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Abstract: In stoichiometric network analysis (SNA)
the instability condition is calculated by the current rates.
Recently, we have shown that in the final result the current
rates can be substituted by reaction rates, which is a more
appropriate value for the examination of instability from
experimental point of view. Here, we elaborate the problem
of whether the current rates are necessary parameters
in the calculation, with the aim of obtaining the region
of instability. All calculations are performed on a model
for Belousov-Zhabotinsky (BZ) reaction, which has not
been examined by SNA.
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1 Introduction

An examination of dynamic states of a complex
nonlinear reaction system and the related stability of
the corresponding model is a serious problem when the
number of independent intermediate species, or, from
a mathematical point of view, the number of variables in
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kinetic equations, is larger than three [1-11]. One method
for solving this problem is to use the Stoichiometric
Network Analysis (SNA) that was developed by Clarke
[12]. In this method, instead of using reaction rates in the
steady state, the current rates (see below) were introduced,
to allow for stability conditions to be discussed for an
n-dimensional system. The problem appeared when the
relations expressed as a function of current rates had to
be evaluated and compared with numerical simulations
and experiments. The problem lies in the fact that the
number of current rates is usually larger than the number
of equations from which they can be determined. We have
recently shown that evaluated instability condition in
a function of current rates can always be expressed at the
end as the function of reaction rates [13], thus contributing
strongly to the application of the SNA. We shall discuss the
common problem that appears: Is it possible to substitute
the current rates with the reaction rates at some earlier
phase in the SNA procedure, and, are the current rates
necessary to analyze the stability of the dynamic states?
In other words, why do we not work from the beginning
with the reaction rates, i.e. the values close to almost all
physical chemists?

All general equations necessary for consideration
of the mentioned problem evaluated in Sect. 3 will be
applied in the same section, to the model for Belousov-
Zhabotinsky reaction [14] shown in Table 1 (Sect. 2), this
model that has never been treated by SNA. The results
of this assessment will be presented.

2 Theory and experiment

2.1 Short overview of the Belousov —
Zhabotinsky reaction

In this paper we focus our attention on the application
of the SNA to the model describing a complex process
under batch conditions. The selected complex process is
the oscillatory catalytic oxidation of organic substrates
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(malonic acid) in the presence of acid bromate and
a metallic catalyst (cerium), known as the Belousov-
Zhabotinsky oscillatory reaction (BZ) [15,16]. Although
the malonic acid can be totally decomposed to water and
carbon dioxide, the mentioned process is often presented
in the literature by the following stoichiometric relation:

3CH,(COOH), + 2Br0,~ + 2H* >
- 2BrCH(COOH), + 4H,0 + 3CO, (1)

The bromomalonic acid is the product of reaction [1,17].

The numerous dynamic states such as simple,
mixed-mode and chaotic oscillations obtained in BZ
reaction system under various experimental conditions
[18-21], can be obtained by numerical simulations using
different models. They all have an important role in the
modeling of a BZ reaction [14,22-33].

With the aim of discussing the importance of current
rates in examinations of dynamical states and their
correlation with experimentally obtained results, we are
going to apply the SNA to only one model which describes
an oscillatory evolution of the BZ process under batch
conditions; the model considered in our previous papers
[14,34]. Table 1 contains the model of the BZ reaction
consisting of twelve reactions (R1)-(R12) of which (R1),
(R3), (R6) and (R7) are reversible.

The reaction (R12) was included in the model to
regulate the evaporation of bromine from the solution
[35-37].

2.2 Experimental investigations

The isothermal BZ oscillatory reactions were performed
at 30.0°C, in a thermostated batch reactor with a reaction
volume of 51 x 102 dm’ and equipped with a magnetic
stirrer. The stirring rate was kept at 700 rpm. A bromide
ion-sensitive electrode versus a double junction
Ag/AgCl electrode as the reference one was used for
the potentiometric monitoring of temporal evolution of
the BZ reaction.The experiments were carried out with
various initial malonic acid concentrations 8.00 x 107 <
[CH,(COOH),], < 4.30 x 10?mol dm™. In all experiments,
the initial concentrations of potassium bromate,
sulfuric acid, potassium bromide and cerium sulfate
were kept constant: [H,SO,]; = 1.00 mol dm?, [KBrO,], =
6.20 x 102 mol dm?, [KBr], = 1.50 x 10 mol dm?,
[Ce,SO,),], = 2.50 x 10~ mol dm™. The BZ reaction was
started after an injection of 1 x 102 dm?’ of cerium sulfate
solution into the 50 x 10~ dm® mixture containing malonic
acid, potassium bromate, sulfuric acid, and potassium
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Table 1: A model of the Belousov-Zhabotinsky reaction [14].

Reactions No.
Br-+ HOBr + H*-> Br,+ H,0 (R1)
Br,+H,0> Br + HOBr + H* (R-1)
HBrO, + Br + H* > Br,0 + H,0 (R2)
Br,0 + H,0 > 2HOBr (R3)
2HOBr > Br,0 + H,0 (R-3)
Br- + Br0,” + 2H* > HOBr + HBrO, (R&)
2HBrO, - BrO,~ + HOBr + H* (R5)
BrO,” + HBrO, + H* > 2Br0," + H,0 (R6)
2Br0," + H,0 > BrO,” + HBrO, + H* (R-6)
Ce>* + Br0," + H* > Ce** + HBrO, (R7)
Ce* + HBr0, > Ce** + Br0," + H* (R-7)
CH,(COOH), + Br, > CHBr(COOH), + Br~ + H* (R8)
CH,(COOH), + Ce** > Ce* + P, + H* (R9)
CHBr(COOH), + Ce** > Ce** + Br + P, (R10)
Br,0 + CH,(COOH), > CHBr(COOH), + HOBr R1D)
Br, > Br,(g) (R12)"

"Note: Br, and Br,(g) denote bromine in aqueous solution and
bromine in gas phase, respectively. P, and P, are products of the

overall process

bromide solutions of the mentioned concentrations, at the
moment when the potential of the bromide ion-sensitive
electrode achieved the steady value of about 200 mV.
A detailed description of the experiments is shown in
a previous paper [14].

The typical potentiometric traces taken with the
bromide ion-sensitive electrode of the investigated
BZ systems at selected different initial concentrations
of malonic acid are illustrated in Fig. 1a.

2.3 Numerical Simulations

The kinetic equations (2-12), based on the model given
in Table 1 and law of mass action, which describe the
time evolution of the concentrations of all species taking
place in the model, are solved numerically using the rate
constants presented in Table 2.

d[Br ]

dr =T T Ty Ty T gt @
d[HOBr
%:—I’H+r_1+27’+3—2I"_3+1’+4+r+5+r+11 (3)
d[Br
M:r —r—lg—Vq (4)

dt +1
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Figure 1: The oscillograms obtained experimentally E, and by the numerical simulation N, at T = 30°C, for [CH,(COOH),] values (in mol dm~?):
a) 1.60 x 102and b) 2.20 x 102, Experimental results E, present the potentiometric traces of the bromide ion-sensitive electrode. Calculated
results N, present the time dependence of log[Br] obtained by the numerical simulation according the kinetic scheme given in Table 1 [14].

%:_r+2+r+4_2r+5_r+6+r_6+r+7_r—7 ®)
d Sl Tl i3 =y ©
t
%=27@6_2r—6_ﬁ7 Ty ™
t
drc 3+
w:— i, +trgtr ®
dr
d[Ce*"]
T:”+7_’”—7_”+9_”+10 ©)
d[BrO;
M:—V+4+r+5 _r+6 +r76 (10)
dr
M:r+8—r+10 +r+11 (11)
dr
d[MA
%:_728_7@9_’?11 (42

Where r, r and r , denotes the rates of the irreversible
reaction i, forward and reverse parts of the reversible ones,
respectively. The concentration of X, is denoted as [X].
The numerical simulations were carried out under
the same conditions as the ones used in the experiments.
One of the numerically obtained results, the time evolution
of the log[Br], is presented in Fig. IN. All experiments
were performed in 1.00 mol dm~® HSO, and in all

Table 2: Rates and rate constants of the Model (Table 1) used in the
numerical simulations of the Belousov-Zhabotinsky reaction.

Rates Rate constants Reactions
r., =k, [Bri][HOBr][H"] k,=2.55 x 10° M-2st  (R1)
r,=k,[Br)] k,=3.18 st (R-1)
r, =k, [HBrO,][Br][H"] k,=5.93x10° MZs? (R2)
r,=k,[Br,0] k,=3.21x10° s (R3)
r=k_[HOBr]? k,=3.22x10° M*s* (R-3)
r,=k,[Bri[BrO,J[H]? k,=2.86 M-3s1  (R4)
r, =k, [HBrO,J2 k,=3.49x10° M7s* (R5)
ro =k, [BrO,7][HBr0O,J[H’] k,=44.70 M-2st  (R6)
r =k [Bro,]? k,=6.70x10" M71s? (R-6)
r,=k, [Ce*][ BrO,"][H*] k,=3.20x10* M32s? (R7)
r,=k_ [Ce*][HBrO,] k,=112x10* M1s? (R-7)
r, =k, [CH,(COOH),][Br,] k= 4.24 M-1st  (R8)
r, =k, [CH,(COOH),][Ce*] k,=0.36 M-ts  (R9)
r, =k, [CHBr(COOH),][Ce*] k, = 47.17 M-st  (R10)
r, =k, [Br,0][CH,(COOH),] k,=4.23x102 M™s? (R11)
r,=k,[Br)] k,=110x102 s (R12)

Remark: M = mol dm~

the simulations we use [H*]0 = 1.29 mol dm~ according
to Robertson and Dunford [38]. In the simulations, the
initial concentration of intermediate species HOBr was
[HOBr], = 1.50 x 10® mol dm?, whereas the initial
concentrations of other intermediates were zero. Under the
batch conditions, the concentrations of reactants decrease
with time, for chosen model and numerical simulation to
accurately describe the evolution of BZ reaction in closed
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reactor, it is necessary to integrate the concentrations of
the reactants. Therefore, only the concentration of water
[H,0] = 55 mol dm™ is included in the rate constants of
corresponding reactions [27].

The simulations were performed using the MATLAB
program package. The differential equations derived
from the model (2-12) were integrated using the odel5s
solver. All numerical simulations were performed with
anumerical precision of 102°.

3 Results

3.1 Stability analysis

In general, as well as in SNA, the stability analysis is based
on examination of the stability of the non-equilibrium
stationary states or steady states. Steady states are
defined as time independent states that are observed
when a reaction system is driven and maintained out of
equilibrium by external forces, such as the temperature or
theconcentration of external speciesas control parameters.
When a system is found in a nonequilibrium stationary
state, its properties are defined by the independent
intermediate species. For this reason, if we want to
analyze the stability of nonequilibrium stationary states,
we need to consider the kinetic equations of independent
intermediate species only. However, for an analysis of the
time evolution of the overall process, we need to examine
the complete set of kinetic equations including reactants
and products. Numerical simulation using a complete set
of kinetic equations provides insight into the properties of
the sequence of steady states, that system pass through,
forced by slowly changing concentrations of reactants.

If the reversible reactions are decomposed into two
forward irreversible reactions — one for each direction, the
kinetic equations of any stoichiometric model presented
by a set of differential equations of the independent
intermediate species only, can be written in the form:

Xl _g.,
dt

(13)

where d[X]/dt is the time derivative of the concentration
vector [X], r is the reaction rate vector and S is the matrix
of the stoichiometric coefficients that can be assigned
directly from the model (Sect. A in Supplementary
material). According to SNA [12,39], reversible reactions
are decomposed into two forward irreversible reactions —
one for each direction.
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The rates at a steady state (r_) are solutions of the
relation:

S-r.=0

Ss

(14)

and the overall process can be presented as a linear
combination of several elementary reaction pathways from
the proposed model, with non-negative coefficients (Sect.
A in supplementary material). These elementary reaction
pathways are known as extreme currents (E) and they
all contribute to the steady state values of reaction rates.
The contributionsoftheextreme currents (E) denotedasthe
current rates (j) are the components of the corresponding
current rate vector (j), whereas the extreme currents
(E), are the columns of the extreme current matrix (E).
The basic equation of the SNA is:

r,=E- j (15)
Eq. 15 simply describes the decomposition of the steady-
state reaction rates into the current rates which are by
definition non-negative numbers.

The stability analysis of a particular steady state is
usually performed on a linearized form of the general
equation of motion of the system around it. When we
consider the system in a steady state, a small perturbation
of the concentrations of intermediate species can be
described as a linear deviation from the steady-state
concentrations [1,3,4,6,40-44]:

[X]=[X], +[AX] (16)

We can then expand time derivative of concentration
vector [X] in Taylor series near the steady state [X]_ and
retaining the leading terms only.

d[X] _d([X], +[AX]) _ d[AX]
dr dr dr

=M [AX] (17)

The leading term M is a Jacobian matrix which in SNA has
the form [12,45]:

M(h,r,,)=S-diag(r,)-K" -diag(h) (18)
or by using the relation (15):
M(h, j)=S-diag(E- j)-K" -diag(h) 19)

where diag(h) is a diagonal matrix whose elements (h,)
are the reciprocal of the steady state concentrations of the
species i, (i = 1,...,n) where n is the number of independent
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intermediate species, and K is the matrix of the order
of reactions with its transpose K'. For the model under
consideration, matrix K is given in Appendix B.

The steady-state stability is determined by the
sign of the eigenvalues of M, which are the roots (A)
of the characteristic polynomial: [46]

AL—M|= Zn:ai)\"fi (20)

i=0

If the real compoments of all of the eigenvalues are
negative, a steady state is stable. If one or more eigenvalues
have positive real parts the steady state is unstable.

The sign of the real part of the eigenvalues of the
Jacobian matrix can be evaluated by using several
criteria such as the Hurwitz determinants [46,47] or an
a approximation (a system is unstable if at least one
coefficient of the characteristic polynomial a is negative).
Since our main goal is to derive an equation which yields
an (in)stability condition, two of the mentioned criteria
are impractical to use, because the equations derived
for large models consist of hundreds or even thousands
of terms. Moreover, a direct calculation of the roots of
a characteristic Eq. 20 of the order n, where nis the number
of independent intermediate species is often impossible to
calculate. A much simpler method to examine the steady-
state stability is to use a matrix of current rates [V(j)],
where:

V(j)=—S-diag(E- j)- K" 1)
or by using relation (15):
V(1) =-S-diag(r,,)- K" (22)

A steady state is considered unstable if there is at least
one negative diagonal minor of V(j) [12] and it is possible
only if the polynomials from corresponding determinants
contain, at least, one negative term. Namely, a negative
minor actually represents a destabilizing term since it
can make a coefficient of the characteristic polynomial,
a,, become negative. This occurs as a consequence of the
fact that a represents the sum of the diagonal minors
of dimension ixi. Although it is an approximation, this
criterion often gives a very good result [48-50].

The instability criterion calculated by the above
mentioned procedure when the system is in a steady state
is a function of the reaction rates, and consequently, the
related rate constants and steady state concentrations.
Steady state concentrations, obtained by solving
a steady-state equation (14) are functions of the reactant
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concentrations in a selected steady state. Consequently,
the instability criterion, as well as the dynamic state of the
considered reaction system in a closed reactor, changes
in time as the concentration of reactants varies during
the course of a reaction. In other words, under batch
conditions the reaction system passes through an infinite
number of pseudo-steady states.

3.2 Implementation of SNA

With an aim to discuss the role of current rates under
stability condition, we need to apply the SNA to a system
of differential equations which describe the time evolution
of the concentrations of independent intermediate species
from a selected model, i.e. the model of BZ reaction.
Therefore, the selection of the independent intermediate
species is the first and necessary step in the stability
analysis and are (Br-, HOB, Br,, HBrO,, Br,0, BrO,, BrO,’,
Ce*" and CHBr(COOH),). Malonic acid is a simple reactant
that decomposes, whereas Br,(g), P, and P, are products
of the overall process. (Note, the final products of malonic
acid decomposition are CO,and H,0, but our aim is to apply
SNA to the previously published model where further
decomposition of P, and P, is not taken into account.) As we
have already mentioned in Sect. 2.3, the concentration of
water was included in the rate constants of corresponding
reactions. Moreover, only one of the two cerium species
are considered independent intermediate since the
sum of their concentrations are constant. We accept the
approximation that [H*] is constant since its concentration
is much higher than those of the intermediate. Thus, we
have nine independent intermediate species for the SNA.
The oscillating dynamics is typically evolved during the
initial phase of the reaction, when bromomalonic acid is
the main product, and final oxidation products are formed
only in small amounts. Hence, we want to analyze the
malonic acid decomposition by the overall stoichiometric
reaction (1) and therefore we have to recognize that
bromate is the reactant while bromomalonic acid is
a product. In that case, we shall consider to have seven
independent intermediate species (Br-, HOBr, Br,, HBrO,,
Br,0, BrO,", Ce*), which turns out to be a very serious
problem from a mathematical point of view. However,
the SNA gives us the possibility of finding instability
conditions in such a reaction system which enables us to
avoid the direct calculations of the roots of a characteristic
Eg. 20 of the seventh order that appears in the model with
seven variables [12,13,51].

In this already known procedure, where the instability
condition is calculated by means of the negative minors
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Table 3: Diagonal minor M, in points where inequality (23) change sign and where bifurcation occurs in Fig. 1N, given as a function of

malonic acid concentration.

[MA], /102 M 1.60 2.20

[MA] / 102 M M, /10" [MA] /102 M M, /10"
Last positive value 1.55209 0.04371 2.11650 1.08600
First negative value 1.55183 -0.73271 2.11611 -0.01154
1t oscillations 1.36560 -1.37174 1.99310 -0.00884
Last oscillation 0.41080 -4.23458 0.25918 -0.08000
Last negative value 0.27398 -1.59243 0.25007 -0.02130
First positive value 0.27395 1.47311 0.24995 0.11609

of the order less than seven, current rates will have an
important role. To demonstrate this, we have to start with
a corresponding set of differential equations (2-8) that
describe the time evolution of the concentrations of the
seven selected independent internal species. By equating
(2-8) with zero we obtain steady state equation (14), that
upon solving yields matrix E (Sect. A in supplementary
material) which is required to perform the stability
analysis.

For the considered model, V(j) is given in Appendix
C. Stability analysis is performed by calculating the
determinants of the corresponding diagonal minors, and
by detecting ones that can be negative (the others are
always positive). The first step is to calculate the matrix
V(j) by Eq. 21, and then to calculate the determinants
of the diagonal minors that are functions of the current
rates. By analyzing polynomials from the related
determinants of all diagonal minors having dimension
1 to 7, only 8 were identified with negative terms.
The lowest dimension of a negative minor is 3, and this
a diagonal minor which is a part of all other negative
diagonalminors;thereforewecanconcludethatthecoreof
instability was located withinit. This minor (M1 46) consists
of the elements of the first, fourth and sixth rows, and the
columns of matrix V(j) corresponding to intermediate
species Br, HBrO, BrO,. (given in Appendix E).
The common characteristics for all of the negative
minors are that they all contain combinations of rows
and columns corresponding to intermediate species Br-,
HBrO,, BrO,” and this means that the feedback among
those species could be responsible for the instability
which causes oscillations.

Since therelations between reaction rates and currents
rates in a steady state are known (15), the instability
condition expressed in the function of current rates can be
rewritten as a function of reaction rates, by using MATLAB
symbolic toolbox. Thus:

r+6,ssr+7,ss (r+l,ss + r+2,ss + r+4,ss) >
> 2r—6,ssr—7,ss (r+1,ss + r+2,ss + r+4,ss) + (4r—6,ss + r+7,ss)

(r+1,ss + r+2,ss + 41"+ + 2r+2,ssr+4,ss + (23)

1,ss r +5,88

+ 4r+2,ssr+5,ss + 4r+4,ssr+5,ss)

The inequality obtained from the selected negative minor,
as well as the one expressed in the function of current
rates (Eq. E1 in supplementary material) describes the
instability condition which most probably must be
fulfilled so that the system can become unstable. Validity
of the inequality (23) was verified by comparing it with
numerical simulations carried out for different initial
concentrations of malonic acid given in Fig. 1. Since the
malonic acid concentration is decreasing during reaction,
it behaves as a control parameter of the system and steady
state concentrations of other species are calculated as
functions of its instantaneous value. The reaction rates
and all minors depend on it as well. From the results
given in Table 3, a good agreement between malonic
acid concentrations for which diagonal minor M, shifts
from a positive to a negative value, and the malonic acid
concentrations where oscillations start and terminate can
be established.

Once an instability condition in a function of reaction
rates is in a steady state, it can be expressed in different
combinations by means of their steady-state relations
such as the ones given in Eq. 14. Namely, the number of
reaction rates in a steady state is equal to the number of
reactions in the model, because in the SNA all reversible
reactions are separated in two forward reactions.
In the case considered here, there are 16 reactions. Since
we have selected 7 independent intermediary species
(independent internal variables) with aim of describing
a time-evolution of the system and define the steady state,
the number of equations in (14) is equal to this number,
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and the values for the reaction rates in the steady state can
neither be uniquely determined, nor chosen arbitrarily.
The instability condition can be expressed as a function
of the different linear combinations of the reaction rates
in the steady state, where all of them satisfy the relation
(14).

4 Discussion

As we mentioned earlier, the main goal of this paper is to
answer the question as to whether the stability analysis
can be performed using only reaction rates in a steady state
as those parameters that can be more or less satisfactorily
evaluated from experimentally determined rate constants
and steady-state concentrations of reactants. We have
calculated instability condition as a function of reaction
rates in a steady state by using the procedure of selecting
the negative minor by means of current rates and then
the current rates have been transformed to reaction rates.
What will happen if we calculate the negative minors
directly from V(r ), that is, from Eq. 22 using steady-
state relations (14)? In that case, the number of negative
minors is larger than it should be. Why? Although all
the coefficients of the current rates in the V(j) matrix are
positive numbers, it is not the case with the V(r_) matrix.
In the case considered, instead of 8 there are 16 of negative
minors (Sect. D in supplementary material). Therefore we
obtain incorrect solution. If we want to know which minor
are negative, we need to calculate the negative ones as
a function of the current rates.

On the other hand, the matrix V(j) given as a function
of the current rates offers the exact set of negative minors.
In order to illustrate the problem that can arise from the
stability analysis based only on the reaction rates, an
analysis of the diagonal minor of dimension 2, which
consists of the first two elements of the first and second
rows and columns of the matrices V(j) and V(r ) is
required. (As we have shown earlier in Eq. 23, the source of
instability is located within diagonal minor of dimension
3, and no minor of the dimension 2 contains negative
Terms). When expressed using reaction rates (Eq. 22),
a polynomial of the determinant of the considered
diagonal minor of dimension 2 has the form:

MIZ(VSS) = r+7,ss (r+2,ss + 4r+5,ss - r+6,ss ) +

+ 2r76,ss (2r+2,ss + 8’/'+5,ss + r—7,ss ) (24)

There is one negative term given in the form of r ,_and
therefore, one can consider this diagonal minor as the
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source of instability. However, this polynomial cannot
become negative since there are no negative terms when
it is expressed via current rates using Eq. 21 (see Eq. F1in
supplementary material).

The existence of diagonal minors is a significant
problem in stability analysis based solely on the reaction
rates, but since the number of current rates is usually
larger than the number of equations from which they
can be determined and numerical values of current rates
most often cannot be calculated, the main problem of
using current rates as parameters in stability analysis
is the inability to compare the derived equations with
experimental results.

5 Conclusion

Based on the presented discussion we can see that the
SNA is a very powerful method for stability analysis of very
complex chemical models such as the one investigated in
this paper. This paper provides support for an efficient
stability analysis where both parameters (current
and reaction rates) are equally important. Since each
parameter has unique features which introduce significant
improvements in both detecting instabilities in the model
and fitting numerical simulations with experimental
results. Current rates provide an accurate method for
detecting instabilities in the investigated system, but the
inability to calculate their numerical values prevents
comparing them with experimental results and makes
them impractical to use for a system optimization. On the
other hand, reaction rates can be easily calculated and
compared with experimental results, which allows for
system optimization, but they do not provide an accurate
method for detecting instabilities. Therefore, for efficient
stability analysis we suggest the next scheme:
1. Calculate matrix E, and then calculate matrices V(j)
and V(r).
2. Analyze diagonal minors of matrix V(j) and detect
those with negative terms.
3. Byanalyzing the core of instability, select the smallest,
yet most important negative minor.
4, Extract negative minor selected in the previous step,
but this time directly from the matrix V(r) and
calculate the instability condition as a function of r_.

The previously presented model for the Belousov-
Zhabotinsky reaction [14] shown in Table 1 (Sect. 2), is
analyzed here by SNA. We found that the core of instability
in the considered model is a result of the interplay between
the intermediate species Br-, HBrO,, and BrO,". We also
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obtained the necessary conditions for the appearance and
disappearance of oscillations (Eq. 23).
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