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Abstract: The goal of this study was to assess the suitability 
of poultry wastewater for the irrigation of farmland soil as 
a possible substitute for regular water and fertilizers. The 
vertical and spatial variability of soil total nitrogen (STN), 
soil total phosphorus (STP) and soil organic carbon (SOC) 
was analyzed during the growing season of summer maize 
in two types of soil: an experimental group (EG) soil, 
irrigated once only with poultry wastewater, and a control 
group (CG) soil, irrigated once only with regular water. 
Results revealed no difference in STP concentration, SOC 
concentration, nitrogen storage and phosphorus storage 
between EG and CG soils (all p>0.05); STN concentration 
in the 5–15 cm layer and carbon storage were higher in EG 
soil (p<0.05) while remaining within safety limits. Overall, 
single-time irrigation by poultry wastewater enhances 
nitrogen and carbon content of soil and does not pose a 
serious risk of pollution for ground water.
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1  Introduction
Wastewater issued from livestock can be used (either 
treated or untreated) to irrigate fields in the place of 
regular water. This approach offers the advantage of 
saving water while reducing the use of fertilizers and the 
cost of wastewater treatment [1,2]. Wastewater irrigation 

is especially practiced in Northern China, where water 
shortage is a serious issue: Northern China hosts 45% of 
the total population and 65% of the total arable land with 
only 19% of water resources [3–6]. 

Livestock wastewater, although useful for irrigation, 
is potentially polluting as it is usually characterized by 
higher levels of suspended solid and ammonium nitrogen 
as well as lower concentrations of oxygen than regular 
wastewater (e.g., domestic wastewater and industrial 
wastewater). These components may alter the biochemical 
properties of soil and hence its fertility.

Farmland soil serves as a temporary sink of nitrogen, 
phosphorus and organic carbon, which constitute a 
nutritional source for crops. The soil is also a sink for 
atmospheric carbon as well as an important component 
of the global carbon stock [7,8]. Soil total nitrogen (STN), 
soil total phosphorus (STP) and soil organic carbon (SOC) 
play a significant role in determining soil fertility and 
crop productivity [9,10]. The distribution of nitrogen, 
phosphorus and carbon in farmland soil is affected by 
a number of factors, both internal (e.g., composition, 
topography, physical characteristics of soil) and external 
(e.g., fertilization, irrigation, straw and climate) [11,12]. 
Among these factors, the quality of irrigation water is the 
most crucial to determine the distribution of nutrients 
[13]. Therefore, the monitoring of STN, STP and SOC levels 
under wastewater irrigation provides a way to determine 
the impact of wastewater on soil [14–16]. 

Most studies have focused on the effect of livestock 
wastewater irrigation on soil quality and plant 
productivity [17–19], whereas fewer studies have evaluated 
the impact of poultry wastewater irrigation. This study 
analyzes the effect of poultry wastewater irrigation on the 
STN, STP and SOC levels in farmlands during the growing 
season of summer maize, to determine whether this 
type of irrigation is sustainable from an agricultural and 
environmental viewpoint. Poultry wastewater is expected 
to pose a lower risk of pollution for soil irrigation than 
livestock wastewater due to its lower nutritional content 
[20,21].
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2  Materials and methods

2.1  Experimental design

The study was carried out at the Mingren Science and 
Technology Demonstration Base for Poultry Waste Reuse 
and Disposal of Shandong Academy of Agricultural 
Science in Jinan, China (36°47′02′′ N, 117°00′24′′ E) from 
May to October 2015, during the growth period of summer 
maize. Mean annual precipitation was 669–685mm, with 
70–80% of the precipitation concentrated in July and 
August every year. Mean annual evaporation was 587 mm. 
The mean annual temperature was 13.8–14.7°C, and the 
frostless period about 211 days under monsoonal climate 
[22]. The soil was the sandy loamy soil type. The main 
cropping pattern in the experimental area was the winter 
wheat – summer maize rotation. Shallow tillage with straw 
return was widely applied. Both poultry wastewater and 
regular water were used for irrigation. Poultry wastewater 
was issued from a commercial farm producing laying 
hens. No medicines were used at any stage of animal’s 
life, except for Chinese herbal medicines which were used 
during the breeding period. 

Two field groups were used for experiments: the 
control group (CG), irrigated with groundwater, and 
the experimental group (EG), irrigated with poultry 
wastewater. Before experiments, both groups were only 
irrigated by groundwater and rain. Each group included 
three lots (10 m × 3 m each). Waterproof geotextiles (1.2 
m deep) were arranged between experimental lots. Both 
groups were irrigated once by groundwater and poultry 
wastewater during this study, respectively.

Each farmland was planted with 7.1×104 summer maize 
per hm2. The amounts of nitrogen, phosphorus pentoxide 
and potassium oxide supplied by fertilizers were 200 kg/
hm2, 120 kg/hm2 and 120 kg/hm2. Fertilizers were applied 
before sowing. Experimental farmlands in CG and EG were 
irrigated only once with 80 mm groundwater or poultry 
wastewater, respectively, during the jointing stage of 
maize. Pure nitrogen fertilizer (60 kg/hm2) was applied 
again during the heading stage. Each experiment was 
performed in triplicate.

2.2  Soil sampling and chemical analysis

In order to investigate the variation of nutrients in soil 
during the growing season of summer maize, soil samples 
were collected from CG and EG fields before sowing and 
fertilization (June 5) and at various stages of summer maize 
life cycle: the seeding stage (June 27), the jointing stage 

(July 25), the heading stage (August 26), the filling stage 
(September 16), and the mature stage (October 8). Five 
sampling sites were randomly selected in each plot. Soil 
samples were taken from four layers at various depth (0–5 
cm, 5–10 cm, 10–15 cm and 15–20 cm), placed in separate 
plastic bags, sent to laboratory, purified, air-dried, and 
passed through a 100-mesh sieve before analysis. The 
soil bulk density at each soil layer was measured with 
the ring sampler method. Soil moisture was calculated 
as the weight difference between wet and oven-dried 
soil. Soil pH was determined using a pH-meter with a 
soil-to-water ratio of 1:2.5. Soil total phosphorus (STP) 
concentration was measured by an ultraviolet-visible (UV–
Vis) spectrophotometer (UV-8000S, METASH, China) after 
H2SO4+HClO4 wet-digestion; the soil total nitrogen (STN) 
by the semimicro-Kjeldahl method; and the soil organic 
carbon (SOC) by potassium dichromate-external heating 
method [23]. Groundwater and poultry wastewater from 
broiler farms were used to irrigate two experimental 
farmlands. Chemical oxygen demand was evaluated by 
the potassium dichromate method; total nitrogen was 
measured by the test-in-tube alkaline persulfate digestion 
method. The persulfate digestion method and molybdate 
ammonium method were used for total phosphorus and 
phosphate phosphorus, respectively; Nessler’s reagent 
colorimetric method and the cadmium reduction method 
were used for ammonia nitrogen and nitrate nitrogen, 
respectively. A Piccolo pH meter (Hanna Instruments) was 
used to measure the pH of water samples.

2.3  Statistical analysis

The SPSS 16.0 statistical package was used to calculate 
mean values and standard errors of STN, STP, and SOC. 
Analysis of variance (ANOVA) was performed with soil 
depth and irrigation water as the main fixed factors. 
Comparison of the STN, STP and SOC contents and 
storages in different surface soil layers was also performed 
with one-way ANOVA as well as C/N and C/P ratios. Origin 
8.6 software was used to draw all figures.

3  Results 

3.1  Soil nutrients

At any stage, EG soil showed higher STN concentration 
than CG soil (0.9–1.5 g N/kg soil vs 0.6–1.2 g N/kg soil). 
The highest STN value was reached at the mature stage 
in CG soil and at the heading stage in EG soil. For any 
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given layer in both soils, STN values fluctuated over time. 
Surface layers (0–5 and 5–10 cm depth) showed higher 
STN levels than deep layers (10–15 and 15–20 cm depth) 
(Figure 1), although STN did not always decrease regularly 
with depth. 

STP concentrations did not significantly differ 
between CG and EG soils (p>0.05), indicating that the 
total concentration of phosphorous in the soil (0.3–0.8 
g·kg–1) was not altered by poultry wastewater irrigation 
(Figure 2). In both soils STP reached the maximum values 
at the seedling stage. After seedling stage, STP steadily 
decreased, then increased again at the final (mature) 
stage. Like STN, STP was maximum on the surface layers 
(0–5 and 5–10 cm depth).

Similarly to STP, SOC concentration was not significantly 
affected by poultry wastewater irrigation (comparable SOC 
values between CG and EG soils; Figure 3). 

Deep (10–15 and 15–20 cm) layers displayed 
significantly lower SOC than surface (0–5 cm and  
5–10 cm) layers.

3.2  C/N and C/P ratios

As shown in Figure 4, no significant difference in C/N ratio 
was found between the experimental groups at any soil 
depth (p>0.05). In CG soil, the maximum C/N ratio was 
observed at the jointing stage in the 10–15 cm layer; in EG 
soil, the maximum C/N ratio was observed at the heading 
stage in the 15–20 cm layer. However, in both soils C/N 
ratio was lower than 14.2 and the overall trend was a slight 
decrease in C/N ratio during the growth of summer maize. 

Conversely, the C/P ratio increased in both soils during 
the growth of summer maize (Figure 5). This observation 
may be explained by the fact that phosphorous was 
progressively absorbed by maize during the growth 
process. In both soils the C/P ratio remained essentially 
constant before the jointing stage, and increased to 
maximum (>20.0) after the jointing stage. In EG soil, the 
maximum C/P ratio was observed at the filling stage at 
all depths. In CG soil, the trend was less uniform as the 
maximum was observed at various stages depending on 
depth, and the ratio increased steadily until the mature 
stage at a 15–20 cm depth. 

Table 1: Mean values of the main irrigation water parameters in each group farmland.

Parameter pH dissolved 
oxygen/ 
(mg·L–1)

total nitrogen/
(mg·L–1)

ammonia 
nitrogen/
(mg·L–1)

nitrate
nitrogen/
(mg·L–1)

total 
phosphorus/
(mg·L–1)

phosphate
phosphorus/
(mg·L–1)

Poultry wastewater 7.96 314.2± 10.7 416.3± 12.5 285.1± 7.8 123.9± 5.7 33.5± 2.7 25.7± 2.1

Groundwater 6.86 40.1± 3.2 6.0± 0.9 3.57±0.6 0.59±0.08 0.51± 0.09 0.33± 0.04
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Figure 1: STN concentrations in the control group (CG) and the experimental group (EG) soils subject to poultry wastewater irrigation. 
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3.3  Nutrient storage 

CG and EG soils had comparable bulk density (1.31–1.33 
g cm–3 and 1.30–1.32 g cm–3, respectively). Over the maize 
growth cycle, EG soil stored a larger amount of nitrogen 
than CG soil (N storage = 0.21–0.27 kg m–2 vs 0.24–0.30 kg 
m–2; Figure 6). Phosphorus storage in CG soil increased 
first, then decreased; in EG soil, it followed the opposite 

trend. Nevertheless, there was no significant difference 
between the two soils in terms of P storage range (0.09–
0.20 kg m–2). Carbon (C) storage remained approximately 
constant with the growth of summer maize in both CG and 
EG soils. The two soils showed comparable change of C 
storage values, while C storage values in EG was greater 
than that in CG soil at any given stage (C storage = 2.02–
2.55 kg m–2 vs 2.27–2.62 kg m–2 kg m–2).
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Figure 2: STP concentrations in the control group (CG) and the experimental group (EG) soils subject to poultry wastewater irrigation.
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Figure 3: SOC concentrations in the control group (CG) and the experimental group (EG) soils subject to poultry wastewater irrigation.
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4  Discussion
The nutritional content in farmland soil is affected by 
many factors: not only irrigation but also rainfall and 
other agricultural practices (e.g., tillage, straw return, and 
fertilization) [24–26]. The results are discussed in the light 
of the above factors. 

4.1  Effect of poultry wastewater irrigation

Poultry wastewater used in the experiment contained 
higher concentrations of nitrogen (as ammonium, NH4

+, 
and nitrate, NO3

–), phosphorous (as orthophosphate, 
PO4

3–) and organic matter than livestock wastewater 
(Table 1) [18,27].

Under both groundwater and poultry wastewater 
irrigation, the highest STN, STP and SOC concentrations 
were found on the outer soil layers (0–10 cm depth), and 
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Figure 4: Temporal variation of C/N ratio in the control group (CG) and the experimental group (EG) soils subject to poultry wastewater irrigation. 
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Effect of poultry wastewater irrigation on nitrogen, phosphorus and carbon contents in farmland soil    973

decreased with soil depth, although not always with 
a regular trend. These results are in agreement with 
previous studies [28, 29]. 

In both soils STN levels remained approximately 
constant in time, presumably due to the balance of 
opposite effects: the supply of inorganic nitrogen by 
poultry wastewater and the action of nitrifying bacteria, 
which tend to increase STN; and the absorption of 
nitrogen by denitrifying bacteria and plants, which tend 
to decrease STN [30]. Although total nitrogen slightly 
accumulated on the 5–15 cm soil layer under wastewater 
irrigation, its concentration in the deep soil (15–20 cm 
layer) was lower than on surface, implying that single-
time irrigation by poultry wastewater during the maize 
growing season poses no risk of groundwater pollution. 

No significant difference in STP concentration 
was found between poultry wastewater irrigation and 
groundwater irrigation, despite the higher phosphorous 
concentration in wastewater. This result is in contrast 
with previous studies indicating that STP concentration 
increases significantly when applying irrigation by swine 
wastewater [31]. 

Measurements also indicate that irrigation by poultry 
wastewater, unlike that by livestock wastewater [32], does 
not cause phosphorous accumulation on soil surface. The 
observed difference may be due to the higher P level and 
longer application time of swine and livestock wastewater 
compared to poultry wastewater.

SOC levels were enhanced by poultry wastewater 
irrigation compared to groundwater irrigation. The 
increase in SOC under wastewater irrigation has been 
associated to a higher efficiency of nitrogen use [33], 
resulting into a crop yield increase of 50–150% [34].

The low (<14.2) C/N ratio indicates that the 
mineralization rate of organic nitrogen in soil is greater 
than the biological immobilization rate of soil mineral 
nitrogen [35–37], and therefore the concentration of 
inorganic nitrogen in soil is sufficient for maize.  The 
decreasing trend in C/N ratio, i.e., an increase in carbon 
content with respect to nitrogen in time, suggests an 
increase in the decomposition rate of organic matter 
during maize growth.

The high (>20.0) C/P ratios observed in both soils after 
the heading stage may be due to a higher absorption rate 
of phosphorous by plants in the late growth stages, or to 
the competition of soil microbes with soil for inorganic 
phosphorus, or both [38].

4.2  Effect of rainfall

Although both groups were only irrigated once during the 
growth season of summer maize (with poultry wastewater 
and groundwater, respectively), rainy season occurred 
between July and September, leading to the phenomenon 
of soil drying and rewetting. This process affects the 
physical, chemical, and biological properties of soil in 
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several ways: 1) it modifies soil aggregation, porosity, 
and moisture [39–42]; 2) it reinforces the mineralization 
of nitrogen, phosphorous and carbon [43]; 3) it usually 
increases nitrogen absorption, although the amount of 
nitrogen absorbed by maize under sewage irrigation is 
lower than that under freshwater irrigation [44]; and 4) 
it favors the transformation of microbe macro-aggregates 
into stable micro-aggregates rather than primary particles 
[45,46]. 

4.3  Effect of agricultural practices

Agricultural practices such as tillage, straw return, and 
fertilization are often used to improve soil quality to grow 
crops. These factors, like irrigation, are responsible for the 
alteration of nitrogen, phosphorous, and organic carbon 
in the soil [47–50]. 

Tillage has positive and negative effects on soil. On 
one side, it aerates the soil, favoring the decomposition of 
organic matter and the activity of aerobic microorganisms; 
it dries the soil, facilitating planting the crop; it helps mix 
humus into the soil; and mechanically destroys weeds. On 
the other side, tillage decreases soil ability to store water, 
and causes the runoff of nutrients to deep soil layers, 
leaving the surface soil devoid of such components and 
causing eutrophication [51]. 

To counteract the loss of nutrients, tillage is often 
combined with straw return [52]. Straw is able to absorb 
and retain both organic and inorganic components with 
a double benefit: an increase in nutrient levels on the 
top layer of soil and a decrease in polluting substances 
runoff like fertilizers, which would otherwise end up 
in groundwater [53]. Previous studies have indicated 
that shallow tillage, in combination with straw return, 
leads to higher levels of STN, STP and SOC in the soil 
than conventional tillage without straw return [50,54]. 
In addition to increasing soil fertility, straw return can 
increase soil porosity, reduce soil bulk density, adjust 
the earth temperature, enhance soil water preservation, 
improve the activity of soil microbes and enzyme and 
enhance the efficacy of fertilizers [55–58], especially on 
the long term [59]. This nutrient-enhancing effect of straw 
return has also been observed in dry lands allocated to 
summer maize [60]. 

Fertilization is a simple and rapid method to increase 
the nutrients content in farmland soil on the short term [61]; 
however, it may cause soil acidification and decrease soil 
productivity on the long term [62]. Nitrogen fertilization 
supplies inorganic nitrogen, which is readily incorporated 
by plants. Part of inorganic nitrogen is also converted 

into nitrogen gas by denitrifying bacteria and returned to 
atmosphere, thus becoming unavailable to plants [63,64]. 
Phosphorous fertilization is mostly beneficial after the 
seeding stage, when phosphorous absorption by plants 
is the maximum [65]. On the long-term, the maximum P 
adsorption capacity of soil decreases, whereas the degree 
of P sorption by plants increases [54]. Organic fertilizers 
are a source of both organic nitrogen and carbon. Organic 
nitrogen is converted into inorganic nitrogen (nitrites and 
nitrates) by nitrifying bacteria [67,68]. Organic fertilization, 
although useful, can result into reduced soil porosity, 
reduced air and water permeability, soil hardening and 
eventually poor soil quality [69–72]. 

5  Conclusions
In conclusion, single-time poultry wastewater irrigation 
during the growth season of maize has the following 
effects on soil:
1.	 It increases the nitrogen concentration both on 

surface and in depth without affecting nitrogen 
storage; however, N levels remain within safety limits;

2.	 It has no effect on the concentration and storage of 
phosphorous;

3.	 It favors the decomposition of organic matter, increa-
sing soil C storage. 

Overall, single application of poultry wastewater in soil 
irrigation poses no pollution risk for groundwater.  

Further studies with multiple-time applications 
are necessary to evaluate the long-term effect of poultry 
wastewater irrigation on soil quality and agricultural 
productivity, and eventually determine whether poultry 
wastewater can be safely used for irrigation on a regular 
basis. 
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