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Abstract: A simple, fast and environmental friendly vortex
assisted-supramolecular solvent based microextraction
(VA-SSME) method was developed for the preconcetration
of triclosan in wastewater prior to UV spectrophotometric
determination. To achieve maximum sensitivity and
accuracy for the target analyte, the experimental
parameters affecting the VA-SSME procedure were
optimized using response surface methodology (RSM).
Under optimised conditions, the correlation coefficient
(R9) and recoveries were 0.9994 and 100.31-118.5%,
respectively. The intra-day (repeatability) and inter-day
(reproducibility) precisions expressed in terms of relative
standard deviation (RSD) were 2.4% and 5.2%, respectively.
The preconcentration factor and limits of detection (LOD)
and quantification (LOQ) were found to be 90, 0.28 pg L™
and 0.92 pg L7, respectively. The developed VA-SSME/UV
method was applied for the determination of triclosan
in real samples collected over a period of three months.
The analytical results obtained showed that triclosan was
frequently detected in influent wastewater samples but
was not detected in effluent samples.
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1 Introduction

Triclosan (2’-hydroxy-2,4,4-trichlorodiphenyl ether) is
used as a broad-spectrum synthetic antimicrobial agent for
medicated agents, toothpaste, hand and body soaps and
shampoo [1,2]. Increased cases of bacterial infection have
resulted in wide spread utilisation of antimicrobial agents
[3]. Thishaselevated the concentration of these compounds
in different environmental media [4]. More alarming is the
evidence of transformation of these compounds into more
toxic compounds such as 2,8-dichlorodibenzo-p-dioxin
and 2,4-dichlorophenol [5,6]. Triclosan is regarded as an
androgenic compound, moreover: it has also been found
to have endocrine effects in animals and humans [7]. The
United States Environmental Protection Agency (USEPA)
termed triclosan a high priority pollutant as it decomposes
into dioxin derivatives which are potential carcinogens
[8]. Due to the potential toxicity to human and animals,
the maximum permitted level of triclosan in personal care
products is 0.3% (w/w) [6]. Therefore, there is a need to
develop rapid, simple, selective and sensitive analytical
methods for accurate quantification of trace levels of
triclosan in complex environmental samples.
Consequently, several analytical methods have been
developed for the assessment of triclosan in different
matrices. These include high performance liquid
chromatography-ultraviolet spectroscopy (HPLC-UV) [2],
liquid chromatography-tandem mass spectroscopy (LC-
MS/MS [9,10]), gas chromatography-mass spectroscopy
(GC-MS) [11,12]. Although the aforementioned mentioned
techniques have their own advantages such selectivity
and high sensitivity, they often need time-consuming
sample preparation steps, have a high cost of operation
and suffer from complex and expensive instrumentation
[13]. In addition, these analytical techniques require long
analysis times and require highly skilled personnel. In
contrast, spectrophotometric techniques such as UV-
Vis have attractive advantages such as wide availability
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of instrumentation, inherent simplicity, low cost, short
analysis time, and adequate precision and accuracy [13].
In addition, these merits make the spectrophotometric
techniques especially convenient for the routine analysis
of different analytes.

Several spectrophotometric methods have been
developed for the determination of sulfadiazine (another
class of emerging pollutants) in different matrices [14-
16]. The majority of the developed spectrophotometric
techniques for determination of sulfadiazine are based on
the formation of a detectable azo dye by the diazotization of
sulfadiazinefollowedbyitscouplingwithdifferentreagents,
including 8-hydroxyquinoline [17] and iminodibenzyl [18].
Triclosanhasalsobeendetermined spectrophotometrically
using a similar method [19]. Despite the above-
mentioned advantages, the UV-VIS spectrophotometer is
seriously limited by its low sensitivity. Hence, separation/
preconcentration methods are required in order to carry
out accurate and sensitive determinations [20]. For this
reason, different sample preparation methods have been
used for preconcentration of different organic pollutants
prior to UV-Vis spectrophotometric determination. These
sampler pretreatment techniques include dispersive
liquid-liquid microextraction (DLLME) [21], solid phase
extraction (SPE) [22], solid phase microextraction (SPME)
[14] and supramolecular solvent-based microextraction
[23], among others.

Supramolecular solvent based microextraction
(SSME) uses supramolecular solvents (SUPRAS) as
an extractant. SUPRAS are water immiscible liquids
synthesized by self-assembly of two amphiphile solutions
in a continuous phase in which self-assembly processes
occur on the molecular and nano scale [24,25,26]. These
supramolecular assemblies of SUPRAS lead to properties
useful for extraction of inorganic and organic compounds
[27]. Therefore, the principle of the SSME procedure is
based on partitioning of an analyte between an alkyl
carboxylic acid-based nano-structured solvent and a bulk
aqueous sample [28]. SUPRAS have regions of varying
polarities, providing different interactions for analytes.
Hence, they are attractive solvents to replace organic
solvents in analytical extractions [29]. Another feature
of SUPRAS is the high concentration of amphiphiles
which results in a high number of analyte binding sites.
This permits high extraction efficiencies while using low
extraction volumes; hence, they are frequently used in
microextractions [27].

This study aims to develop a novel simple, rapid
and sensitive SUPRAS (made up of decanoic acid
and tricaprylymethylammonium chloride)-based
microextraction and UV-VIS spectrophotometry for
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preconcentration and quantification of triclosan
in wastewater samples. According to the authors’
knowledge, the use of SUPRAS in order to improve UV-Vis
spectrophometric detection capabilities for determination
of triclosan or any personal care products has not been
previously reported. The experimental parameters
affecting the SSME procedure were optimized using
response surface methodology (RSM) based on a central
composite design (CCD).

2 Experimental

2.1 Reagents and standards

Triclosan (pharmaceutical secondary standard), decanoic
acid, tricaprylymethylammonium chloride (Aliquat 336)
and methanol were purchased from Sigma-Aldrich (St.
Loius, MO, USA). A triclosan stock solution (10 mg L) was
prepared by diluting an appropriate amount of triclosan in
2 mL of methanol and diluting to 100 mL with ultra-pure
water (Direct-Q® 3UV-R purifier system, Millipore, Merck).
Stock triclosan was kept refrigerated. Working standard
solutions were prepared daily by appropriate dilution of
the stock solution with ultra-pure water.

2.2 Instrumentation

A PRO scientific VSM-3 vortex mixer (PRO scientific Inc.,)
was used to vortex the samples before using an Eppendorf
centrifuge 5702 (Eppendorf, Hamburg, Germany). An
OHAUS starter 2100 pH meter (Pine Brook, NJ, USA) was
used for pH adjustments of the reagents and to measure the
pH of samples. The Shimadzu UV-2450 high performance
single monochromator UV-VIS spectrophotometer
(Shimadzu Corporation, Tokyo, Japan) with 5 mL quartz
cuvettes and a slit width of 0.5 and wavelength of 284.8
nm was used for all sample analyses. Reference studies
were carried out using an Agilent 1200 Infinity series
HPLC equipped with a photodiode array detector (Agilent
Technologies, Waldbronn, Germany). The chromatograms
were recorded at 280 nm. An Agilent Zorbax Eclipse Plus
C18 column (3.5 pm x 150 mm x 4.6 mm) (Agilent, Newport,
CA, USA) was operated at an oven temperature of 25°C. The
mobile phase was a mixture of 30% water (mobile phase
A) and 70 % acetonitrile (mobile phase C). A flow rate of
1.00 mL min was used throughout the analysis.
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2.3 Sampling and sample collection

Influent (after sediment removal) and effluent wastewater
samples were collected from Daspoort wastewater
treatment plant (WWTP, Pretoria, Gauteng, South Africa).
The samples were collected in pre-cleaned 500 mL glass
bottles. The samples were then refrigerated at 4 °C.
Samples were collected four times a month (meaning once
a week) for a period of 3 months. In each week (Mondays
at midday (between 11:00 and 13:00)), six samples (three
influent and three effluent) were collected and analysed.
2.4 Supramolecular solvent based microextraction
A mixture of 50 pg L*decanoic acid in Aliquat-336 was
prepared via stirring a mixture of the two for 5 minutes
(until a clear homogenous solution formed), forming the
supramolecular solvent. Different volumes (100-500 pL)of
the solvent were added to centrifuge tube containing a 5 mL
sample. This mixture was shaken using a vortex for a few
seconds until a cloudy suspension formed. The solution
was then centrifuged for a maximum of 10 minutes at
3000 rpm. After centrifuging, the top layer was recovered
using a micropipette and was redissolved in 2 mL of
methanol and analysed using UV-Vis spectrophotometry
at 284.8 nm.

Ethical approval: The conducted research is not
related to either human or animals use.

3 Results and discussion

3.1 Optimization

In order to achieve quantitative preconcetration of
triclosan with the supramolecular microextraction
procedure, the optimization of the most influential
parameters, such as sample pH, extraction time (ET) and
supramolecular solvent volume (SSV), was carried out
using response surface methodology (RSM) based on a
central composite design. Table 1 presents the factorial
design matrix and the analytical responses (expressed as
absorbance at 284.8 nm) obtained in each experiment. A
Pareto chart (Figure 1) was generated for the analysis of
variance (ANOVA) to explore the significance of the effects
on the SSME procedure. The Pareto chart of main effects
and their interactions produced is shown in Figure 1. The
effect of pH and extraction time according to Figure 1 was
not significant in the extraction of triclosan at the 95%
confidencelevel. In contrast, impact of the supramolecular
solvent volume (SSV) was significant at the 95% confidence
level. The interaction of pH and extraction time was also
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Table 1: Factors and levels used in central composite for
supramolecular solvent based microextraction of triclosan.

Factors Low level (-1) Central point (0) High level (+1)
Sample pH 3 7 10

Extraction 2 6 10

time (min)

SSV (uL) 100 300 500

Table 2: Factorial design matrix and the analytical responses
(expressed as absorbance at 284.8 nm).

Exper pH ET (min) SSV (pL) Abs

1 3 300 1.334
2 9 2 300 1.464
3 3 10 300 1.704
4 9 10 300 2.344
5 3 6 100 0.049
6 9 6 100 0.45

7 3 6 500 1.75

8 9 6 500 1.448
9 6 2 100 1.016
10 6 10 100 0.53
11 6 2 500 1.498
12 6 10 500 1.405
13 6 6 300 0.666
14 6 6 300 0.6001
15 6 6 300 0.643
16 6 6 300 0.656
17 6 6 300 0.662
18 6 6 300 0.6729

statistically significant for the extraction of triclosan. The
effects of extraction time and pH were only significant
when considering quadratic effects, which for the purpose
of the study were not considered.

Triclosan is a lipophilic compound with a log
K of 4.8 [30]; this means that it associates with the
hydrophobic section of the supramolecular solvent during
the dispersion of the solvent in the water sample [31]. In
addition to the lipophilicity, the pKa of the analyte played
a major role in the SSME [31]. As a result of its pKa (8.1),
triclosan is stable over the pH range 4-9. The optimum pH
for the extraction of 5 thus falls within the stable range of
triclosan. In other words, as a result of its pKa, triclosan
existed in its molecular form during the application of the
method [32].

ANOVA variables of the response surface quadratic
model for the absorbance of triclosan were obtained. The
ANOVA results were analysed with quadratic equations for
the models to illustrate the dependence of the analytical
response with respect to the evaluated main effects [33].
The response surfaces together with quadratic equations
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Figure 1: Pareto chart of standardized effects for variables in the
preconcentration of triclosan.

Figure 2: Response surfaces obtained for triclosan after extraction
and preconcentration by supramolecular solvent extraction.

o
©
G

y=1 1134x+0.0059 A 4
0.04 R?=0.9982 /

y=0.0090x+0.4298
R?=0.9994

Absorbence
o
o
53
Absorbence

0 10 20 30 40
Triclosan concentration (ug L™'x10%)

Figure 3: calibration curve for triclosan (A) before and (B) after
preconcentration using VA-SSME .

(equation not included) were used to calculate the
optimum conditions.

The 3D surface response plots were used to investigate
the relationship/interaction between the independent
variables (sample pH, extraction time and supramolecular
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solvent volume) on the absorbance of the samples. Based
on quadratic expressions [33], the calculated optimum
conditions for further processesing and application of
the method were a pH of 5, extraction time of 6 minutes
and supramolecular solvent volume of 400 pL. The
confirmatory experiments were performed to validate the
optimum conditions obtained by RSM and the results were
not significantly different from the predicted values at 95%
confidence level. These conditions were then used for the
investigation of the analytical performance and validation
and application of the procedure in real samples.

3.2 Analytical figures of merit

Under the determined optimum experimental conditions,
the analytical performances of the developed SSME
method for preconcentration and spectrophotometric
determination of triclosan were investigated. The
calibration curves (Figure 3) were obtained after a set of
standard solutions (0 to 400 pg L) was processed using
the described extraction procedure. The concentrations of
the analytes in the eluent solutions were quantified with
the aid of a UV spectrophotometer. The limits of detection
and quantification were calculated using the formulas:
LoD =3 XbSd and LOQ = % where Sd is the standard
deviation of 10 replicate measurements of blank samples
and b is the slope of each calibration curve. Dynamic linear
ranges, correlation coefficient, enrichment factor, LOD
and LOQ were determined to be LOQ-400 pg L%, 0.9994,
90, 0.28 pg L* and 0.92 pg L respectively. The precision
of the UA-SSME/UV procedure was evaluated as intra-
(repeatability) and inter- (reproducibility) day precision,
which were analyzed using six replicates (n = 15) for
intra-day and eighteen replicates (n = 7) for inter-day.
The results were expressed in terms of relative standard
deviation (%RSD). Under optimum conditions, both intra-
day and inter-day precisions were found to be 2.4% and
5.2%, respectively.

The performance of the developed VA-SSME/UV
method for the preconcetration and determination of
TCS in wastewater samples was compared with different
published analytical procedures (Table 3). It can be seen
that the current method has better performance in terms
of LOD and LOQ when compared with those reported
[34]. In addition, the developed method had a wider
DLR compared to several published reports [34,35,37-41]
and the % RSD was comparable with all the reported
studies except one [37]. This optimal performance can
be attributed to the fact that SUPRAS provide a number
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Table 3: Comparison of analytical figures of merit for different extraction and detection methods for triclosan and other emerging pollutants.

Analyte Matrix Method LOD (ugl?) LOQ(pgly) DLR RSD References
Triclosan Tapwater SPME-LC-UV 0.001 0.033 0.01-168 7 [37]
Triclosan Surface water SPME-HPLC-UV 0.04 0.13 [38]
Triclosan Urine ULLME-HPLC-DAD 0.11 0.36 0.5-500 0.64-4.6 [36]
Triclosan River water SPME-HPLC-UV 0.00024 0.0008 0.0005-0.04 4 [39]
Triclosan Cosmetics IT-USA-SI-LLME-HPLC-UV 0.00009 0.0003 0.0004-0.1 0.8-5.3 [40]
Triclosan Water, beverages DLLME-UV 4 13.3 0.02-2 [34]

and urine
Triclosan Environmental SPE-GC 0.0001 0.0003 0.004-5 4.7-5.9 [41]

water
Triclosan Aqueous samples IT-USAEME-GC-pECD 0.004 0.013 0.02-2 2.8-5.4 [35]
Triclosan Wastewater SSME-UV 0.28 0.95 0.95-400 2.4-5.2 Current work
of possible interaction between the analyte and solvent ™7 #

4

including high number of binding sites and hydrogen
bond interactions which increase the extraction efficiency
[27]. However, the LOD and LOQ were higher than those
reported by Refs [35-41].

SPME= Solid phase microextraction, LC-UV= Liquid
chromatography-Ultraviolet detection, HPLC= High
pressure liquid chromatography, ULLME= ultrasound-
assisted liquid-liquid microextraction, DAD= Diode
array detector, IT-USA-LLME= In-tube based ultrasound-
assisted salt-induced liquid-liquid microextraction,
DLLME= dispersive liquid-liquid microextraction, SPE=
Solid phase extraction, GC- Gas chromatography, IT-
USAEME-= In-tube ultasonication-assisted emulsification
microextraction, GC-pECD= Gas chromatography-micro-
electron-capture detection, SSME= Supramolecular
solvent microextraction

3.3 Validation and Application

Due to the absence of reference material, the method
was validated by the use of a spiked recovery test. The
influent and effluent samples were spiked at two different
concentrations as indicated in Table 4. The samples were
then preconcentrated in triplicate using the proposed
method as described in the experimental section prior to
their analysis using a UV spectrophotometer and HPLC-
PDA. It can be seen that the results obtained using the
current method were comparable with those obtained
using HPLC-PDA. In addition, the chromatogram (Figure
4) proved that, under optimum conditions, the developed
method was able to extract triclosan from complex
matrices.

Thedescribed methodwasappliedinthedetermination
of triclosan from wastewater samples collected over a

204

L

Figure 4: HPLC-PDA chromatogram for triclosan from influent sample
spiked with 50 pg L™ of the analyte after preconcentration using the
VA-SSME.

period of 3 months: August, September and October of
the same year (Table 5). It should be noted that the above
concentrations were determined from influent samples.
In the effluent samples, triclosan was not detected. The
lack of detectable triclosan in effluent can be explained
by the fact that the Daspoort waste water treatment has
three types of treatment stages, including chlorinated and
ultraviolet treatment before the effluent is released into the
nearby river. This secondary treatment can possibly lead to
either the degradation of triclosan or transformation into
other compounds, as triclosan has been known to be able
to be transformed into other compounds [6]. In summary,
in the effluent the concentration of triclosan was below
the limits of the method. The triclosan concentrations
obtained using the developed method was confirmed by
a reference method (HPLC-PDA). According to the student
t-test, the results were not significantly difference at the
95% confidence level.
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Table 4: Analysis of wastewater samples (influent and effluent)
spiked and unspiked from Daspoort (Pretoria, Gauteng, South
Africa) wastewater treatment plant.

Sample SSME-UV-Vis HPLC-PDA
Added Found % R Found %R
(vgl?)  (pgl?) (nsl?)

Influent 0 10.01£0.5 9.93+1.3
50 59.07+0.8  98.12 59.88+3.7 99.90
100 116.97+1.4  107.0 109.8+3.3 99.87

Effluent 0 nd nd
50 50.16+0.9 100.31 49.89+2.5 99.78
100 101.22+1.5 101.22 99.97+3.9 99.97

Table 5: Analysis of wastewater samples (influent and effluent)
collected from Daspoort (Pretoria, Gauteng, South Africa)
wastewater treatment plant over three months (concentration in
pg Lt n=4).

Samples VA-SSME/UV HPLC-PDA
August Influent 10.82£ 0.5 11.01£1.6
Effluent nd nd
September Influent 10.67 + 0.4 10.41£2.3
Effluent nd nd
October Influent 9.93+0.34 10.1123.1
Effluent nd nd

4 Conclusions

In this study, a rapid and simple SSME/UV-Vis
spectrophotometric method for preconcetration and
determination of triclosan in wastewater samples was
developed. The developed VA-SSME/UV method was
solvent minimized, inexpensive, eco-friendly, precise and
accurate. The analysis of wastewater samples revealed
that the target analyte was present in all influent samples,
while it was not detected in effluent samples. These
findings suggested that triclosan was transformed to other
compounds during the wastewater treatment process.
Since even the reference method (HPLC-PDA) did not
detect triclosan in the effluent samples, this demonstrated
the effectiveness of the tertiary treatment stage.
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