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Abstract: In this work, the O,O’-dithiophosphate derivatives 
of S-4-methylbenzyl-O,O’-di(phenyl) dithiophosphate 
(Inhi-Ph) and S-4-methyl benzyl-O,O’-di(4-bromophenyl)
dithiophosphate (Inhi-BrPh) were synthesized and 
characterized by elemental analysis, FT-IR, 1H, 13C and 31P 
NMR. Meanwhile, the corrosion inhibition of Q235 steel 
in HCl solution by synthesized inhibitors was evaluated 
by weight loss and electrochemical measurements. 
Measurement results indicate that the two inhibitors 
of Inhi-Ph and Inhi-BrPh are mixed-type inhibitor, the 
inhibition efficiency increase with inhibitor concentration 
increasing, decrease with HCl concentration and 
temperature increasing. The adsorption of Inhi-Ph and 
Inhi-BrPh on Q235 steel surface obeys Langmuir isotherm, 
which belongs to chemical adsorption. 

Keywords: Dithiophosphate; Inhibitor; Electrochemical; 
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1 Introduction
It is well known that the use of inhibitor is one of the 
most practical and simple methods to protect metals 
containing alloys against corrosion, especially under the 
acidic environment for cleaning, chemical decaling and 
pickling in various fields [1-3]. In past decade, a number 
of organic compounds have been reported as corrosion 
inhibitor in acid media. As everyone knows that most of 
the effective corrosion inhibitors are organic compounds, 
in their molecular structure, which often contain the 
electronegative atoms including N, S, P and O atoms, 
unsaturated bonds and the plane conjugated systems 
[4-6]. The corrosion inhibition of the reported organic 
inhibitors is mainly because of physical, chemical or 
the mixed adsorption involving both physisorption and 
chemisorption resulting from the interaction of polar 
centers of the inhibitor’s molecule with active sites on 
metal surface. As a fact, the O,O’-diaryldithiophosphates 
can act as the potential effective inhibitors for metals 
protecting resulting from their molecular structure 
containing P, S and O atoms. The dialkyldithiophosphates 
and their derivatives are versatile compounds, which 
usually can be used as the anti-oxidants, insecticides, 
flotation reagents and additives to lubricating oils [7-8]. 
Based on our previous works [9-11], the ammonium salts of 
O,O’-dialkyldithiophosphoric acid as the ionic compounds 
acting as the corrosion inhibitors were studied and 
reported in recent years. However, there are few reports 
about the covalence compounds of S-4-methylbenzyl-
O,O’- di(phenyl)dithiophosphate (Inhi-Ph) and S-4-
methylbenzyl-O,O’-di(4-bromophenyl)dithiophos-phate 
(Inhi-BrPh) as the new excellent corrosion inhibitors.

Therefore, the aim of the present work is to develop the 
new potential effective corrosion inhibitor and evaluate the 
performance of corrosion inhibition. After the covalence 
compounds of Inhi-Ph and Inhi-BrPh synthesized and 
characterized by elemental analysis, FT-IR, 1H, 13C and 31P 
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NMR. The corrosion inhibition of Q235 steel in HCl solution 
by Inhi-Ph and Inhi-BrPh were evaluated by weight loss 
and electrochemical measurements.

2 Materials and methods

2.1 Materials

In this study, all the chemical reagents and solvents 
involving toluene, acetone, hydrochloric acid (37%, 
HCl), phosphorus pentasulphide (P2S5), 4-bromophenyl 
(4-BrPhOH), phenol (PhOH), dichloromethane (CH2Cl2),  
4-methylbenzyl chloride (4-MePhCH2Cl), diethylamine 
(NHEt2) and sodium sulfate (Na2SO4) were purchased 
from Sinopharm Chemical Reagent Co., Ltd, which were 
commercially available and analytically pure. 

The target synthesized inhibitors were characterized 
by elemental analysis (Carlo Erba 1106 instrument, Italy), 
FT-IR (Nicolet- 6700 FT-IR spectrometer, USA), NMR (1H, 
13C and 31P, Bruker-500 NMR spectrometer, Germany). 
Meanwhile, the electrochemical measurements using to 
evaluate the performance of corrosion inhibition were 
employed by CHI 660D electrochemical workstation 
(China). The working electrode and test specimens in 
present work were prepared by Q235 steel. Electrochemical 
measurements were conducted by conventional three-
electrode system consisting of Q235 steel working electrode 
with an exposed area in 0.785 cm2, a counter graphite 
electrode and a saturated calomel reference electrode 
(SCE). All of specimens with sizes of 5 mm×20 mm×50 mm 
were used by weight loss measurement.

In addition, the different concentrations of HCl 
solutions as testing solution were prepared by HCl (37%) 
and deionized water. During the whole testing process, 
temperature of solution was controlled by the water 
thermostat (DF-101S, China), and all the experiments were 
carried out under static conditions and open to the air.

2.2 Synthesis

In order to prepare the target inhibitors of S-4-
methylbenzyl-O,O’-di(phenyl) dithiophosphate (Inhi-
Ph) and S-4-methylbenzyl-O,O’-di(4-bromophenyl)
dithiophosphate (Inhi-BrPh), the starting compounds 
of O,O’-dithiophosphoric acid ammonium salt 
((RO)2PS2NH2Et2) were synthesized  by reaction of P2S5, 
ROH (R=4-BrPh and Ph) with NHEt2 in toluene based on 
reported methods [9,10,11]. After (RO)2PS2NH2Et2 prepared, 

the inhibitors of Inhi-Ph and Inhi-BrPh were synthesized in 
the following same procedure. Firstly, (4-BrPhO)2PS2NH2Et2 
and (PhO)2PS2NH2Et2 (10 mmoL) were dissolved in CH2Cl2 

(60 mL) at room temperature, respectively, with that the 
4-methylbenzyl chloride (10.2 mmoL) was added in the 
solution over a period of 30 min, and the mixture was 
stirred about 12 h. Afterwards, the solvent was removed 
under vacuum, and the residue was then taken up in 100 
mL of H2O/CH2Cl2 solution (1:1 v/v). The organic phase was 
separated and washed with 6×100 mL of H2O, and dried 
over Na2SO4. The organic phase was purified by column 
chromatography (1:l CH2Cl2/hexane) to obtain Inhi-Ph and 
Inhi-BrPh. After that, the target synthesized compounds 
were characterized by different technologies including 
elemental analysis, FT-IR, 1H, 13C and 31P NMR.

2.3 Weight loss measurement 

In present work, the weight loss measurement was used to 
study the corrosion inhibition of Q235 steel in HCl solution 
by Inhi-Ph and Inhi-BrPh. Before measurement, all of 
specimens were mechanically abraded with emery paper 
up to 1200 grit, rinsed with distilled water, degreased in 
acetone, and then dried at room temperature. The finely 
polished and dried Q235 steel samples were weighed on 
a digital balance with 1 mg sensitivity and immersed in 
HCl solution in the absence and presence of synthesized 
inhibitors at various temperatures for 12 h. After 
immersing, the tests samples were rinsed with distilled 
water, cleaned with acetone, dried and reweighed. The 
weight loss was calculated as the difference in weight of 
the sample before and after immersion in test solutions. 
Based on this method, at least three closer results were 
considered, and their average values have been reported. 
The corrosion rate (v, g m-2 h-1) and the corresponding 
inhibition efficiency (ηW (%)) were obtained by Equation 1 
and 2 [10,12], respectively.
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where m1 and m2 are the mass of the test specimens before 
and after testing, ∆m is average weight loss, S is the total 
surface area of the test specimen, t is the immersion time, 
v0 and v are corrosion rate of the test specimens corrosion 
in HCl solution without and with different concentrations 
of Inhi-Ph and Inhi-BrPh.
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2.4 Electrochemical measurements

Electrochemical measurements including potentiodynamic 
polarization (Tafel) measurement and electrochemical 
impedance spectroscopy (EIS) were conducted by 
conventional three- electrode system, and all potential in 
this study were referred to the saturated calomel electrode 
(SCE). Before electrochemical measurements, the working 
electrode was immersed in test solution at open circuit 
potential (OCP) for 30 min to be sufficient to attain a stable 
state.

The potential sweep rate for Tafel curves was 0.5 mV 
s-1. Corrosion current density (icorr) was determined from 
the intercept of extrapolated cathodic and anodic Tafel 
lines at the corrosion potential (Ecorr). The corresponding 
inhibition efficiency (ηP(%)) based on Tafel curves were 
calculated according to Equation 3 [9, 13]:
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3 Results and discussion

3.1 Characterization

In order to confirm the molecular structure of target 
synthesized corrosion inhibitors, the different technologies 
including elemental analysis, FT-IR, 1H, 13C and 31P NMR 
were employed to analyze the chemical structural of 
Inhi-Ph and Inhi-BrPh. The characterization results were 

presented in Table 1 (elemental analysis), Table 2 and 
Figure 1 (FT-IR), Table 3 (1H, 13C and 31P NMR), respectively. 

From Table 1, according to the results of elemental 
analysis, the calculated and observed elemental analysis 
data for the synthesized inhibitors are in good agreement 
and fit well the structure of Inhi-Ph and Inhi-BrPh showing 
in Figure 2. Meanwhile, the FT-IR, 1H, 13C and 31P NMR 
results were further confirmed that the target chemical 
structures are also in good agreement the Inhi-Ph and 
Inhi-BrPh structure showing in Figure 2.

3.2 Weight loss measurement

The effect of inhibitors concentration on the corresponding 
inhibition efficiency (ηW(%)) for Q235 steel in 1.0 M HCl 
at 30°C from weight loss measurement was exhibited in 
Figure 3. From this figure, it can be found that the inhibition 
efficiencies increase with concentration of Inhi-Ph and 
Inhi-BrPh increasing, when the concentration of inhibitor 
increase to 60 mg L-1, the inhibition efficiency change 
slightly with inhibitor concentration further increase. This 
is due to the surface coverage of the inhibitors on Q235 steel 
surface increase with inhibitors concentration increasing. 
The results also show that the inhibition efficiency for Inhi-

Table 1: Elemental analysis of Inhi-Ph and Inhi-BrPh.

Inhibitor Molecular 
formula

Anal. Calcd Anal. Found

C(%) H(%) S(%) C(%) H(%) S(%)
Inhi-Ph C20H19O2PS2 62.16 4.96 16.59 62.15 4.98 16.56

Inhi-BrPh C20H17O2PS2Br2 44.14 3.15 29.36 44.15 3.14 29.35
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Figure 1: Infrared spectra of Inhi-Ph and Inhi-BrPh. 

 

Table 2: Infrared spectra data of Inhi-Ph and Inhi-BrPh (cm-1). 

Inhibitor  (=C-H)  (C=C)  ((P)-O-C)  (P-O-(C))  (S-C) asym (PS2) sym (PS2) 
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898.7(s) 
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780.3(s) 

469.4(m) 

512.2(s) 

580.7(m) 

Inhi-BrPh 3039.5(w) 

1480.9(s) 

1514.8(w) 

1581(w) 

1160.8(m) 

1189.6(s) 

1203.6(s) 

907.4(s) 

934.8(s) 

1010.5(m) 

1066.6(m) 

827.2(s) 

684.7(s) 

757.4(m) 

773.4(m) 

477.7(m) 

534.3(m) 

605.1(m) 

w=weak, s=strong, m=medium. 
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Inhibitor 1H NMR 13CNMR 31PNMR 

Inhi-Ph 
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s=singlet, d=doublet, t=triplet, q=quartet. 

 

Figure 1: Infrared spectra of Inhi-Ph and Inhi-BrPh.
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Ph higher than the inhibition efficiency for Inhi-BrPh. The 
difference in corrosion inhibition is due to the bromine 
atom as electron drawing group lead to the decrease in 
the electron density of benzene rings. The decrease in the 
electron density of benzene rings will weaken the adsorption 
between benzene rings and Q235 steel surface, and leading 
to the decrease of the corrosion inhibition performance. 
With the concentration of Inhi-Ph and Inhi-BrPh increase 
to 100 mg L-1, the inhibition efficiencies are 92.05% and 
73.98%, which further demonstrate that the inhibitor of 
Inhi-Ph can act as an effective corrosion inhibitor for Q235 
steel in 1.0 M HCl. The inhibition behavior of Q235 steel by 
Inhi-Ph and Inhi-BrPh in HCl solution can be attributed to 
the adsorption of components on Q235 steel surface, which 
retards the dissolution of Q235 steel by blocking its active 
corrosion sites.

3.3 Potentiodynamic polarization 
measurement

At 30 °C, all polarization curves of Q235 steel in 1.0 M HCl 
with different concentrations of Inhi-Ph and Inhi-BrPh 
obtained from potentiodynamic polarization measurement 
were shown in Figure 4 (a) and (b), respectively. Based on 
this measurement, the electrochemical parameters for Q235 
steel corrosion in 1.0 M HCl with different concentrations 
of Inhi-Ph and Inhi-BrPh including corrosion potential 
Ecorr (mV, vs SCE), corrosion current density Icorr (μA cm-2), 

Table 2: Infrared spectra data of Inhi-Ph and Inhi-BrPh (cm-1).
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Table 3: 1H, 13C and 31P NMR spectra data of Inhi-Ph and Inhi-BrPh.

Inhibitor 1H NMR 13CNMR 31PNMR

Inhi-Ph 2.41 (s, 3H, CH3), 4.30 (dd, J =15.22, 3.96 
Hz, 2H, SCH2), 7.17 -7.44 (m, 14H, 3Ph-H)

21.25 (SCH2), 38.91 (CH3), 121.68, 121.71, 125.77, 
129.66, 133.12, 137.71, 150.66 (Ph-C, MeC6H4)

89.38 (t, J=15.22 Hz)

Inhi-BrPh 2.38 (s, 3H, CH3), 4.23 (d, J =17.46Hz, 2H, 
SCH2), 7.08-7.21 (m, 8H, BrC6H4), 7.46-7.48 
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Figure 2: Chemical structures of Inhi-Ph and Inhi-BrPh.
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Figure 3: The effect of inhibitors concentration on inhibition efficiency for Q235 steel in 1.0 M 

HCl at 30°C from weight loss measurement. 
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Figure 3: The effect of inhibitors concentration on inhibition 
efficiency for Q235 steel in 1.0 M HCl at 30°C from weight loss 
measurement.
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cathodic and anodic Tafel slopes bc and ba (mV dec-1) and 
the corresponding inhibition efficiency (ηP(%)) were listed 
in Table 4. 

According to Figure 4 (a), (b) and Table 4, it can be 
found that both the anodic and cathodic curves shift to 
lower current densities after addition of inhibitor in 1.0 
M HCl, which indicate both Inhi-Ph and Inhi-BrPh can 
reduce the Q235 steel anodic dissolution and retard the 
hydrogen ion reduction. The inhibition effect enhances 
with the increase of Inhi-Ph and Inhi-BrPh concentration, 
resulting from the adsorption of inhibitors on the Q235 
steel electrode surface. The possible mechanism is the 
adsorption of the inhibitors on Q235 steel surface through 
the electron pair of heteroatoms (S and O), and the π 
electron of benzene rings in the molecular structure of 
Inhi-Ph and Inhi-BrPh, which can block the Q235 steel 
surface and reduces the corrosive attraction of Q235 steel 
in HCl media.

Apparently, according to Table 4, the corrosion 
current density is much smaller in the presence of Inhi-Ph 
and Inhi-BrPh comparing with that in the absence of Inhi-
Ph and Inhi-BrPh for Q235 steel in 1.0 M HCl, and which 
decreases with inhibitors concentration increasing. The 
inhibition efficiency increase with inhibitors concentration 
increasing is due to the increase of the blocked fraction of 
the Q235 steel electrode surface by adsorption. With Inhi-
Ph and Inhi-BrPh concentration increase to 60 mg L-1, the 
inhibition efficiencies are 94.63% and 75.86%, this result 
also reveal that the Inhi-Ph can act as good corrosion 
inhibitor for Q235 steel in 1.0 M HCl, and the performance 
of corrosion inhibition for Q235 steel in 1.0 M HCl by Inhi-
BrPh lower than it by Inhi-Ph.

In addition, based on potentiodynamic polarization 
measurement, the corrosion inhibitor can be classified as 
cathodic or anodic type if the displacement in corrosion 
potential is more than 85 mV with respect to corrosion 
potential of the HCl blank solution [15-16]. According 
to the polarization curves showing in Figure 4 and the 
polarization parameters listing in Table 4, it can be found 
that the corrosion potentials shift slightly in the negative 
direction. All corrosion potential of Q235 steel in 1.0 M HCl 
with Inhi-Ph and Inhi-BrPh at 30°C K shift less than 85 mV, 
which indicate that the Inhi-Ph and Inhi-BrPh are mixed-
type inhibitor.

3.4 Electrochemical impedance spectroscopy

Figure 5 (a) and (b) show the Nyquist diagrams of Q235 
steel in 1.0 M HCl with various concentrations of Inhi-Ph 
and Inhi-BrPh at 30°C from electrochemical impedance 

spectroscopy (EIS) based on the equivalent circuit mode 
showing in Figure 6. The double layer capacitance (Cdl), 
charge transfer resistance (Rct) and the corresponding 
inhibition efficiency (ηE(%)) obtained from EIS were 
listed in Table 5. From Figure 5 (a) and (b), it can be found 
that all the Nyquist plots show a single capacitive loop, 
in both uninhibited (HCl blank solution) and inhibited 
(HCl with Inhi-Ph and Inhi-BrPh) solutions, which is 
attributed to the charge transfer of corrosion process. The 
impedance spectra show that the single semicircle and 
the diameter of semicircle increase with the concentration 
of the inhibitors. According to Table 5, it reveals that the 
charge transfer resistance increase and the double layer 
capacitance decease with the concentration of inhibitors 
increasing. The decrease of double layer capacitance may 
be due to the decrease of the local dielectric constant or 
the increase of the thickness of the electrical double layer, 
indicating that the inhibitors adsorbed on the Q235 steel 
surface. The increase of charge transfer resistance can 
be attributed to the formation of protective film on the 
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Figure 4: Polarization curves of Q235 steel in 1.0 M HCl solution with different concentrations of 

Inhi-Ph(a) and Inhi-BrPh (b) at 30°C. 

 

Table 4: The polarization parameters and the corresponding inhibition efficiency of Q235 steel in 

1.0 M HCl with different concentrations of Inhi-Ph and Inhi-BrPh at 30°C. 

Inhibitor 
C 

 (mg L-1) 

Ecorr 

 (mV) 

Icorr 

(μA cm-2) 

ba 

( mV dec-1) 

bc 

( mV dec-1) 

ηP 

(%) 

Blank solution 0 -494 1714.65 151.56 153.37 - 

Inhi-Ph 20 -460 371.05 163.13 144.09 78.36 
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Figure 4: Polarization curves of Q235 steel in 1.0 M HCl solution with different concentrations of 

Inhi-Ph(a) and Inhi-BrPh (b) at 30°C. 

 

Table 4: The polarization parameters and the corresponding inhibition efficiency of Q235 steel in 
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Figure 4: Polarization curves of Q235 steel in 1.0 M HCl solution with 
different concentrations of Inhi-Ph(a) and Inhi-BrPh (b) at 30°C.
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Q235 steel/solution interface. The inhibition effi  ciencies 
recorded by EIS are 81.79% and 73.71% for Q235 steel 
in 1.0 M HCl with 60 mg L-1 Inhi-Ph and Inhi-BrPh. This 
results obtained from EIS are in good agreement with the 
results obtained from weight loss and potentiodynamic 
polarization measurement.

3.5 Adsorption isotherm

The adsorption isotherm can be used to analyze the 
interaction of the Inhi-Ph and Inhi-BrPh on Q235 steel 
surface. Usually, both the physisorption and chemisorption 
as two main types of interaction are used to describe the 
adsorption of inhibitor molecules on metal surface. 
In order to confi rm the reasonable adsorption isotherm 
for Inhi-Ph and Inhi-BrPh on Q235 steel surface in HCl 
solution, various isotherms including Frumkin, Flory–
Huggins, Temkin and Langmuir adsorption isotherms are 
employed based on the data of weight loss measurement 
according to Figure 3. Fitting results reveal that the 
adsorption of Inhi-Ph and Inhi-BrPh on Q235 steel surface 
obey Langmuir adsorption isotherm (Equation 5)[10,11]:
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where v0 and v are corrosion rate of the Q235 steel in HCl solution without and with different 

concentrations of Inhi-Ph and Inhi-BrPh. 

The plots of C/θ versus C yield the straight lines shown in Figure 7. While the strong 
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where R=8.314 J K-1 mol-1 is the gas constant, T is absolute temperature (K) and 55.5 is the molar 

concentration of water in the solution expressed in molarity units (mol L-1).  

 (5)

where C is the concentration of Inhi-Ph and Inhi-BrPh, 
Kads is the adsorption equilibrium constant and θ is the 
surface coverage. The surface coverage (θ) for diff erent 
concentrations of Inhi-Ph and Inhi-BrPh in 1.0 M HCl is 
obtained based on the following equation by weight loss 
measurement:
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 (6)

where v0 and v are corrosion rate of the Q235 steel in HCl 
solution without and with diff erent concentrations of Inhi-
Ph and Inhi-BrPh.

Table 4: The polarization parameters and the corresponding inhibition effi  ciency of Q235 steel in 1.0 M HCl with diff erent concentrations of 
Inhi-Ph and Inhi-BrPh at 30°C.

Inhibitor C
 (mg L-1)

Ecorr

 (mV)
Icorr

(μA cm-2)
ba

( mV dec-1)
bc

( mV dec-1)
ηP

(%)
Blank solution 0 -494 1714.65 151.56 153.37 -
Inhi-Ph 20 -460 371.05 163.13 144.09 78.36

40 -456 234.74 124.07 115.87 86.31
60 -449 92.08 83.89 103.84 94.63

Inhi-BrPh 20 -477 770.05 139.66 121.65 55.09
40 -482 577.67 103.09 98.43 66.31
60 -473 438.03 82.19 83.69 74.45
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Figure 5: Nyquist diagrams of Q235 steel in 1.0 M HCl solution with different concentrations of 

Inhi-Ph (a) and Inhi-BrPh (b) at 30°C. 

 

Figure 6: Equivalent circuit mode. 

 

Table 5: The electrochemical parameters of impedance and the corresponding inhibition efficiency 

of Q235 steel in 1.0 M HCl with various concentration of Inhi-Ph and Inhi-BrPh at 30°C.  

Inhibitor C (mg L-1) Rp (Ω cm-2) Cdl (μF cm-2) ηE (%) 

Blank solution 0 25.44 78.36 ― 

Inhi-Ph 

20 86.53 20.43 70.60 

40 92.89 19.48 72.61 

60 139.7 10.14 81.79 

Inhi-BrPh 

20 57.75 60.02 55.95 

40 76.02 38.59 66.54 

60 96.77 25.37 73.71 
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Figure 5: Nyquist diagrams of Q235 steel in 1.0 M HCl solution with 
diff erent concentrations of Inhi-Ph (a) and Inhi-BrPh (b) at 30°C.
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The plots of C/θ versus C yield the straight lines shown 
in Figure 7. While the strong correlation (R2>0.9959) 
suggest that the adsorption of Inhi-Ph and Inhi-BrPh on 
Q235 steel surface in 1.0 M HCl obey Langmuir adsorption 
isotherm. The standard free energy of adsorption ( ) 
can be determined from the intercepts of the straight lines 
according to the following expression:
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3.5 Adsorption isotherm 
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on Q235 steel surface. Usually, both the physisorption and chemisorption as two main types of 

interaction are used to describe the adsorption of inhibitor molecules on metal surface.  
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where v0 and v are corrosion rate of the Q235 steel in HCl solution without and with different 

concentrations of Inhi-Ph and Inhi-BrPh. 

The plots of C/θ versus C yield the straight lines shown in Figure 7. While the strong 

correlation (R2>0.9959) suggest that the adsorption of Inhi-Ph and Inhi-BrPh on Q235 steel 
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where R=8.314 J K-1 mol-1 is the gas constant, T is absolute temperature (K) and 55.5 is the molar 
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where R=8.314 J K-1 mol-1 is the gas constant, T is absolute 
temperature (K) and 55.5 is the molar concentration of 
water in the solution expressed in molarity units (mol L-1). 

Based on Equation 7, the obtained values of Kads and 
 for Inhi-Ph and Inhi-BrPh were listed in Table 6, as 

can be seen that the calculated values of  of Inhi-
Ph and Inhi-BrPh all lower than -40.00 kJ mol-1, which 
are -42.51 and -42.93 kJ mol-1, and it also indicates that the 
adsorption processes of Inhi-Ph and Inhi-BrPh on Q235 
steel surface in 1.0 M HCl belongs to chemical adsorption 
[10,17-18].

3.6 Effect of temperature, HCl concentration 
and storage time

According to potentiodynamic polarization measurement, 
the eff ects of temperature (T, °C), HCl concentration (cHCl, 
M) and storage time (t, h) on the corresponding inhibition 
effi  ciency (ηP(%)) were presented in Figure 8 (a), (b) and (c). 
From Figure 8 (a), as can be seen in 1.0 M HCl with 60 mg L-1 
Inhi-Ph and Inhi-BrPh, the inhibition effi  ciency decrease 
with temperature increasing, with temperature increase 
from 25°C to 45°C that the inhibition effi  ciency of Inhi-Ph 
and Inhi-BrPh drop from 96.17%, 76.04% (25°C) to 91.08%, 
60.54% (45°C), respectively. The decrease of inhibition 
effi  ciency is due to the increasing of inhibitor molecules 
desorption from Q235 steel surface in 1.0 M HCl.

Meanwhile, from Figure 8 (b), it is obvious that the 
inhibition effi  ciency decrease with HCl concentration 
increasing, the minimum inhibition effi  ciency for Inhi-
Ph and Inhi-BrPh (60 mg L-1) on Q235 steel in 5.0 M HCl 
at 30°C are 70.01% and 56.33%. The decrease of the 
inhibition effi  ciency from 98.86%, 93.67% (0.1 M HCl) to 
70.01%, 56.33% (5.0 M HCl) are contributed to the increase 
of hydrogen ion concentration. The similar results were 
reported by Lu and Su [19-20].

Additional, according to the eff ect of storage time on 
inhibition effi  ciency from Figure 8 (c), it is quite clear that 
the inhibition effi  ciency slightly fl uctuate with storage 
time changing. At 30°C, in 1.0 M HCl with 60 mg L-1 Inhi-Ph 
and Inhi-BrPh at 168 hours later, the inhibition effi  ciency 
still up to 94.90% and 76.91%, respectively. The results 
show that Inhi-Ph and Inhi-BrPh can act as the long-
acting corrosion inhibitor, and which further reveal that 
Inhi-Ph can exhibit the excellent corrosion inhibition for 
Q235 steel in HCl solution. Compare the ionic compounds 
of N,N-diethylammonium O,O’-di(p-methoxyphenyl) 
dithiophosphate in our previous work [11] with the 
covalence compounds of Inhi-Ph and Inhi-BrPh in this 
work, it is clearly that the covalence compounds of Inhi-
Ph and Inhi-BrPh can stable present in HCl solution. 

Table 5: The electrochemical parameters of impedance and the 
corresponding inhibition effi  ciency of Q235 steel in 1.0 M HCl with 
various concentration of Inhi-Ph and Inhi-BrPh at 30°C. 

Inhibitor C (mg L-1) Rp (Ω cm-2) Cdl (μF cm-2) ηE (%)

Blank solution 0 25.44 78.36 ―
Inhi-Ph 20 86.53 20.43 70.60

40 92.89 19.48 72.61
60 139.7 10.14 81.79

Inhi-BrPh 20 57.75 60.02 55.95
40 76.02 38.59 66.54
60 96.77 25.37 73.71
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Figure 7: Langmuir adsorption isotherm for Inhi-Ph and Inhi-BrPh on Q235 steel in 1.0 M HCl at 

30°C. 

 

Table 6: The adsorption parameters for Inhi-Ph and Inhi-BrPh on Q235 steel in 1.0 M HCl at 

30°C.  

Inhibitor )mol(kJ  ΔG -10
ads

 M R2 Kads (L mol-1) 

Inhi-Ph -42.51 386 0.9992 3.807×105 

Inhi-BrPh -42.93 544 0.9985 4.503×105 

 

Based on Equation 7, the obtained values of Kads and 𝛥𝐺�d��  for Inhi-Ph and Inhi-BrPh were 

listed in Table 6, as can be seen that the calculated values of 𝛥𝐺�d��  of Inhi-Ph and Inhi-BrPh all 

lower than -40.00 kJ mol-1, which are -42.51 and -42.93 kJ mol-1, and it also indicates that the 

adsorption processes of Inhi-Ph and Inhi-BrPh on Q235 steel surface in 1.0 M HCl belongs to 

chemical adsorption [10,17-18]. 

3.6 Effect of temperature, HCl concentration and storage time 

According to potentiodynamic polarization measurement, the effects of temperature (T, °C), 

HCl concentration (cHCl, M) and storage time (t, h) on the corresponding inhibition efficiency 

(ηP(%)) were presented in Figure 8 (a), (b) and (c). From Figure 8 (a), as can be seen in 1.0 M HCl 

with 60 mg L-1 Inhi-Ph and Inhi-BrPh, the inhibition efficiency decrease with temperature 

increasing, with temperature increase from 25°C to 45°C that the inhibition efficiency of Inhi-Ph 

and Inhi-BrPh drop from 96.17%, 76.04% (25°C) to 91.08%, 60.54% (45°C), respectively. The 

Figure 7: Langmuir adsorption isotherm for Inhi-Ph and Inhi-BrPh on 
Q235 steel in 1.0 M HCl at 30°C.
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4 Conclusions
In conclusion, the new corrosion inhibitors of S-4-
methylbenzyl-O,O’-di(phenyl) dithiophos- phate (Inhi-
Ph) and S-4-methylbenzyl-O,O’-di(4-bromophenyl)
dithiophosphate (Inhi-BrPh) were synthesized and 
confirmed by elemental analysis, FT-IR, 1H, 13C and 31P 
NMR in this work. The evaluation of corrosion inhibition 
performance show that the corrosion inhibitors of Inhi-Ph 
and Inhi-BrPh for Q235 steel in HCl solution both are mixed-
type inhibitor, the inhibition efficiency increase with Inhi-
Ph and Inhi-BrPh concentration increasing, decrease 
with HCl concentration and temperature increasing. In 
addition, the adsorption of Inhi-Ph and Inhi-BrPh on Q235 
steel surface obeys Langmuir isotherm, which belongs to 
chemical adsorption. 
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