Research Article Open Access

Nahed O. Bawakid, Walied M. Alarif*, Hajer S. Alorfi, Khalid O. Al-Footy, Najla A. Alburae, Mohamed A. Ghandourah, Sultan S. Al-Lihaibi, Zainab H. Abdul-hameed

Antimicrobial sesquiterpenoids from *Laurencia* obtusa Lamouroux

https://doi.org/10.1515/chem-2017-0025 received July 16, 2017; accepted September 6, 2017.

Abstract: Purification of the organic extract of *Laurencia obtusa* Lamouroux by column chromatography and preparative thin layer chromatography provided four new compounds: a eudesmane-type sesquiterpenoid [eudesma-4(15),11-diene-5,7-diol (1)], a cuparane-type sesquiterpenoid [10-hydroxycuparaldehyde (2)], and two *nor*-cuparanes [3-hydroxy-15-*nor*-cuparan-10β-ol (3) and 2-bromo-3-hydroxy-15-*nor*-cuparan-10β-ol (4)]. Structural identification was made possible by comparison of spectral data with those reported in the literature. Compounds 3 and 4 are significant as *nor*-cuparanes are rarely isolated from marine environment. 1 showed moderate anticandidal activity, whereas 2 exhibited reasonable antibacterial activity against multidrug-resistant bacteria (especially Gram-positive). All the compounds are nontoxic to *Artemia salina*.

Keywords: Terpenoids, antimicrobial, red algae, Red Sea

1 Introduction

Laurencia is a common genus of marine red algae, taxonomically classified as Rhodophyta, Rhodophyceae, Ceramiales, Rhodomelaceae. *Laurencia obtusa* is one of the most widely investigated marine species by natural product chemists. It provides a unique source of halogenated secondary metabolites such as C_{15} -

*Corresponding author: Walied M. Alarif: Department of Marine Chemistry, Faculty of Marine Sciences, King Abdulaziz University, PO Box 80207, Jeddah 21589, Saudi Arabia, E-mail: walied1737@yahoo.com Nahed O. Bawakid, Hajer S. Alorfi, Khalid O. Al-Footy, Zainab H. Abdul-hameed: Department of Chemistry, Faculty of Science, King Abdulaziz University, PO Box 80203, Jeddah 21589, Saudi Arabia Mohamed A. Ghandourah, Sultan S. Al-Lihaibi: Department of Marine Chemistry, Faculty of Marine Sciences, King Abdulaziz University, PO Box 80207, Jeddah 21589, Saudi Arabia Najla A. Alburae: Department of Biology, Faculty of Science, King Abdulaziz University, PO Box 80203, Jeddah 21589, Saudi Arabia

acetogenines, diterpenes, and sesquiterpenoid skeletons [1-9]. Many of these compounds are biologically active, showing antioxidant, antimalarial, antimicrobial, and cytotoxic activity [3,6,10].

9

To find new bioactive compounds in marine macroorganisms, *Laurencia obtusa* Lamouroux was collected from the Saudi Red Sea and its organic fraction extracted to provide four new sesquiterpenoids (Figure 1). The antimicrobial and anticandidal activities of the new compounds were also investigated.

2 Experimental

2.1 General

Column chromatography was performed with aluminum oxide Fluka, neutral type 507C. Fractions were analyzed by TLC on silica gel 60 F254. Preparative TLC was performed on glass plates (20 cm x 20 cm) coated with silica gel (250 μ m thickness). Spots were visualized using UV light (254 nm), then p-anisaldehyde-sulfuric acid spray reagent. High resolution electron impact mass spectra (HREIMS) were recorded on a Krators EIMS-25 instrument at an ionizing voltage of 70 eV. 1D and 2D NMR spectra were recorded on a Bruker 850 MHz spectrometer. Chemical shifts are reported in parts per million (ppm) using the solvent residual signal as the internal standard (CDCl $_3$: δ 7.26 for 1 H and δ 77.0 for 13 C).

2.2 Extraction and Isolation

Laurencia obtusa Lamouroux was collected in May 2016 from Salman Gulf, north of Jeddah, Saudi Arabia (21°51'39.8" N; 38°58'42.7" E). Reference standard (JAD 03060) was stored at the Faculty of Marine Sciences, King Abdulaziz University (Jeddah, Saudi Arabia). L. obtusa was dried, then extracted with equal volumes

Figure 1: Structure of compounds 1-4.

of dichloromethane and methanol. The residue (6 g) was purified first by column chromatography on Sephadex LH-20 (MeOH/CHCl₃ = 9.5:0.5), then by column chromatography on neutral aluminum oxide using gradient elution (n-hexane/diethyl ether to n-hexane/EtOAc). Fractions containing the product were combined and dried under reduced pressure. Final purification by PTLC afforded the pure product.

2.3 Chemical characterization

Eudesma-4(15),11-diene-5,7-diol (1); purified by column chromatography (eluent: 30% diethyl ether) followed by PTLC (eluent: 30% diethyl ether). The violet band (p-anisaldehyde-sulfuric acid reagent) was collected to provide **1** as a colorless liquid (1.4 mg, 0.0007% yield). $R_{\rm f}$ 0.30; [α]_D +54.0 (c 0.014, CH₂Cl₂); IR ν (cm⁻¹) 3424, 2924, 2854, 1712, 1640, 1455, 1377, 1261, 1172, 1074, 904; EI-MS m/z 236; HREIMS m/z 236.1764 (Calcd. 236.1776, C₁₅H₂₄O₂); ¹H and ¹³C NMR (Tables 1 and 2, respectively).

10-Hydroxycuparaldehyde (**2**); purified by column chromatography (eluent: 15% diethyl ether) followed by PTLC (eluent: 10% diethyl ether). The brown band (p-anisaldehyde-sulfuric acid reagent) was collected to provide **2** as a pale yellow liquid (4.5 mg, 0.0023% yield). $R_{\rm f}$ 0.53; [α]_D +79.0 (c 0.023, CH₂Cl₂); UV (MeOH) $\lambda_{\rm max}$ 252, 259 and 290 nm; IR ν (cm⁻¹) 3274, 2972, 2927, 1701, 1606, 1461, 1392, 1369, 1223, 1178, 1075, 854; EI-MS m/z 232; HREIMS m/z 232.1451 (Calcd. 232.1463, C₁₅H₂₀O₂); ¹H and ¹³C NMR (Tables 1 and 2, respectively).

3-Hydroxy-15-nor-cuparan-10β-ol (**3**); purified by column chromatography (eluent: 40% diethyl ether) followed by PTLC (eluent: 30% diethyl ether). The light blue band (p-anisaldehyde-sulfuric acid reagent) was collected to provide **3** as a colorless liquid (0.7 mg, 0.0004% yield). $R_{\rm f}$ 0.4; [α]_D +61.8 (c 0.007, CH₂Cl₂); UV (MeOH) $\lambda_{\rm max}$ 230 and

280 nm; IR ν (cm⁻¹) 3383, 2921, 2851, 1736, 1605, 1463, 1377, 1286, 1239, 1183, 1075, 832; EI-MS m/z 220; HREIMS m/z 220.1451 (Calcd. 220.1463, $C_{14}H_{20}O_2$); ¹H and ¹³C NMR (Tables 1 and 2, respectively).

2-Bromo-3-hydroxy-15-*nor***-cuparan-10β-ol** (4); purified by column chromatography (eluent: 40% diethyl ether) followed by PTLC (eluent: 30% diethyl ether). The light blue band (p-anisaldehyde-sulfuric acid reagent) was collected to provide **4** as a colorless liquid (0.7 mg, 0.0004% yield). $R_{\rm f}$ 0.4; [α]_D +50.4 (c 0.007, CH₂Cl₂); UV (MeOH) $\lambda_{\rm max}$ 230 and 280 nm; IR ν (cm⁻¹) 3383, 2921, 2851, 1736, 1605, 1463, 1377, 1286, 1239, 1183, 1075, 832, 557; HREIMS m/z 298.0556 and 300.0536 (1:1) (Calcd. 298.0568 and 300.0548 for C₁₄H₁₉⁷⁹BrO₂ and C₁₄H₁₉⁸¹BrO₂, respectively); ¹H and ¹³C NMR (Tables 1 and 2, respectively).

2.4 Biological evaluation

2.4.1 Antibacterial activity

Gram-negative and Gram-positive bacteria (Table 3) were obtained from urine samples of patients at the King Fahad General Hospital (Saudi Arabia) and identified according to standard guidelines [11].

The antibacterial activity was tested on Muller-Hinton agar using agar diffusion well test [12]. The minimum inhibitory concentration (MIC) was determined by ELISA using 96-well plates and fluorescein diacetate (FDA, 5 μ l of a 0.25% w/w in acetone) as an indicator. The green color due to FDA hydrolysis was estimated at λ_{max} 490 nm using the ELISA tray reader [13,14].

Compound toxicity was assessed using *Artemisia* salina as test creature and dimethylsulfoxide (DMSO) as a negative control [15].

Table 1: ¹H NMR data of compounds 1-4 (CDCl₃, 850 MHz).

No.	1	2	3	4
	$\delta_{_H}$ ppm (mult., J/Hz)	$\delta_{_H}$ ppm (mult., J/Hz)	$\delta_{_H}$ ppm (mult., $J/{ m Hz}$)	$\delta_{_H}$ ppm (mult., $J/ ext{Hz}$)
1	H _a 2.05 (ddd, 17.9, 13.6, 4.3) H _b 1.25-1.27 (m)	7.39 (d, 8.5)	7.07 (d, 8.5)	7.14 (d, 2.6)
2	H _a 1.99 (ddd, 17.9, 13.6, 4.3) H _b 1.55-1.57 (m)	7.79 (d, 8.5)	6.74 (d, 8.5)	
3	H _a 2.32-2.35 (m) H _b 2.17-2.22 (m)	-	-	
4	-	7.79 (d, 8.5)	6.74 (d, 8.5)	6.92 (d, 8.5)
5	-	7.39 (d, 8.5)	7.07 (d, 8.5)	7.02 (dd, 8.5, 2.6)
6	2.25 (d,14.5) 1.50 (dd,14.5, 2.6)	-	-	
7	-	-	-	-
8	1.59-1.62 (m)	H _a 2.34 (ddd, 14.5, 9.4, 5.1) H _b 2.02 (ddd, 13.6, 12.8, 5.1)	H _a 2.22-2.27 (m) H _b 1.94-1.98 (m)	H _a 2.22-2.27 (m) H _b 1.94-1.98 (m)
9	H _a 1.88 (ddd, 17.9, 12.8, 5.1) H _b 1.21-1.24 (m)	H _a 2.57 (ddd, 14.5, 9.4, 6.0) H _b 2.28-2.31 (m)	H _a 2.48-2.52 (m) H _b 2.19-2.25 (m)	H _a 2.48-2.52 (m) H _b 2.19-2.25 (m)
10	-	4.01 (dd, 9.4, 9.4)	4.04 (dd, 10.2, 9.4)	4.02 (dd, 10.2, 9.4)
11	-	-	-	-
12	H _a 5.04 (s) H _b 4.83 (s)	1.13 (s)	1.08 (s)	1.08 (s)
13	1.82 (s)	0.62 (s)	0.61 (s)	0.63 (s)
14	0.93 (s)	1.48 (s)	1.41 (s)	1.40 (s)
15	H _a 5.06 (s) H _b 4.84 (s)	9.99 (s)	-	-

Table 2: ¹³C NMR data of compounds 1–4 (CDCl₃, 212 MHz).

No.	1	2	3	4
1	31.6, CH ₂	128.2, CH	128.7, CH	127.9, CH
2	31.2, CH ₂	128.9, CH	114.2, CH	119.1, C
3	33.3, CH ₂	134.4, C	153.6, C	149.4, C
4	151.6, C	128.9, CH	114.2, CH	115.1, CH
5	78.3, C	128.2, CH	128.7, CH	127.6, CH
6	40.6, CH ₂	154.5, C	139.3, C	140.6, C
7	75.0, C	48.8, C	47.6, C	47.6, C
8	22.3, CH ₂	36.5, CH ₂	36.6, CH ₂	36.5, CH ₂
9	34.2, CH ₂	33.1, CH ₂	33.1, CH ₂	33.0, CH ₂
10	38.5, C	61.1, CH	62.0, CH	61.5, CH
11	150.9, C	49.6, C	48.3, C	48.5, C
12	109.6, CH ₂	21.1, CH ₃	20.9, CH ₃	21.0, CH ₃
13	18.9, CH ₃	22.6, CH ₃	22.5, CH ₃	22.7, CH ₃
14	22.2, CH ₃	25.1, CH ₃	25.2, CH ₃	25.2, CH ₃
15	108.2, CH ₂	191.8, CH	-	-

2.4.2 Anticandidal activity

MIC was determined using the method described by Chand et al. [13] and modified by Aly and Gumgumji [14].

3 Results and discussion

Four new sesquiterpenoids (1-4) were isolated from Laurencia obtusa Lamouroux after extraction and purification of its organic fraction. Spectroscopic analysis of the four compounds afforded the following results.

Compound 1 was isolated as a liquid with specific rotation $[\alpha]_D$ +54 (c 0.014, CH₂Cl₂). HREIMS analysis of the molecular ion peak at m/z 236.1764 provided the molecular formula C₁₅H₂₄O₂, which requires four degrees of unsaturation. The lack of absorption in the UV spectrum revealed the absence of conjugation. Hydroxyl group (ν 3424 cm⁻¹) and exocyclic C=C bond (ν 1640 cm⁻¹) were assigned from the IR spectrum. The ¹³C NMR spectrum displayed 15 signals, which were categorized by DEPT into

Figure 2: Selected H-H COSY (and HMBC correlations of compounds 1-4 ().

5 quaternary, 8 methylene and 2 methyl carbons. HSQC experiment indicated the presence of two tertiary methyls $(\delta_{H}/\delta_{C}=1.82/18.9 \text{ and } 0.93/22.2)$, two oxygenated quaternary carbons (δ_c 78.3 and 75.0), two olefinic quaternary carbons (δ_c 151.6 and 150.9), and two exocyclic methylene groups $(\delta_{H}/\delta_{C}5.06 \text{ and } 4.84/108.2; \delta_{H}/\delta_{C}5.04 \text{ and } 4.83/109.6; \text{ Tables}$ 1 and 2). The ¹H—¹H correlation experiment highlighted three sequences: three correlated methylene groups, two correlated methylene groups, and an isolated methylene group (δ_{H} 1.50 and 2.25). Overall, these results suggest that compound 1 is an eudesmane-type sesquiterpenoid with two C=C bonds fulfilling four degrees of unsaturation. HMBC experiment revealed additional correlations: the methyl protons at δ_{μ} 0.93 (Me-14) correlate to carbons at δ_c 78.3, 34.2 and 31.6, confirming that Me-14 is an angular methyl; methyl protons at $\delta_{\scriptscriptstyle H}$ 1.82 (Me-13) correlate to carbons at δ_c 150.9, 109.6 and 75.0, confirming that Me-13 is part of the isopropylidene group (Figure 2). The relative configuration of 1 was assigned by NOESY experiment as well as by analogy with known compounds. The absence of correlation between Me-13 and Me-14 in NOESY spectrum suggests the two groups are not co-facially oriented. As in natural eudesmanes Me-14 is β-oriented,7 Me-14 and OH group at C-5 must be trans correlated. Based on structure, 1 was named eudesma-4(15),11-diene-5,7-diol.

Compound **2** was isolated as a liquid with specific rotation $[\alpha]_D$ +79.2 (c 0.025, CH_2Cl_2). HREIMS analysis of the molecular ion peak (m/z 232) provided the molecular formula $C_{15}H_{20}O_2$, which requires six degrees of unsaturation. The UV absorptions at 252, 259 and 290 nm indicated a substituted benzene ring. The IR spectrum showed the characteristic bands of OH, C=O and *gem* dimethyl groups (v 3274, 1701 and 1369 cm⁻¹, respectively). The presence of the OH group was confirmed by a peak at m/z 214 [M–H₂O] in the EI-MS spectrum. The ¹³C NMR spectrum of **2** showed 15 signals, categorized by DEPT into 4 quaternary, 6 methine, 2 methylene and 3 methyl carbons. The ¹H—¹³C HSQC experiment revealed the presence of the following

groups (Tables 1 and 2): three aliphatic methyl groups (singlets at δ_{ν}/δ_{c} 1.48/25.1, 1.13/21.1 and 0.62/22.6), a formyl group (singlet at δ_{H}/δ_{c} 9.99/191.8), and a *p*-disubstituted benzene ring (two doublets in the aromatic region at δ_{μ}/δ_{c} 7.79 [J = 8.5 Hz, 2H]/128.9 and δ_{II} 7.39 [J = 8.5 Hz, 2H]/128.2).In addition, the proton-proton correlation spectrum revealed two proton sequences: the aromatic system and a CH₂—CH₂—CH fragment. The aforementioned analysis points to a cuparane-type sesquiterpenoid structure containing a cyclopentane ring connected to a benzaldehyde skeleton. The location of the aldehyde group in the p-position of the benzene ring was confirmed by HMBC correlation of the aldehyde proton (H-15, $\delta_{_H}$ 9.99) to C-3 ($\delta_{_C}$ 134.4), C-2 ($\delta_{_C}$ 128.9), and C-4 ($\delta_{\rm C}$ 128.9). Correlations of H-14 ($\delta_{\rm H}$ 1.48) to C-7 $(\delta_c 48.8)$, C-11 $(\delta_c 49.6)$, C-8 $(\delta_c 36.5)$, and C-6 $(\delta_c 154.5)$ are also in agreement with the structure of 2.

Comparison of the spectral data of 2 with those reported for cuparane [16] showed similarity, except for the presence of an aldehyde group in 2 in the place of a methyl group in cuparane. The increase in chemical shift value of Me-14 in compound **2** (δ_{H} 1.48) with respect to cuparane $(\delta_{\mu}$ 1.23) is likely explained in terms of anisotropy created by the aromatic ring as well as the electron withdrawing effect of the aldehyde group. The relative configuration of 2 was determined by NOESY experiment, which showed the correlation of Me-14 ($\delta_{_H}$ 1.48) to Me-12 ($\delta_{_H}$ 1.13), and of Me-13 ($\delta_{\scriptscriptstyle H}$ 0.62) to H-10 ($\delta_{\scriptscriptstyle H}$ 4.01). These correlations indicate that Me-14, Me-12 and the hydroxyl group on C-10 have the same orientation. Consequently, the relative configurations of C-7 and C-10 were assigned as $7R^*$ and $10R^*$, respectively. Compound 2 was given the trivial name 10-hydroxycuparaldehyde.

Metabolite **3** was isolated as a liquid with specific rotation $[\alpha]_D$ +61.8 (c 0.007, CH_2Cl_2). Its molecular formula was determined as $C_{14}H_{20}O_2$ (with five degrees of unsaturation) by HREIMS. The UV absorptions at 230 and 280 nm indicated a substituted benzene ring. The IR spectrum revealed the presence of OH and *gem* dimethyl

groups (ν 3383 and 1377 cm⁻¹, respectively). The ¹³C NMR spectrum of 3 showed 14 signals, categorized by DEPT into 4 quaternary, 5 methine, 2 methylene and 3 methyl carbons. The ¹H-¹³C HSQC spectrum allowed to identify three tertiary methyls (singlets at δ_{μ}/δ_{c} 1.41/25.2, 1.08/20.9 and 0.61/22.5) and a p-disubstituted benzene ring (two doublets in the aromatic region at δ_H/δ_C 6.74 [2H, J=8.5Hz]/114.2 and at δ_{x}/δ_{c} 7.07 [2H, J = 8.5 Hz]/128.7; Tables 1 and 2). Two OH groups are located on C-3 (δ_c 153.6) and C-10 (δ_{μ}/δ_{c} 4.04/62.0). In addition, the proton-proton correlation spectrum revealed two proton sequences: the aromatic system and the CH₂-CH₂-CH fragment. With five degrees of unsaturation, the carbon skeleton of compound 3 must contain a $(p\text{-OH})C_{\kappa}H_{\kappa}$ group attached to a 1,2,2trimethylcyclopentan-3-ol moiety. The position of the hydroxyl groups was confirmed by HMBC correlation of the phenolic carbon C-3 (δ_c 153.6) to the aromatic protons H-2 and H-4 (δ_{H} 6.74), and that of H-10 (δ_{H} 4.04) to C-11 (δ_{C} 48.3) and C-9 (δ_c 33.1).

The abovementioned analysis indicates that compound 3 is a *nor*-cuparane-type sesquiterpenoid. Compound 3 was named 3-hydroxy-15-nor-cuparan-10β-ol.

Compound 4 (isolated as a liquid with specific rotation $[\alpha]_{\rm p}$ +50.4 [c 0.007, CH₂Cl₂]) was identified by comparison with the spectroscopic data of 3 (Tables 1 and 2). Their IR, UV and NMR spectra were similar, with a difference in the aromatic region of the ¹H NMR spectrum. The ¹H—¹³C HSQC spectrum of 4 exhibited three methine carbons in the aromatic region (δ_L/δ_C 7.14 [d, J = 2.6 Hz]/127.9, 6.92 [d, J = 8.5Hz]/115.1 and 7.02 [dd, J = 8.5 Hz, J = 2.6 Hz]/127.6) and three quaternary carbons (δ_c 140.6, 119.1, and 149.4) indicating a 1,2,4-trisubstituted benzene ring. The molecular formula of 4 was assigned as C, H, BrO, by HREIMS. The parent peaks at m/z 298 and 300 in the EI-MS spectrum, with relative intensities in the 1:1 ratio, alongside the absorption band at v 557 cm⁻¹ in the IR spectrum, clearly indicate the presence of a bromine atom.

The analysis indicates that compound 4 is a norcuparane bearing two hydroxyl groups and a bromine atom. The position of bromine was assigned to C-2 (δ_c 119.1). **4** was named 2-bromo-3-hydroxy-15-nor-cuparan-10β-ol.

The antibacterial activity of 1 and 2 was tested against several strains of multidrug-resistant bacteria (Escherichia coli, Klebsiella pneumoniae, Proteus mirabilis, Pseudomonas aeruginosa, Enterococcus faecalis and Staphylococcus aureus). 1 displayed weak activity against all tested bacteria (results not shown), whereas 2 showed an inhibition zone of 10.0-15.5 mm diameter on Muller-Hinton agar (Table 3).

The MICs of 2 were in the range of 0.08-0.15 mM for all tested bacteria. Noteworthy, 2 was more active against

Table 3: Antimicrobial activity and minimal inhibitory concentrations (MICs) of 2 and amoxicillin on multidrug-resistant bacteria.

Bacteriuma	Antimicrobi	al activity (mm) ^b	MIC (mM)	
	2	amoxicillin ^c	2	amoxicillin
E. coli	12.3 <u>+</u> 2.33	17.0 <u>+</u> 2.13	0.15	0.01
K. pneumoniae	10.0 <u>+</u> 2.00	22.0 <u>+</u> 4.22	0.11	0.002
P. mirabilis	14.0 <u>+</u> 3.70	24.0 <u>+</u> 1.34	0.09	0.01
P. aeruginosa	13.0 <u>+</u> 3.12	17.0 <u>+</u> 2.21	0.12	0.02
E. faecalis	15.5 <u>+</u> 2.57	19.0 <u>+</u> 1.49	0.08	0.04
S. aureus	15.0 <u>+</u> 2.56	17.0 <u>+</u> 1.09	0.09	0.08

^a E. coli, K. pneumonia, P. mirabilis and P. aeuroginosa are Gramnegative bacteria; E. faecalis and S. aureus are Gram-positive bacteria.

Gram-positive bacteria (Table 3). All compounds showed no toxicity (LD₅₀ >0.5 mM) against Artemia salina as test creature.

Compound 1 displayed anticandidal activity against Candida albicans and Candida tropicalis (MICs = 8.27 and 10.13 µM, respectively. This activity is relatively high if compared to amphotericin B (positive control; MICs = 4.63 and 5.27 µM, respectively).

4 Conclusions

Four new compounds were isolated from the organic extract of the red alga L. obtusa Lamouroux. These compounds belong to two major classes of sesquiterpenoids: eudesmanes [eudesma-4(15),11-diene-5,7-diol (1)] and cuparanes [10-hydroxycuparaldehyde (2), 3-hydroxy-15-nor-cuparan-10β-ol (3), and 2-bromo-3-hydroxy-15nor-cuparan-10β-ol (4)]. Compounds 1 and 2 displayed relatively high antimicrobial activities, whereas 3 and 4 belong to a specific group of compounds (nor-cuparane sesquiterpenoids) that are rarely isolated from the marine environment.

Acknowledgments: The authors are indebted to Prof. Mohsen El-Sherbiny, Faculty of Marine Sciences (King Abdulaziz University) for the collection and identification of the alga sample. They also thank King Fahd Center for Medical Research for giving them the opportunity to work in its central laboratory.

Conflict of interest: Authors declare no conflict of interest.

^b Diameter of inhibition zone. ^c Positive control; mean ± SD (n = 3).

References

- [1] Kladi, M.; Vagias, C.; Papazafiri, P.; Furnari, G.; Serio, D.; Roussis, V. New sesquiterpenes from the red alga Laurencia microcladia, Tetrahedron 2007, 63, 7606-7611.
- [2] Alarif, W. M.; Abou-Elnaga, Z. Sh.; Ayyad, S.-E. S.; Al-lihaibi, S. S. New larvicidal acetogenin from the red alga Laurencia papillosa, CLEAN - Soil, Air, Water 2011, 38, 548-557.
- [3] Alarif, W. M.; Al-lihaibi, S. S.; Ayyad, S.-E. S.; Abdel-Rhman, M. H.; Badria, F. A. Laurene-type sesquiterpenes from the Red Sea red alga Laurencia obtusa as potential antitumor-antimicrobial agents, Eur. J. Med. Chem. 2012, 55, 462-466.
- [4] Ayyad, S.-E. S.; Al-Footy, K. O.; Alarif, W. M.; Sobahi, T. R.; Basaif, S. A.; Makki, M. et. al. Bioactive C15 Acetogenins from Red Alga Laurencia obtusa, Chem. Pharm. Bull. 2011, 59, 1294-1298.
- König, G. M.; Wright, A.D. Laurencia rigida: Chemical investigations of its antifouling dichloromethane extract, J. Nat. Prod. 1997, 60, 967-970.
- Angawi, R. F.; Alarif, W. M.; Hamza, R. I.; Badria, F. A.; Ayyad, S.-E. N. New cytotoxic laurene, cuparene and laurokamurene type-sesquiterpenes from the red alga Laurencia obtusa, Helv. Chem. Acta. 2014, 97, 1388-1395.
- [7] Alarif, W. M.; Al-Footy, K. O.; Zubair, M. S.; PH M. H.; Ghandourah, M. A.; Basaif, S. A.; Al-Lihaibi, S. S.; Ayyad, S.-E. N.; Badria, F. A. The role of new eudesmane-type sesquiterpenoid and known eudesmane derivatives from the red alga Laurencia obtusa as potential antifungal-antitumour agents, Nat. Prod. Res. 2015, 30, 1150-1155.
- El Sayed K. A.; Dunbar, D. C., Perry, T. L., Wilkins, S. P., Hamann, M. T.; Greenplate, J. T. Marine natural products as prototype insecticidal agents J. Agri. Food Chem. 1997, 45, 2735-2739.

- [9] Vairappan, C. S.; Kawamoto, T.; Miwa, H.; Suzuki, M. Potent antibacterial activity of halogenated compounds against antibiotic-resistant bacteria, Planta Med. 2004, 70, 1087-1090.
- [10] Esselin, H.; Sutour, S.; Liberal, J.; Cruz, M. T.; Salgueiro, L.; Siegler, B. et al. Chemical Composition of Laurencia obtusa Extract and Isolation of a New C15-Acetogenin, Molecules 2017, 22,779-790.
- [11] Christopher K., Bruno E. (2003) Identification of bacterial species. In O'Donnell MA (Editor) Tested studies for laboratory teaching. Proceedings of the 24th Workshop/Conference of the Association for Biology Laboratory Education (ABLE); pp 103-130.
- [12] Holder, I.; Boyce, S. Agar well diffusion assay testing of bacterial susceptibility to various antimicrobials in concentrations non-toxic for human cells in culture Burns 1994, 20, 426-429.
- [13] Chand, S.; Lusunzi, I.; Veal, D. A. L.; Williams, R.; Karuso, P. Rapid screening of the antimicrobial activity of extracts and natural products, J. Antibiotics 1994, 47, 1295-1304.
- [14] Aly, M.; Gumgumjee, N. M. Antimicrobial efficacy of Rheum palmatum, Curcuma longa and Alpinia officinarum extracts against some pathogenic microorganisms African J. Biotechnol. 2011, 10, 12058-12063.
- [15] Meyer, B.; Ferrigni, N.; Putnam, J.; Jacobsen, L.; Nichols, D. J.; McLaughlin, J. L. Brine shrimp: A convenient general bioassay for active plant constituents, *Planta Med.* 1982, 45, 31-34.
- [16] Ichiba, T.; Higa, T. New cuparene-derived sesquiterpenes with unprecedented oxygenation pattern from the sea hare Aplysia dactylomela, J. Org. Chem. 1986, 51, 3364-3366.