1 N solutions of NaOH and HCl. The flasks containing Pb(II) solutions were employed on a rotating shaker (PA 250/25. H. Adolf Kühner AG. Birsfelden, Switzerland) with constant stirring. After that the Pb(II) solutions containing TBP biomass were filtered through membrane filter (Millipore) of 0.45 μm size. Preliminary trials were accomplished using 100 mg L^{-1} initial Pb(II) concentrations at pH 4.

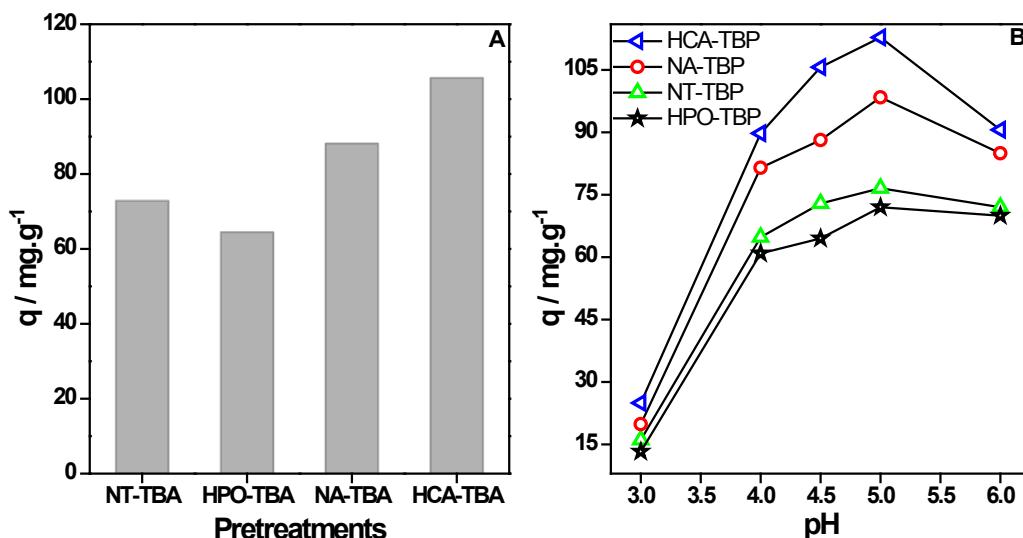


Figure 1: Effect of pretreatment (A) and pH (B) on Pb(II) removal by original and chemically pretreated TBP.

2.4 Determination of the Pb(II) contents in the solutions

The concentration of Pb(II) in the solutions before and after the equilibrium was determined by Hi-Tach polarized zeeman atomic absorption spectrometer (AAS) equipped with an air-acetylene burner (AAnalyst 300, Perkin-Elmer, Waltham, USA) having 1.3 nm slit width. Deuterium background correction was used and the analytical wavelength was set at 283.3 nm. The instrument response was periodically checked using standard Pb(II) solution.

The % removal and Pb(II) uptake q (mg Pb(II) adsorbed/g TBP adsorbent) were estimated by equation 1 and 2 respectively.

$$\% \text{ removal} = \frac{(C_i - C_e)100}{C_i} \quad (1)$$

$$q = \frac{V(C_i - C_e)}{m} \quad (2)$$

where q is the Pb(II) uptake capacity (mg Pb(II)/g dry TBP), V is solution volume (L), C_i is initial Pb(II) concentration (mg L^{-1}), C_e is final Pb(II) concentration in solution (mg L^{-1}) and m is amount of the TBP (g).

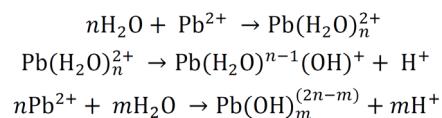
2.5 Desorption and reuse of TBP

The Pb(II) loaded adsorbent was regenerated and reused for successive Pb(II) adsorption by means of desorption process. For adsorption/desorption experiments, 0.1 g of HCA-TBP or NA-TBP was treated with 100 mL solution containing 50 mg L^{-1} of Pb(II) and the solution was

centrifuged after equilibrium time. The spent HCA-TBP or NA-TBP (0.1 g Pb(II) adsorbed TBP) was added to 40 mL of 0.1 M HCl and incubated for 3 h at 150 rpm agitation rate. After regeneration, the HCA-TBP or NA-TBP was washed and then reused to adsorb 50 mg L^{-1} Pb in 100 mL solution. This procedure was repeated four times using the same approach.

Ethical approval: The conducted research is not related to either human or animal use.

3 Result and discussion

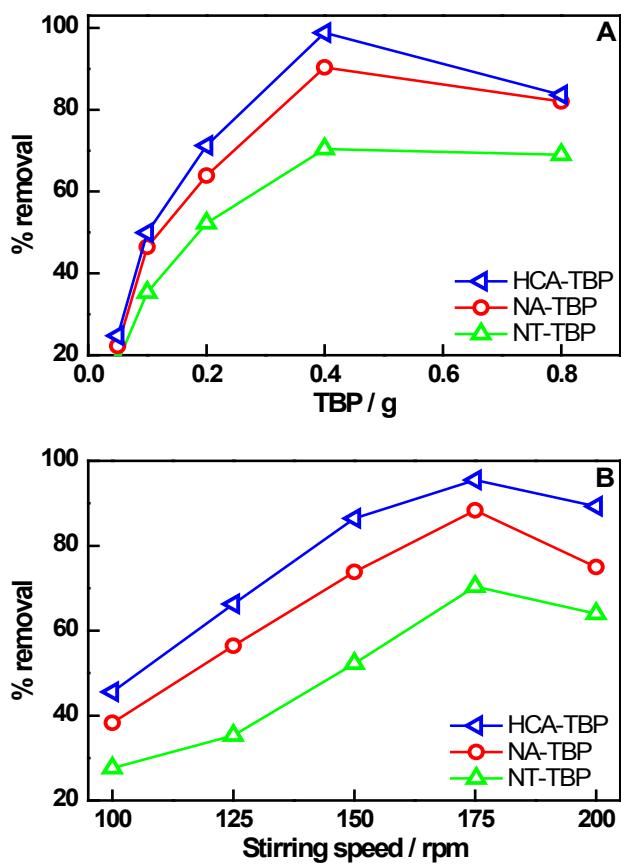

3.1 Effect of pretreatments and pH on Pb(II) uptake

The chemical and physical pretreatments play a significant role to improve the adsorption/uptake capacity of the biomass [34,35]. The comparison of all chemically pretreated biomasses is shown in Figure 1A. The results in Figure 1A are exposed that the maximum augmentation in uptake capacity of TBP is attained when pretreated with HClO_4 . The NA-TBP biomass has also displayed certain increase in the uptake capacity of TBP. The possible reason of much enhancement in the uptake capacity of TBP for Pb(II) when treated with HClO_4 , could be that pretreatment might be responsible to rupture the biomass cells, which results in releasing the polymers such as polysaccharides that have a great affinity towards certain metal cations and also enhance surface area and porosity for adsorption [36,37]. Thus immersion of

finely ground biomass in acids may uncover additional binding sites and hence the approachability of the Pb(II) to the sorption sites is enhanced [38]. The assessment between the experimental data demonstrated that the key differences happening are linked to the variation of the total concentration of the active sites: HCA-TBP has more active sites than NA-TBP, HPO-TBP and NT-TBP. This may be because of the oxidation, which increases acid sites concentration. In contrast to this, pretreatment by H_2O_2 reduces acid site concentration in comparison with untreated TBP, possibly because of partial degradation of the vegetal matrix. Mainly hydroxyl and carboxyl functional groups on the biosorbent surface are present and the modeling identifies carboxylic and hydroxyl groups in all the biosorbents investigated and assuming that two major kinds of weakly monoprotic acidic sites are present. After the pretreatment, the quantity of oxygen comprising groups such as phenolic, hydroxyl and carboxyl functional groups is increased and exposed considerably more on the surface of the biomass after the $HCLO_4$ pretreatment of the TBP and resulting in higher uptake of Pb(II) [39]. The uptake capacity 'q' (mg g⁻¹) of all TBP biomasses is in the following order: HCA-TBP (105.65) > NA-TBP (88.16) > NT-TBP (72.90) > HPO-TBP (64.50). This indicates that the chemical pretreatments are extremely suitable in improving the adsorption capability of biomass.

The pH is a concerned parameter for the sorption phenomenon of metal ions. By the variation of metal ion solution pH, the state of chemically charged active sites on the biomass surface those are accountable for sorption of metal ions is altered rapidly [8,11,15,19]. Figure 1B presents Pb(II) uptake at pH ranging from 3.0-6.0 for native and pretreated TBP biomasses. Results show that equilibrium sorption capacity is minimum at pH 3.0 and maximum at pH 5.0 for all non-treated and pretreated TBP biomasses. At more acidic pH, adsorbent surface is more surrounded by H^+ , thereby resist Pb(II) ions to bind with active site of the biomass. In fact high concentration of H^+ makes more positively charged biomass surface and causes reduction in sorption between metal cations and positively charged biomass. That's why at more acidic environment less uptake of metal ion occurs. Because the surface negative charged density is amplified simultaneously as the pH value increased. As a result, the electrostatic force of interactions between metals ions and adsorbent is improved. Ionic species of metals adsorbs more frequently at less acidic pH value of solution because of less stability in solution. At pH 6.0, decline in the biosorption of Pb(II) ions is also examined. This is due to metal ions may

undergo hydrolysis and polymerization in the aqueous solution as shown below:


Again it is observed that the uptake capacity of all TBP biomasses is in following order: HCA-TBP > NA-TBP > NT-TBP > HPO-TBP and as with H_2O_2 pretreatment the uptake capacity of TBP is decreased so in the further study this pretreated adsorbent is not used and further study is carried out using HCA-TBP, NA-TBP and NT-TBP adsorbents.

3.2 Effect of TBP dose on Pb(II) uptake

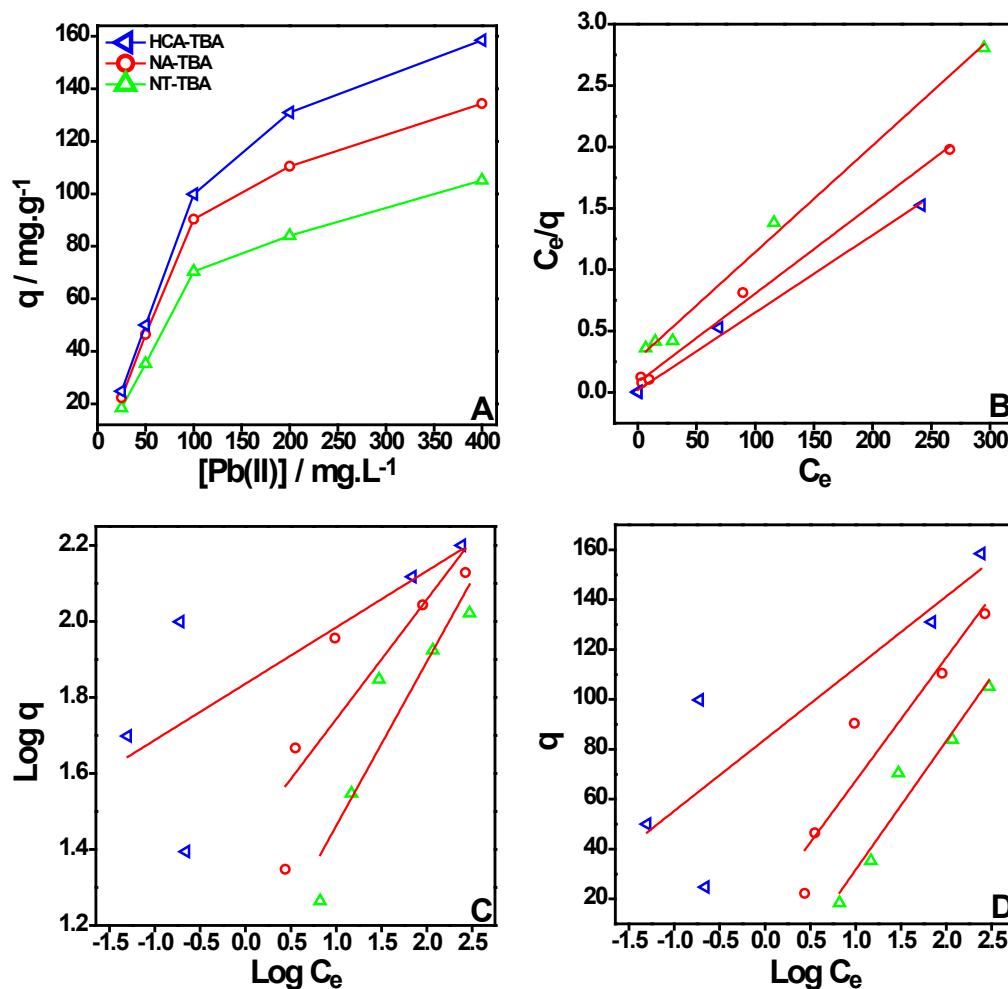
The removal of Pb(II) onto native and pretreated TBP as a function of biosorbent dose is reported by varying the amount from 0.05 to 0.8 g at 5 pH and 100 mg L⁻¹ Pb(II) initial concentration for 4 h contact time. The effect of sorbent dose on the removal of Pb(II) is shown in Figure 2A. From the graph, it is clear that the % removal of Pb(II) increases with TBP weight and a maximum % removal is observed at 0.4 g for all native and pretreated TBP. The % removal for Pb(II) by HCA-TBP and NA-TBP is more than 95 and 90% respectively at TBA dose of 0.4 g. As indicated by Shukla et al., particles become aggregated at higher adsorbent amount, which results in decline in the total surface area and increase in diffusional path length. Both of these factors are responsible for decrease in amount of metal adsorbed per unit mass [40].

3.3 Effect of agitation speed on Pb(II) uptake

The effect of agitation speed on % removal of Pb(II) (100 mg L⁻¹) by 0.4 g each native and pretreated TBP adsorbents at pH 5 is investigated by varying agitation speed from 100 to 200 rpm. The results (Figure 2B) has revealed that the % removal of Pb(II) increases from 45.58 to 95.45%, 38.25 to 88.33% and 27.65 to 70.39% by HCA-TBP, NA-TBP and NT-TBP biomass samples respectively as the agitation speed increases from 100 to 175 rpm. At higher agitation speed a reduction in % removal of is observed. The probable explanation could be that as the agitation speed is increased, the collision between Pb(II) and adsorbent surface is also increased which results in fast

Figure 2: Effect of TBP dose (A) and stirring speed (B) on Pb(II) removal by original and chemically pretreated TBP.

reaction between Pb(II) and TBP adsorbents. A decline in % removal at higher agitation speed might be due to desorption of Pb(II) from the surface of TBP adsorbents.


3.4 Effect of Pb(II) initial concentration

By the interaction of an adsorbate with an adsorbent surface, sorption occurs over the surface and the dependence of sorption capacity is on adsorbate bulk concentration in the solution [41]. Increasing Pb(II) concentrations effect onto native and pretreated TBP surface is investigated by contacting 0.4 g of TBP with 100 mL of Pb(II) solutions of initial concentrations ranging from 25 to 400 mg L⁻¹ agitated at 175 rpm for 4 hours at the pH 5. The results are presented in Figure 3A, which reveal that increase in Pb(II) initial concentration causes rise in Pb(II) uptake capacity. The data shows that the Pb(II) uptake is increased from 24.78 to 158.46 mg g⁻¹, 22.25 to 134.30 mg g⁻¹, and 18.37 to 105.11 mg g⁻¹ onto HCA-TBP,

NA-TBP and NT-TBP biomass samples respectively when Pb(II) ion concentrations is increased from 25 to 400 mg L⁻¹. However the study shows that there is a decline in the % removal with increase in Pb(II) concentration. The percentage removal of Pb(II) decreases from 99.12 to 45.36%, 90.56 to 26.4% and 78.56 to 21.4% HCA-TBP, NA-TBP and NT-TBP biomasses respectively (results not shown). This phenomenon occurs because the ratio of biomass active sites in the solution to the total Pb(II) ions is high at low concentrations and therefore all Pb(II) ions come in contact with the active sites of biomass and be eradicated from the aqueous solution. However, the driving force is much stronger at high concentration of ions so the quantity of Pb(II) ions adhere per unit weight of biomass is elevated. Further the TBP sorption sites become saturated at the higher concentration of metal ions causes decline in % removal. As a consequence, the TBP is quite efficient for the removal of low concentration of ions in the wastewaters. A similar trend is also observed in various earlier studies for removal of Pb(II) [35,42,43].

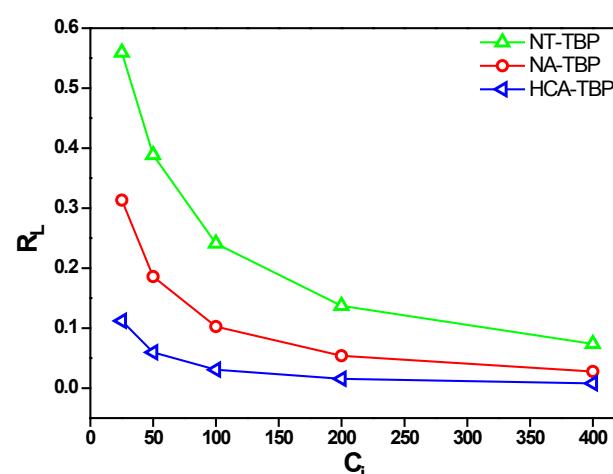
3.5 Evaluation of isothermal modeling

Adsorption isotherms signify the extent of attraction an adsorbent exhibits for a particular adsorbate and there application on data is important for the design of adsorption mechanism. The adsorption isotherms are explained by constant values, which defines adsorbate affinity and surface properties [44]. Numerous isotherm equations have been used for the adsorption modeling and in the present study, data obtained by isotherm experiments for Pb(II) by native and pretreated TBP are assessed by Langmuir, Freundlich and Temkin model equations. Langmuir model equation as drawn by Langmuir denotes homogeneous distribution of adsorption sites and monolayer adsorption [45]. The model is indicative of adsorbent's active sites saturation with negligible interaction among the adsorbed species. Freundlich model equation proposed by Freundlich focuses on heterogeneity of active sites and multilayer adsorption [46]. Temkin model equation demonstrated by Temkin and Pyzhev describes that adsorption heat of all species in a layer falls linearly by means of interaction between adsorbate and adsorbent [47]. This model also comprises a factor that explicitly considers only the interactions between adsorbent and adsorbate ignoring the very low and high values of concentrations [43]. The linear equations of Langmuir, Freundlich and Temkin are presented in Eqs. 3, 4, 5 respectively.

Figure 3: Effect of initial Pb(II) ions concentration on Pb(II) uptake by original and chemically pretreated TBP (A), Langmuir isotherm plot (B), Freundlich isotherms plot (C) and Temkin plot (D) for Pb(II) biosorption by original and chemically pretreated TBP.

$$\frac{C_e}{q} = \frac{1}{b_L q_m} + \frac{C_e}{q_m} \quad (3)$$

$$\log q = \log K_F + \log C_e^{1/n} \quad (4)$$


$$q = B \ln A_T + B \ln C_e \quad (5)$$

where C_e and q are the equilibrium concentration of Pb(II) in solution (mg L^{-1}) and on TBP (mg g^{-1}). q_m (mg g^{-1}) and b_L (L g^{-1}) are the Langmuir constants representing Pb(II) monolayer uptake capacity and Pb(II)-TBP equilibrium or apparent energy of adsorption. K_F (mg g^{-1}) and $1/n$ are the Freundlich constants indicating uptake capacity and heterogamous factor. In Eq. 5, B is a constant equal to RT/b , whereas A_T (L g^{-1}) and b (J mol^{-1}) are the Temkin constants relating to maximum binding energy and heat of adsorption. T is the absolute temperature in kelvin and R is gas constant having constant value of $8.314 \text{ J mol}^{-1} \text{ K}^{-1}$.

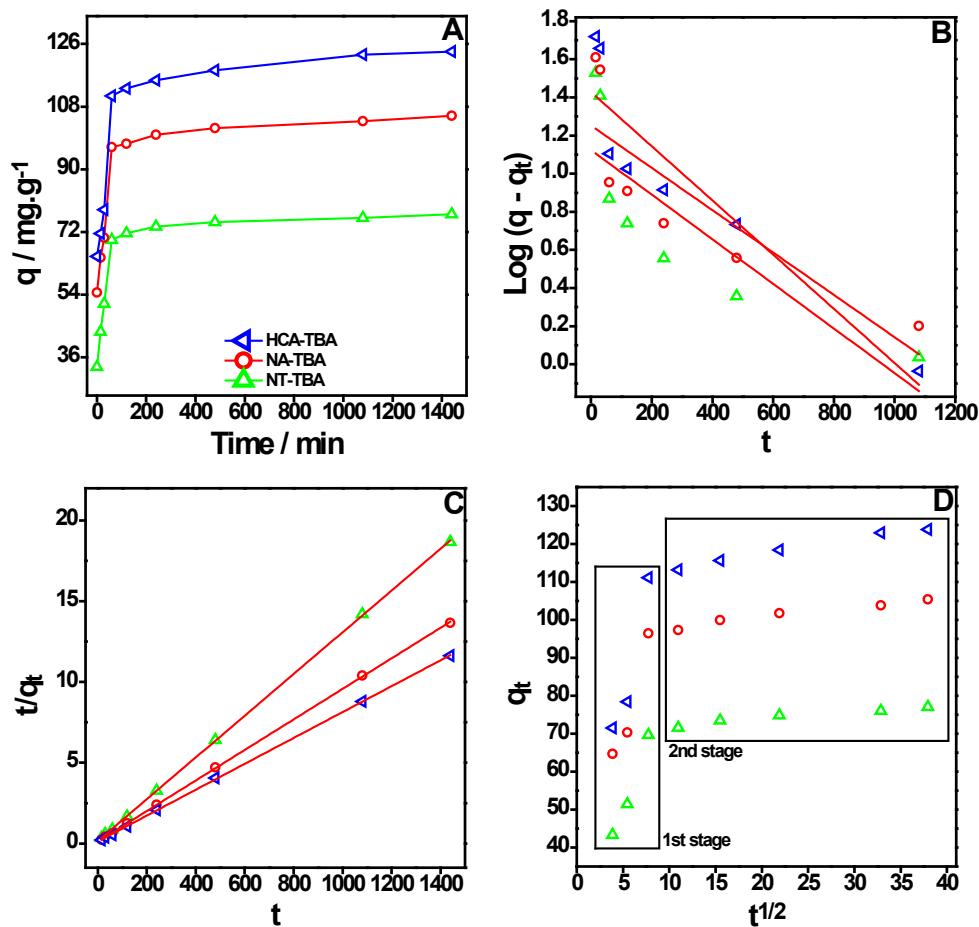
Langmuir, Freundlich and Temkin model constants and correlation coefficients (R^2) are calculated from the slopes and intercepts of plots C_e vs C_e/q (Figure 3B), $\log C_e$ vs $\log q$ (Figure 3C) and $\ln C_e$ vs q (Figure 3D) respectively and presented in Table 1. Examination of isothermal data reveals that Langmuir model appropriately is fitted to the present Pb(II) adsorption process showing higher R^2 values of 0.9928, 0.9947 and 0.9951 for NT-TBP, NA-TBP and HCA-TBP respectively and high degree of linearity, confirming monolayer adsorption. The theoretical monolayer uptake capacities (q_m) of NT-TBP, NA-TBP and HCA-TBP for Pb(II) are 115.21, 138.31 and 158.48 mg g^{-1} respectively and in close agreement with the experimental uptake capacities (q). Further investigation of isothermal data shows that Freundlich and Temkin models has lower R^2 values meaning these models are unsuitable for interpreting uptake of Pb(II) on NT-TBP, NA-TBP and HCA-TBP (Figure 3C and 3D).

Table 1: Adsorption isotherms parameters for adsorption of Pb(II) by original and chemically pretreated TBP.

Isotherms	Parameters	Adsorbents		
		NT-TBA	NA-TBA	HCA-TBA
Langmuir	R_L	0.2900	0.3400	0.9500
	b_L (L/g)	0.0315	0.0877	0.3166
	q_m (mg/g)	115.21	138.31	158.48
	R^2	0.9928	0.9947	0.9951
Freundlich	K_f (mg/g)	10.718	26.795	68.558
	n	2.3140	3.1752	6.7422
	R^2	0.8153	0.6629	0.4121
Temkin	A_T (L/mg)	0.6788	1.4367	18.665
	b (J/mol)	48.726	50.946	87.819
	R^2	0.9306	0.8588	0.6698
Experimental adsorption capacity	q (mg/g)	105.11	134.30	158.46

Figure 4: A plot between separation factor and initial Pb(II) concentration.

To authenticate whether the present Pb(II) uptake process is favorable or unfavorable, an equilibrium parameter or separation factor (R_L) is used which is stated in Eq. 6.


$$R_L = \frac{1}{C_i b_L + 1} \quad (6)$$

where b_L and C_i are the Langmuir constant and the initial metal concentration (mg L⁻¹). The R_L values lying within the range of 0–1 indicate favorable adsorption. The R_L

values for all TBP adsorbents calculated from Eq. 6 are well within 0–1 range which recognize a favorable feature for adsorption of Pb(II) on NT-TBP, NA-TBP and HCA-TBP. Graphical diagram of separation factor for adsorption of Pb(II) on NT-TBP, NA-TBP and HCA-TBP is presented in Figure 4.

3.6 Effect of contact time on Pb(II) uptake

The interaction time of sorbent with adsorbate is meaningful and the adsorption kinetic is valuable for optimization process and beneficial for a successful economical practical application [44]. Figure 5A shows the contact time influence on sorption of Pb(II) ions onto native and pretreated TBP, which is investigated by contacting 0.4 g of TBP with 100 mg L⁻¹ of Pb(II) solution having pH 5, agitating at 175 rpm. The data in Figure 5A confirms that the Pb(II) ions uptake capacity is increased rapidly with the contact time up to 30 min, then the biosorption rate becomes slower with gradual increase in uptake capacity and no further considerable biosorption is noted beyond 100 min. This behavior indicates that biosorption of Pb(II) is occurred in two stages. In the 1st stage sorption occurs rapidly because of availability of large surface area of TBP for the accumulation of Pb(II) ions (shorter period). In the 2nd stage the sorption process steady slow down as surface

Figure 5: Effect contact time on Pb(II) uptake by original and chemically pretreated TBP (A), pseudo first order plot (B), pseudo second order plot (C) and intraparticle diffusion plot (D) for Pb(II) biosorption by original and chemically pretreated TBP.

active sites of TBP gradually are occupied with Pb(II) ions (longer period) and continued until the equilibrium is established. The slower 2nd stage with low removal is because of metal ions penetration to the inner binding sites of the TBP by slower diffusion and with increasing time the intraparticle diffusion process dominating over adsorption. This trend is in agreement with other similar studies reported previously but shorter equilibrium time in our case compared to these studies [35,43].

3.7 Evaluation of kinetic modeling

In the present work the normal pseudo first and second order models, which define the efficiency characteristics, are used to describe adsorption kinetics. The pseudo first and second order equations are represented as [48, 49]:

$$\text{Log}(q - q_t) = \text{Log } q_e - k_1 t \quad (7)$$

$$\frac{t}{q_t} = \frac{1}{k_2 q_e^2} + \frac{t}{q_e} \quad (8)$$

where q and q_e are the experimental and theoretical equilibrium concentration (mg g^{-1}) of Pb(II) on TBP respectively. The k_1 and k_2 belongs to pseudo first and second order rate constant for sorption respectively.

The pseudo first and second order rate constant and correlation coefficients (R^2) are calculated from the slopes and intercepts of plots $\text{Log}(q - q_t)$ vs t (Figure 5B) and t/q_t vs t (Figure 5C) respectively. The kinetics of Pb adsorption is elucidated in Figure 5 (B, C) and the kinetic parameters originated from model interpretations are given in Table 2. The adsorption kinetics of Pb onto NT-TBP, NA-TBP and HCA-TBP shows superior fitting by the pseudo second-order model ($R^2 = 99.9\%$) than the pseudo first-order model ($R^2 = 63.5\text{--}82.0\%$). Further the values of q calculated based on pseudo second model are fitted well with corresponding q_e experimental. The adsorption of Pb by

Table 2: Adsorption kinetics parameters for adsorption of Pb(II) by original and chemically pretreated TBP.

Models	Parameters	Adsorbents		
		NT-TBA	NA-TBA	HCA-TBA
Experimental adsorption capacity	q (mg/g)	77.090	105.40	123.82
Pseudo first order	k_1 (1/min)	0.0027	0.0026	0.0033
	q_e (mg/g)	13.304	17.883	26.780
	R^2	0.6354	0.6488	0.8200
Pseudo second order	k_2 (g/mg.min)	0.0011	0.0008	0.0005
	q_e (mg/g)	77.399	105.71	124.69
	R^2	0.9999	0.9999	0.9999
Intraparticle diffusion	k_i (mg/g min ^{1/2})	0.7173	0.9094	1.1955
	C	54.955	76.951	86.504
	R^2	0.4470	0.4669	0.4973

pretreated TBPs could be divided into two processes. The fast process during initial 30 min reveals rapid adsorption of Pb(II) by NT-TBP, NA-TBP and HCA-TBP and the slower process after 30 min where the amount of Pb adsorption is steadily increased during the next 1200 mins. It is also demonstrated in Table 2 that the adsorption of Pb by both HCA-TBP and NA-TBP is faster than NT-TBP. This behavior could be due to more organic components contained in HCA-TBP and NA-TBP, which may be possible to interact with Pb rapidly. Due to chemical pretreatments, more groups in HCA-TBP and NA-TBP are exposed to the Pb adsorption, triggering to faster the adsorption kinetics. Among the three TBPs, HCA-TBP is proved to be very efficient for the adsorption of Pb with 123.82 mg g⁻¹ that is much higher than 105.40 and 77.09 mg g⁻¹ for NA-TBP and NT-TBP respectively.

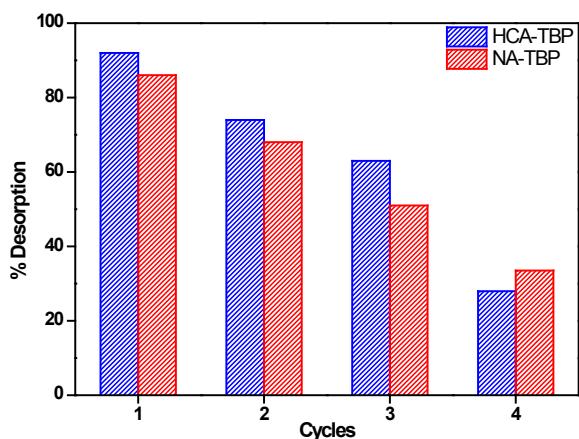
Weber-Morris intraparticle diffusion model is also verified for the assessment of adsorption mechanism that explains the diffusion mechanism and is represented by equation as [50]

$$q = k_i t^{1/2} + C \quad (9)$$

where k_i and C represents intraparticle diffusion rate constant and a constant related to boundary layer thickness respectively. The values of these parameters are estimated from the slope and intercept of q vs $t^{1/2}$ (Figure 5D). The statistics achieved for all TBP adsorbents

is given in Table 2. According to this model, straight line passing over the origin means adsorption by intraparticle diffusion only; otherwise, it is managed by a combination of other mechanisms alongside intraparticle diffusion. The curves in Figure 5D reveals that the plots of all TBP adsorbents show multi-linearity meaning Pb(II) adsorption onto TBP adsorbents occurs through a combination of bulk diffusion, film diffusion and intraparticle diffusion mechanisms. The constant C generally provides an indication about boundary layer thickness i.e. the higher C value related to larger the boundary effect. The results of this study are also consistent with the earlier reports for Pb(II) [35,43,44].

3.8 Thermodynamic modeling parameter


Thermodynamic consideration for adsorption process is needed to find out whether the process is spontaneous or non-spontaneous. ΔG° (change in Gibbs free energy, KJ mol⁻¹) elucidates the spontaneity of a system and Langmuir isotherm equation (Eq. 10) was adopted to estimate the thermodynamic parameters as follows:

$$\Delta G^\circ = -RT \ln K_C \quad (10)$$

where K_C , T and R stands for equilibrium constant (q/C_e), temperature (K) and gas constant (8.314 J mol⁻¹ K⁻¹). The

Table 3: Gibbs free energy values at different initial Pb(II) concentrations for original and chemically pretreated TBP adsorbents.

Gibbs free energy ΔG° (kJ mol ⁻¹)	[Pb(II)] mg L ⁻¹	Adsorbents		
		NT-TBA	NA-TBA	HCA-TBA
	25	-2.567	-5.267	-11.90
	50	-2.209	-6.470	-17.40
	100	-2.181	-5.629	-15.78
	200	0.815	-0.526	-1.615
	400	2.599	1.719	1.061

Figure 6: Desorption efficiency of HCA-TBP and NA-TBP in four cycles using 0.1 M EDTA.

negative values of ΔG° (Table 3) establish the feasibility and spontaneity of adsorption process for Pb(II) onto TBP biosorbents.

3.9 Adsorption/desorption cycles

Desorption analysis of metals are beneficial for the recovery of metal resources and recycling of adsorbents. Desorption is done to regenerate Pb(II) loaded TBP by eluting it with chelating agent (0.1 M EDTA). Figure 6 displays the results of the multiple adsorption/desorption cycles which reveal that 0.1 M EDTA is proved unsurpassed ability desorbing ~92 and 86% of adsorbed Pb(II) from the HCA-TBP and NA-TBP respectively in first cycle. Adsorption-desorption cycles are executed successfully for four times and Pb(II) adsorption capacity of HCA-TBP and NA-TBP is declined by 27.94 and 33.50% respectively after fourth cycle. Thus, it is feasible to recover Pb(II) and regenerate TBP, which would actually decrease the

overall cost for the adsorbents. The reason for the small fraction of non recoverable Pb(II) by desorption may be due to Pb(II) binding with HCA-TBP and NA-TBP through strong interaction and that may be the reason of declined desorption efficiency during successive cycles. For the more accurate reason of decrease in desorption efficiency, additional study is needed to understand whether EDTA delivers an ability to change the structure of the adsorbent.

4 Conclusions

Water pollution due to rapid industrialization is one of the major problems of Pakistan and all over the world. To cop up this problem, current study is described the removal of Pb(II) by TBP. TBP is pretreated with HClO_4 , HNO_3 and H_2O_2 and among all adsorbents, HClO_4 pretreated TBP shows the highest adsorption capacity towards Pb(II) which proves that pretreatment could play a vital role in enhancement of adsorption ability of adsorbents. All the TBP adsorbents show maximum sorption at pH 5.0. Kinetic is fast in first 15 to 30 min, having q (mg g⁻¹) 123.82, 105.40 and 77.09 for HCA-TBP, NA-TBP and NT-TBP respectively. These findings demonstrate that TBP is cost effective, efficient and novel adsorbent for removing Pb(II) from the aqueous solution.

Acknowledgements: The authors acknowledge the Department of Chemistry of University of Agriculture, Faisalabad, Pakistan and University of Gujarat, Gujarat, Pakistan for providing research facilities.

Conflict of interest: Authors state no conflict of interest.

References

- [1] Demirbas A., Heavy metal adsorption onto agro-based waste materials: a review, *J. Hazard. Mater.*, 2008, 157, 220-229.
- [2] Awwad A.M., Salem N.M., Biosorption of copper(II) and lead(II) ions from aqueous solutions by modified loquat (*Eriobotrya japonica*) leaves (MLL), *Journal of Chemical Engineering and Material Science*. 2012, 3, 7-17.
- [3] Vasaudevan P.V., Padmavathy V., Dhingra S.V., Kinetics of biosorption of baker's yeast, *Bioresource Technology*. 2003, 89, 281-287.
- [4] Ozer A., Removal of Pb(II) ions from aqueous solutions by sulphuric acid-treated wheat bran, *J. Hazard. Mater.*, 2007, 3, 753-761.
- [5] Zafar M.N., Abbas I., Nadeem R., Sheikh M.A., Ghauri M.A., Removal of Nickel onto Alkali Treated Rice Bran, *Water, Air, Soil Pollut.*, 2009, 197, 1573-2932.

- [6] Jalali R., Ghafourian H., Asef Y., Davarpanah S.J., Sepehr S., Removal and recovery of lead using nonliving biomass of marine algae, *J. Hazard. Mater.*, 2002, 92, 253-262.
- [7] Igura M., Okazaki M., Cadmium sorption characteristics of phosphorylated sago starch-extraction residue, *J. Hazard. Mater.*, 2010, 178, 686-692.
- [8] Zafar M.N., Parveen A., Nadeem R., A pretreated green biosorbent based on Neem leaves biomass for the removal of lead from wastewater, *Desalin. Water Treat.*, 2013, 51, 4459-4466.
- [9] Tunali A.S., Asli G., Burcu A., Zerrin K., Tamer A., Investigation of the biosorption characteristics of lead(II) ions onto *Symporicarpus albus*: Batch and dynamic flow studies, *J. Hazard. Mater.*, 2009, 165, 126-133.
- [10] Andreazza R., Pieniz S., Wolf L., Lee M.K., Camargo F.A.O., Okeke B.C., Characterization of copper bioreduction and biosorption by a highly copper resistant bacterium isolated from copper-contaminated vineyard soil, *Sci. Total Environ.*, 2010, 408, 1501-1507.
- [11] Zafar M.N., Nadeem R., Hanif M.A., Biosorption of nickel from protonated rice bran, *J. Hazard. Mater.*, 2007, 143, 478-485.
- [12] Sari A., Tuzen M., Uluozlu O.D., Soylak M., Biosorption of Pb(II) and Ni(II) from aqueous solution by lichen (*Cladonia furcata*) biomass, *Biochemical Engineering Journal*. 2007, 37, 151-158.
- [13] Gupta V.K., Pathania D., Agarwal S., Sharma S., Removal of Cr(VI) onto *Ficus carica* biosorbent from water, *Environ. Sci. Pollut. Res.*, 2013, 20, 2632-2644.
- [14] Oves M., Khan M.S., Zaidi A., Biosorption of heavy metals by *Bacillus thuringiensis* strain OSM29 originating from industrial effluent contaminated north Indian soil, *Saudi Journal of Biological Sciences*. 2013, 20, 121-129.
- [15] Ronda A., Martín-Lara M.A., Dionisio E., Blázquez G., Calero M., Effect of lead in biosorption of copper by almond shell, *J. Taiwan. Inst. Chem. Eng.*, 2013, 44, 466-473.
- [16] Wu Y., Wen Y., Zhou J., Cao J., Jin Y., Wu Y., Comparative and competitive adsorption of Cr(VI), As(III), and Ni(II) onto coconut charcoal, *Environ. Sci. Pollut. Res.*, 2013, 20, 2210-2219.
- [17] Yadav S., Srivastava V., Banerjee S., Gode F., Sharma Y.C., Studies on the removal of nickel from aqueous solutions using modified riverbed sand, *Environ. Sci. Pollut. Res.*, 2013, 20, 558-567.
- [18] Sujatha P., Kalarani V., Kumar B.N., Effective Biosorption of Nickel(II) from Aqueous Solutions Using *Trichoderma viride*, *Journal of Chemistry*. 2013, 2013, 1-7.
- [19] Singha B., Das S.K., Removal of Pb(II) ions from aqueous solution and industrial effluent using natural biosorbents, *Environmental Science and Pollution Research*. 2012, 19, 2212-2226.
- [20] Shroff K.A., Vaidya V.K., Effect of pre-treatments on the biosorption of Chromium (VI) ions by the dead biomass of *Rhizopus arrhizus*, *J. Chem. Technol. Biotechnol.*, 2012, 87, 294-304.
- [21] Puyen Z.M., Villagrassa E., Maldonado J., Diestra E., Esteve I., A. S., Biosorption of lead and copper by heavy-metal tolerant *Micrococcus luteus* DE2008, *Bioresour. Technol.*, 2012, 126, 233-237.
- [22] Çelebi H., Gök O., Evaluation of Lead Adsorption Kinetics and Isotherms from Aqueous Solution Using Natural Walnut Shell, *International Journal of Environmental Research*. 2017, 11, 83-90.
- [23] Omorogie M.O., Babalola J.O., Unuabonah E.I., Gong J.R., New facile benign agrogenic-nanoscale titania material—Remediation potential for toxic inorganic cations, *Journal of Water Process Engineering*. 2015, 5, 95-100.
- [24] Omorogie M.O., Babalola J.O., Unuabonah E.I., Gong J.R., Kinetics and thermodynamics of heavy metal ions sequestration onto novel *Nauclea diderrichii* seed biomass, *Bioresource Technology*. 2012, 118, 576-579.
- [25] Omorogie M.O., Babalola J.O., Unuabonah E.I., Gong J.R., Hybrid materials from agro-waste and nanoparticles: implications on the kinetics of the adsorption of inorganic pollutants, *Environmental Technology*. 2014, 35, 611-619.
- [26] Nacke H., Gonçalves Affonso C., Campagnolo Marcelo A., Coelho Gustavo F., Schwantes D., dos Santos Marcelo G., et al., Adsorption of Cu (II) and Zn (II) from water by *Jatropha curcas* L. as biosorbent, *Open Chemistry*. 2016, 14, 103-117.
- [27] Nemeş L., Bulgariu L., Optimization of process parameters for heavy metals biosorption onto mustard waste biomass, *Open Chemistry*. 2016, 14, 175-187.
- [28] Velkova Z.Y., Kirova G.K., Stoytcheva M.S., Gochev V.K., Biosorption of Congo Red and Methylene Blue by pretreated waste *Streptomyces fradiae* biomass – Equilibrium, kinetic and thermodynamic studies, *Journal of the Serbian Chemical Society*. 2018, 83, 107-120.
- [29] Saeed M., Nadeem R., Yousaf M., Removal of industrial pollutant (Reactive Orange 122 dye) using environment-friendly sorbent *Trapa bispinosa*'s peel and fruit, *International Journal of Environmental Science and Technology*. 2015, 12, 1223-1234.
- [30] Naseem Z., Bhatti H.N., Sadaf S., Noreen S., Ilyas S., Sorption of uranium(VI) by *Trapa bispinosa* from aqueous solution: effect of pretreatments and modeling studies, *Desalination and Water Treatment*. 2016, 57, 11121-11132.
- [31] Yousaf M., Nadeem R., Saeed M., Zahoor T., Fourier Transform Infrared (FTIR) Analysis of *Trapa bispinosa*: A Novel Adsorbent for the Removal of Cu (II) from Aqueous Solution in Chemically Treated Form, *Journal of the Chemical Society of Pakistan*. 2013, 35, 1474-1482.
- [32] Khan T.A., Nazir M., Khan E.A., Adsorptive removal of rhodamine B from textile wastewater using water chestnut (*Trapa natans* L.) peel: adsorption dynamics and kinetic studies, *Toxicological & Environmental Chemistry*. 2013, 95, 919-931.
- [33] Tulyathan V., Boondee K., Mahawanich T., Characteristics of starch from water chestnut (*Trapa bispinosa* ROXB.), *Journal of Food Biochemistry*. 2005, 29, 337-348.
- [34] Yan G.Y., Viraraghavan T., Effect of pretreatment on the bioadsorption of heavy metals on *Mucor rouxii*, *Water SA*. 2000, 26, 119-123.
- [35] Moyo M., Pakade V.E., Modise S.J., Biosorption of lead(II) by chemically modified *Mangifera indica* seed shells: Adsorbent preparation, characterization and performance assessment, *Process Safety and Environmental Protection*. 2017, 111, 40-51.
- [36] Mittelman M.W., Geesey G.G., Copper-binding characteristics of exopolymers from a freshwater-sediment bacterium, *Appl. Environ. Microbiol.*, 1985, 49, 846-851.
- [37] Dow J.M., Rubery P.H., Chemical fraction of the cell walls of mycelial and glycoprotein components, *J. Gen. Microbiol.*, 1977, 99, 29-41.

- [38] Bai R.S., Abraham T.E., Studies on enhancement of Cr(VI) biosorption bychemically modified biomass of *Rhizopus nigricans*, *Water Research*. 2002, 36, 1224-1236.
- [39] Sarwar K., Nadeem R., Fatima A., Nasar S., Subhan S., Atique M., Biosorption of Co(II) metal by original and KMnO₄ pretreated *Trapa natan* biopolymer, *Chemical Sciences Journal*. 2016, 7, 1000141.
- [40] Yu L.J., Shukla S.S., Dorris K.L., Shukla A., Margrave J.L., Adsorption of chromium from aqueous solutions by maple sawdust, *J. Hazard. Mater.*, 2003, 100, 53-63.
- [41] Wang F.Y., Wang H., Ma J.W., Adsorption of cadmium (II) ions from aqueous solution by a new low-cost adsorbent-Bamboo charcoal, *J. Hazard. Mater.*, 2010, 177, 300-306.
- [42] Nadeem R., Ansari T.M., Khalid A.M., Fourier Transform Infrared Spectroscopic characterization and optimization of Pb(II) biosorption by fish (*Labeo rohita*) scales, *J. Hazard. Mater.*, 2008, 156, 64-73.
- [43] Nadeem R., Manzoor Q., Iqbal M., Nisar J., Biosorption of Pb(II) onto immobilized and native *Mangifera indica* waste biomass, *Journal of Industrial and Engineering Chemistry*. 2016, 35, 185-194.
- [44] Basu M., Guha A.K., Ray L., Adsorption of Lead on Cucumber Peel, *Journal of Cleaner Production*. 2017, 151, 603-615.
- [45] Langmuir I., Adsorption of gases on plane surfaces of glass, mica and platinum, *J. Am. Chem. Soc.*, 1918, 40, 1361-1403.
- [46] Freundlich H., Adsorption in solutions, *J. Phys. Chem.*, 1906, 57, 384-410.
- [47] Temkin M.J., Pyzhev V., Recent modifications to Langmuir isotherms, *Acta Physiochim. USSR*. 1940, 12, 217-222.
- [48] Lagergren S., About the theory of so-called adsorption of soluble substances, *Kungliga Svenska Vetenskapsakad Handlningar*. 1898, 24, 1-39.
- [49] Ho Y.S., McKay G., Pseudo-second order model for sorption processes, *Process Biochem.*, 1999, 34, 451-465.
- [50] Weber W.J., Jr Morris J.C., Kinetics of adsorption on carbon from solution, *Journal of the Sanitary Engineering Division*. 1963, 89, 31-60.