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This study evaluates urbanization’s impact on carbon emission rights value in
China using translog production functions and carbon shadow pricing models.
Firstly, the MK trend test and decoupling analysis divided the city into four carbon
emission pressure types, where an enhanced translog three-factor model is used to
analyze the nonlinear relationships among population, area, economic development,
and total carbon emissions. The results reveal that population growth and urban
expansion significantly increase carbon allowance values, with heterogeneous
effects across urban types. Carbon-excessive cities demonstrate the strongest
correlation, while plateau cities show minimal impacts, suggesting existing low-
carbon adaptations. Notably, 50% of cities have achieved peak emissions during
rapid urbanization, fulfilling emission control targets. Excessive-emission cities face
urgent decarbonization pressure, requiring prioritized policy interventions, whereas
plateau cities’ gradual emission growth offers transferable experience for low-carbon
transitions. Finally, taking the cities in Guangdong province as an example, we use
the shadow price model to calculate the value of carbon emission right, and combine
the marginal influence of social factors to obtain the change of carbon emission right
value under the influence of urbanization. The highest was 4759.08 yuan / ton for
Shenzhen and the lowest was 253.19 yuan / ton for Heyuan.
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1. Introduction

With the ongoing expansion of the global population and swift economic progress,
urbanization has emerged as a worldwide phenomenon.Throughout the urbanization
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process, substantial carbon emissions are discharged into the atmosphere due to
extensive energy consumption, transportation, construction, and industrial operations.
Consequently, China has implemented a carbon emissions trading scheme, which
effectively influences the value of carbon emission permits through market mechanisms
and economic incentives, thereby promoting global efforts to reduce greenhouse gas
emissions.

Carbon emission rights refer to the permits allocated by the government or
regulatory bodies to enterprises or countries to reduce greenhouse gas emissions. It
quantifies the emissions of greenhouse gases, turning them into a tradable commodity
and utilizing market mechanisms to regulate and reduce greenhouse gas emissions.
When an enterprise’s carbon emissions are lower than its allocated quota, it can sell
the surplus quotas to enterprises whose emissions exceed their quotas. There are two
forms of carbon emission rights trading: one is conducted in the primary market,
and the other in the secondary market. Trading in the primary market involves the
allocation of carbon emission rights by relevant national departments, which is closely
related to the government’s pricing policies. Trading in the secondary market involves
enterprises trading their held carbon emission rights in an open market. Whether in the
primary or secondary market, accurately grasping the value of carbon emission rights
is crucial for both the government and enterprises. The value of carbon emissions
can be either the actual transaction price of carbon quotas in the market or the
theoretical valuation based on an optimal planning model, namely the shadow price.
The shadow price can be understood as the contribution of any marginal change in the
availability of production factors to the country’s fundamental objectives, such as the
growth of national income. This means that the shadow price is not only influenced
by the country’s economic growth targets but also constrained by the environmental
conditions on which the marginal changes in resource availability depend. Given
that carbon emission rights are a scarce resource, their price should accurately reflect
their marginal benefits, that is, the environmental benefits or economic losses brought
about by an increase or decrease of one unit of carbon emission rights. Therefore,
by applying the theory of shadow pricing, the value of carbon emission rights can be
assessed more precisely, thereby providing a more scientific pricing basis for carbon
emission rights trading.

The impact of urbanization on carbon emission rights prices materializes in the
increased demand for carbon emissions and changes in supply capacity, thereby
affecting the market’s supply-demand equilibrium and the trajectory of carbon emission
rights prices. Furthermore, governmental policy regulations play a significant role in
influencing the volatility of carbon emission rights prices. This study primarily focuses
on the influence of social factors within the urbanization process on the valuation of
carbon emission rights. Population and area serve as intermediary variables to establish
the connection between urbanization and the value of carbon emission rights. The



110 China Finance and Economic Review

aim is to discern the dynamic equilibrium between societal progress and a low-carbon
economy through an urbanization model.

Carbon emission rights, viewed as emerging assets from an evaluation standpoint,
do not fit well within traditional evaluation methods, making it challenging to
accurately assess their worth. This research employs the translog production function,
rooted in marginal production theory, to incorporate carbon emissions rights as a
production factor in the production function. By integrating econometric empirical
methods, we develop a model to evaluate the shadow price (CSP) of carbon emission
rights. Quantifying the factors influencing carbon emission rights as correction
indicators enhances the evaluation system.

2. Literature Review

2.1. The Dynamic Correlation of Urbanization and Carbon Emissions

To differentiate cities based on their levels of carbon emissions, trends, and
economic effects, our initial approach involves categorizing cities into distinct types
using these criteria. Wang et al. (2021) utilized the Mann—Kendall (MK) trend test
method to explore the spatiotemporal characteristics of carbon emissions and their
classification into types. Shan et al. (2022) evaluated the status of urban emission
peaks and the degree of decoupling between emissions and social development
indicators using the MK trend test method. They categorized cities into four types,
emphasizing the diversity in urban carbon emissions resulting from variations in
energy and economic structures.

In existing studies on the impact relationship between urbanization and carbon
emissions, many scholars utilize scaling laws and the Scale-Adjusted Metropolitan
Indicator (SAMI) for characterization (Gong et al., 2021). However, both methods
may be vulnerable to confounding effects, particularly correlations between variables.
Ribeiro et al. (2019) introduced a dual-factor production model framework that treats
population and area as input factors in the urban development process. This framework
reveals the coupling effect of population and density on emissions. The traditional
Cobb-Douglas model (C-D) has the assumption of neutral technological progress,
but the reality is not satisfied, and the factors of production influence each other.
The translog production function is more flexible than the C-D because it does not
assume fixed input elasticities and constant returns to scale. It can capture nonlinear
relationships between variables, providing a more precise fit through higher-order
terms (such as square and interaction terms). It is suitable for production situations
with multiple input factors.

Unlike much of the existing research, which relies on provincial-level data and
directly substitutes city-level data (Zhang et al., 2014; Xie et al., 2016), this article
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underscores the importance of examining these dynamics on a smaller regional
scale (Chen and Liu, 2018). Concerning indicator selection, previous studies have
extensively explored pairwise relationships among population concentration, economic
growth, area, and carbon emissions. However, the combination of all four factors into
a unified analytical framework for comprehensive research is limited. Therefore, our
study utilizes corrected urban boundaries as the statistical area, employing an enhanced
translog three-factor model to analyze the nonlinear relationships among population,
area, economic development, and total carbon emissions.

2.2. Estimation of the Carbon Emission Right Value

The CSP evaluation method is currently widely employed and highly applicable
to carbon asset assessment. The application of the CSP can be classified into two
categories. The first employs the directional environmental distance function and
its various forms. The second utilizes the production function, considering carbon
emission rights as either an input factor or an undesirable output. This paper argues that
if carbon emission rights are treated as an undesirable output and used as a dependent
variable, their uncontrollability and high randomness make it difficult to accurately
determine their price. Furthermore, the starting point of this study is to view carbon
emission rights as a scarce social resource asset that significantly impacts output.
Therefore, this paper chooses to incorporate carbon emission rights as a production
factor, similar to capital and labor, thereby once again leveraging the advantages of
the translog production function. Zhang (2022) refined the CSP model based on the
translog production function and computed the CSP of secondary market carbon
emissions trading rights held by Inner Mongolia Huadian Company. Gao and Liu
(2021) examined the trading conditions of the carbon market in various pilot projects
nationwide. Wang et al. (2022) propose a nonparametric approach for estimating the
optimal carbon shadow price by maximizing the possibility of GDP expansion and
carbon reduction simultaneously.

2.3. Factors Affecting the Value of Carbon Emission Rights

A CSP evaluation model for carbon emissions trading is established in this article,
based on the national carbon market. The model aims to evaluate the intrinsic value of
carbon emissions trading by analyzing the relationship between marginal abatement
costs and the marginal benefits of carbon emissions trading rights. Most studies tend
to overlook the theory of market supply and demand equilibrium, failing to adjust
adequately for time and market fluctuations. To bridge this gap, our article adopts a
quantitative approach, considering key influencing factors such as time and carbon
emission allowance policies. We introduce relevant evaluation indicators to refine the
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assessment of carbon emissions trading rights, ensuring a more comprehensive and
accurate analysis.

Figure 1 illustrates the specific technical roadmap of this article. This paper
advances the theoretical development from three aspects:

Spatial reconstruction: the urban boundary correction technology is adopted to
replace the administrative boundary with the global urban boundary data set, accurately
depict the real spatial carrier of population density and land development, and avoid
the statistical deviation of traditional administrative divisions.

Model innovation: The paper builds an enhanced Translog three-factor model,
integrates the non-linear relationship between population (P), area (A), economy (G)
and total carbon emission (C), and quantifies the marginal emission elasticity and
interaction effect.

Dynamic pricing: The paper redefines carbon emission right as a scarce production
factor, coupling market supply and demand mechanism and policy regulation through
shadow price theory, introducing time calibration and quota adjustment factor, and
establishing a dynamic CSP evaluation framework.

3. Study Area and Data

All 330 cities in the dataset of urban carbon emissions, as reported by the Chinese
Cities Greenhouse Gas Inventory (CCG), are scrutinized in this article. The dataset
covers cities across the 31 provincial-level administrative regions of China, excluding
Hong Kong, Macao, and Taiwan, spanning the years 2005, 2010, 2015, and 2020.

This article utilizes urban CO, emission data from CCG, which computes direct
and indirect CO, emissions of Chinese cities using the internationally prevalent carbon
emission factor method, integrating it with the specific circumstances of Chinese cities,
and furnishes data on carbon emissions from crucial industries. Emissions from the
agriculture and rural living sectors were omitted. The Global Urban Boundary Dataset
includes the boundaries of all cities and adjacent residential areas worldwide with
areas exceeding 1 square kilometer.

4. Research Methods

4.1. Methods for Urban Classification

The carbon emission trend of cities over a 15-year period can, to some extent,
indicate the level of green development. Due to the limited understanding of their
overall distribution, we opted for a nonparametric test method known as the MK trend
test. Cities are classified into four categories—significantly decreasing, decreasing,

increasing, and significantly increasing based on the direction and extent of carbon
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emission changes.

(1) The original assumption (HO) is that the time series data (x;,X;,...x,) of n
independent samples has the same distribution. The alternative hypothesis (H1) assumes

different distributions for all #,/ <7 and i#, x,and x,.
(2) Calculate the test statistic S.

n-1 n
S=ZZSgn(xj—x,-) (1)

i=1 j=i+l

(3) For time series with 10 or more data points, a normal approximation is used.
The variance of the statistic S is calculated as follows:

var(S) = %[n(n -D(2n+5)— ie,- (e, —1)(2¢; +5)] 2)

where the number of samples with the same annual carbon emissions is denoted as #,
and the number of samples with different carbon emissions in samples with the same i
value is denoted as e..

(4) Construct the standardized normal distribution variable Z using the following formula:

S-1
—, if §>0
Jvar(S) v
7z = 0, if $=0 3)
S+1
—, if §<0
Jvar(S) ¥a<

At a certain confidence level, if Z>|Z, |, the null hypothesis is rejected, indicating
a significant trend in the annual carbon emissions time series at the confidence level.
Here, we choose a 90% confidence interval, and the Z value is 1.64. That is, Z> 1.64 is
considered significant; otherwise, it is not significant (Sa’adi et al. 2019).

(5) The magnitude of the trend is represented by the following formula:

X=X

¥ = Median(

hwj<i  l<j<i<n 4)
i—

where Median(.) denotes the median. ¥ >0 indicates an upward trend, while 7 <0
indicates a downward trend.
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For cities identified with significant increases in carbon emissions through the MK
trend test, decoupling theory is applied to analyze the relationship between economic
growth and carbon emissions (Hang et al., 2019). This is conducted to evaluate the
city’s ability to balance economic development and carbon pressure. The decoupling
index is used to illustrate the extent and direction of “decoupling”. In this study, the
total amount is considered the driving variable, while carbon emissions serve as the
explained variable.

A
S | Expansive
‘% | Negative
g Decoupling
g 4C>0, Expansive Coupling
Strong Negative Decoupling :% 4GDP>0, AC>0, AGDP >0
AC>0, AGIO<0, D<0 o | D>12 08<D<12 _
<
Weak Decoupling
A4C>0,4GDP >0,
0=<D<038
. >
Weak Negatlve A Economic growth
Decoupling
4C<0,4GDP<0,
0<D<0.8
Strong Decoupling
Recessive Coupling AC<0,4GDP>0,D<0
AC>0,4GDP<0,
08<D<12 Recessive
Decoupling
AC>0,
AGDP<0,
D>12

Figure 2. Evaluation Criteria for Decoupling Analysis.

Drawing from Tapio’s elasticity decoupling model, the carbon decoupling index
is defined as the ratio of the change rate of carbon emissions to the GDP change rate
during a specific period. The calculation is as follows:

_ ACn /Cn—l _ (Cn _Cn—l)/cn—l
sGDP,/GDP,_, (GDPF,—GDFP,_)/ GDP,_,

(&)

where D represents the decoupling elasticity coefficient, C represents carbon emissions,
AC and AGDP represent the changes in carbon emissions and regional gross domestic
product , n=2005, 2010, 2015, 2020.

This paper conducts a comprehensive assessment of the relationship between
carbon emissions and the level of urban economic development, categorizing
the degree of decoupling between the two into eight criteria. The criteria include
empirical values for judgment thresholds of 0.8 and 1.2, as depicted in Figure 2. To
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prevent overidentification, elasticity values of 1 and those within +20% deviation are
considered (Tapio, 2005).

Using the results of the decoupling analysis, cities are categorized into four groups,
as illustrated in Figure 3: emission peak, plateau, emission coordination, and emission
excess, representing varying levels of carbon emission pressure. The emission peak
category comprises cities where carbon emissions do not notably decrease; the emission
plateau category includes cities where carbon emissions experience slow growth or
no significant increase; the emission coordination category involves cities with weak
decoupling; and the emission excess category includes cities characterized by expansion
connections, strong negative decoupling, and expansion negative decoupling.

4.2. Three-Factor Production Function Model

In the actual scenario, the influence of explanatory variables on the explained variable
is not related to individual factors alone, but is intertwined with other factors that affect
the explanatory variable. In a hyperlogarithmic function, inputs are conceptualized as
three abstract entities: population, GDP, and area. The additional flexibility brought by the
interaction term between the three social factors quantifies the intensity of this interaction,
so that the impact of social factors on emissions varies with the changes of P, 4 and G,
and the output represents the carbon emissions of the city affected by the three factors.

C=f(P,A4,G,T)

InC = & + BInP+ f,Ind+0.54,, (InP) +0.55,, (In4)’

(6)
+0.5835 (InG)’ + B, (InP)(Ind) + B3 (InP)(InG)

+ 3 (InA)(InG) + B,T +0.58,T>

where C represents the total carbon emission of the city (comprising both indirect and
direct carbon emissions), P denotes the urban population, A signifies the corrected
urban area, G stands for the gross domestic product, and T represents the time trend

item, with assigned values of 5, 10, 15, and 20, respectively. a and B; are coefficients
associated with the input, representing the primary impact of each input variable on

carbon emissions in the short term. If Bis significant and positive, the input variable
positively influences the increase in carbon emissions; otherwise, the opposite holds;
B is the squared coefficient of the input factor, reflecting the long-term impact on
carbon emissions; By is the cross term of the input factors, illustrating the influence

of the interaction between two input variables on carbon emissions; £, and B, are
utilized to compare changes between different years horizontally.

Considering the correlations among population, area, and GDP, accurately estimating
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the model is challenging and may suffer from multicollinearity. The variance inflation
factor (VIF) for each type of data for each year was systematically examined. The results
indicated significant multicollinearity in all 16 groups of data. Given the substantial
correlation among explanatory variables, ridge regression was applied to each dataset to
alleviate the impact of multicollinearity on the model (Lin and Atsagli, 2017).

The output elasticity serves as a measure to assess the strength of the relationship
between the input and the output. Descriptive statistical analysis was conducted on
the four types of urban data for each year. The corresponding output elasticity was
calculated by substituting the fitted coefficient values and the arithmetic mean of each
input factor into the following formula:

oCc/C  JInC

2P/ P = P = By + ByInP + B, Ind + B3InG

oCc/C  JdInC

oA/ A = SInP = By + Pplnd + f,InP + f3InG @)
C/C  JlnC

G/ G = G = p5 + By3InG + B5InP + fB,31nA

The marginal impact signifies the percentage alteration in carbon emissions resulting
from a one-unit change in a single factor while keeping other input factors constant.

oC/C _ oInC
oP  oP
AC/IC  AInC
o4 OP ®)
oC/IC _ dInC
oG 4G

4.3. Shadow Price Calculation

Among the trial of carbon trading markets in China, Guangdong’s carbon trading
market offers the highest cumulative trading volume and total transaction value, surpassing
100 million tons in cumulative trading volume. Hence, we incorporated the 21 prefecture-
level cities in Guangdong Province and calculated the marginal emission reduction costs at
the city level.

This paper introduces the translog production function to refine the shadow pricing
method, with input variables comprising capital stock (X), labor input (L), and carbon
emissions (E), and the output variable (Y) being actual GDP. The transcendental
logarithmic production function is expressed as follows:
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InY, =¢+aynK,+a; InL, +ayInE, +az InE,
+ogy MK, InL, +opy nK, InE, +a;pInL,InE, +ax; InK,InE, 9)

+agg (InK, )2 +ay; (InL, )2 + g (lnEt)2

The expression of China’s carbon emission CSP £, can be expressed as

Y
P =E’(aE+aKE InK,+ea,,InL +2c,,.InE,) (10)

t

The calculated sample CSP is weighted and averaged to obtain the social marginal
emission reduction cost, which is the CSP P of the national carbon emission right:

p:jp,./n (n

This study mainly uses the perpetual stock system to estimate capital stock:
Kt =It/R+(1_5t)Kf—1 (12)

where K, is the capital stock in year ¢ ,/, is the new investment in year ¢ , £, is the

investment price index in year ¢, and &, is the capital depreciation rate in year ¢.
Assuming diminishing marginal efficiency, estimating capital stock through the

perpetual stock method involves considering four variables: fixed asset investment amount
(1), fixed asset investment price index (P,), economic depreciation rate (J,), and base
period capital stock (K,). J,utilizes an empirical value of 9.6% provided by Zhang (2004).
Typically, the choice of the investment price index relies on the national fixed asset
investment price index. However, due to significant missing data for certain years and
regions, Zhang et al. (2004) attempted to substitute the missing fixed asset investment
price index with the investment implicit deflator index. Consequently, some studies have
begun to adjust the nominal value of capital stock using the GDP deflator index (GDI).
This ensures availability through the completeness of the GDP series and GDP index (GI)
series, aligning with the statistical caliber of the current year’s new capital stock series.
This consistency is crucial as final consumption, gross fixed capital formation, and net
exports of goods and services constitute the entire content of expenditure-based GDP.

GDP
GD[ - "
GDPnfl X Gln (13)

The regional G/ for each city was gathered from 2000 to 2020. The data was
adjusted to establish the GI with 2000 as the fixed base period.
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Building upon Shan(2008)’s expanded calculation formula for the base capital
stock, which assumes “the growth rate of capital stock under economic steady-state
conditions is equal to the growth rate of investment,” the formula is as follows: Base
capital stock = Total capital formation / (Uniform depreciation rate + Average growth
rate of fixed asset formation). In this investigation, the total fixed asset formation in
2000 was divided by the depreciation rate and the average growth rate of fixed asset
formation from 2000 to 2020.

1
K =—
g+0

(14)

The labor input indicator in each city of Guangdong Province for the current
year utilizes the number of employed individuals. Data are sourced from the annual
statistical yearbooks of various regions and are measured per ten thousand people.
Labor input is derived from end-of-period data on urban employees, excluding rural and
suburban areas. To mitigate the influence of prices on the model’s errors, it is essential
to transform nominal GDP into real GDP. This study employs the GDP deflator method.
GDP conversion results are shown in the Appendix on the Journal’s website.

4.4. Carbon Emission Allowance Value Adjustment

In the national carbon trading market, the compliance period typically spans
one year, and the quotas allocated to enterprises for free undergo verification in the
subsequent year. Any remaining carbon emission allowances can be traded on the
secondary market. Buyers of these allowances must utilize them before the next
compliance period, as government confiscation may occur upon expiration, leading to
economic losses. Hence, the closer the compliance deadline is, the lower the value of
carbon emission allowances will be. There exists a lag effect between purchasing the
allowances and employing them for production. Thus, it becomes necessary to adjust
for the changes in carbon emission benefits resulting from this lag period.

Assuming a one-year compliance period for carbon emissions in Guangdong
Province, the annual production capacity of a unit of carbon emission allowance is
evenly distributed on a monthly average basis. T’ denotes the time from the evaluation
base date to the announcement date of the CSP of carbon emission allowances.
According to market research data from the Guangdong Emission Trading System, the
deadline for quota surrender for control-emission enterprises in Guangdong Province
in 2020 was July 20th, with the latest price negotiation release date being August 2nd.
Therefore, 7 is 13 days, approximately 0.42 months. The adjusted value of carbon
emission allowances is computed as follows.



120 China Finance and Economic Review

_ Px(12-T)
12

w (15)

The influence of policy effectiveness on the value of carbon emission allowances
is critical. However, due to the intricate and unquantifiable nature of policy effects,
this paper exclusively examines policies regulating the supply and demand of carbon
emission allowances in the trading market. These policies primarily involve the
total quota of carbon emission allowances and their impact on the market. When
the government reduces the total quota of carbon emission allowances, the supply
of quotas on the carbon emission allowance trading market decreases in the short
term due to enterprises’ inability to innovate in production and emission reduction
technologies. Consequently, this affects the price of carbon emission allowances.
During such periods, the calculated CSP should consider the impact of the policy-
induced supply-demand imbalance and adjust it to determine the final assessed value. S
represents the total annual quota announced by the government, i.e., the market carbon
emission right capacity, S, is the carbon emission market capacity of the previous
period, S,is the carbon emission market capacity of the current period.

_PxS

x100% (16)

t
t

According to data from the Guangdong Carbon Trading Market, the total carbon
quota was 465 million tons in 2019 and 464 million tons in 2020. In this study, the
carbon reduction target in Guangdong Province in 2019, considered the carbon emission
market capacity (MC) before carbon peaking, is regarded as 1. It is assumed that there
will be no supply exceeding demand for carbon emission allowances in the market
before reaching the peak. Therefore, the adjusted market capacity for carbon emission
allowances in 2020, after adjusting for the total quota, is 99.7% of the capacity in 2019.
The adjusted price for carbon emission allowances is calculated accordingly.

W=P><M><100% (17)

2020

5. Results
5.1. Marginal Effects of Carbon Emissions

Following the application of the classification model, we categorized the 330 cities
into four groups, as depicted in the Appendix online, based on their carbon emission
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levels, trends, and decoupling situations. These four types are arranged in ascending
order of carbon emission pressure faced by the cities. The first category, comprising
162 cities, is termed “emission peak,” indicating that carbon emissions do not notably
decrease. The second category, consisting of 42 cities, is labeled as “plateau cities,”
where carbon emissions increase slowly or show no significant increase. The third
category, comprising 93 cities, is referred to as “emission coordinated cities,” wherein
both economic growth and carbon emissions increase, or economic growth slightly
outpaces carbon emissions. Finally, the fourth category, including 33 cities, is termed
“emission exceeded cities,” indicating that carbon emission pressure surpasses the
economic growth rate. The population, area, and GDP of the four major cities are shown
in the Appendix online.

—&— Emission peak
0.28¢ 4.20E-71 —=— Platcau
2 10E-7k Emission coordination

. 0.14F B . —e— Emission excess
A Q
3 of 8 0.00E+0f J
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Figure 3. Output Elasticity and Marginal Impact of Population

Figure 3 illustrates that from 2005 to 2010, the average output elasticity of
population and carbon emissions exhibited a decreasing trend for emission peak and
emission coordinate cities, transitioning from positive to negative values for emission
coordinate cities. This implies that increasing each input results in an increase in
output. Plateau and emission exceeded cities showed relatively stable changes, with all
cities demonstrating a negative correlation, indicating that population growth leads to
a decrease in carbon emissions. Between 2010 and 2015, the most significant change
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Figure 4. Output Elasticity and Marginal Effects of Area
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occurred in emission exceeded cities, witnessing a sharp drop in output elasticity, while
other types showed a slight decrease, all declining to negative values. From 2015 to
2020, all city types except plateau cities rebounded, including emission exceeded cities.
Over time, the overall output elasticity of population and carbon emissions demonstrates
a decreasing trend, signifying a weakening correlation between population changes and
carbon emissions.

From Figure 4, concerning the overall level of output elasticity, the output elasticity
of population growth and that of area expansion exhibit a similar trend across all
city types. The marginal impacts of the two indicators differ significantly, with urban
expansion resulting in notably more carbon emissions than population growth. In
2015, both indicators exhibited negative effects, indicating that area expansion led to a
decrease in carbon emissions. These negative effects weakened by 2020. The emission
peak underwent a sharp decline from 2005 to 2015 before gradually rebounding, while
emission exceeded cities remained at a relatively low level.

5.2. Shadow Price Examples in Guangdong Province

We conducted logarithmic, squared, and cross-multiplication transformations on
the fundamental data for Guangdong Province to integrate them into the translog
production function (refer to the Appendix online).

The output elasticities of various input factors are depicted in Figure 5. These
elasticities for all factors exhibit a fluctuating downward trend, indicating a gradual
weakening contribution of these input factors to economic growth. Notably, carbon
emissions display the smallest output elasticity, suggesting significant potential for its
impact on economic growth.
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Figure 5. The Output Elasticity of Factors
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5.3. Shadow Price Adjustment

Table 1. CSP of Cities in Guangdong Province in 2020

City Shadow price (yuan/ton) City Shadow price (yuan/ton)
Guangzhou 2690.70 Zhongshan 1056.28
Shenzhen 4921.09 Jiangmen 951.31
Zhuhai 1171.50 Yangjiang 395.52
Shantou 817.77 Zhanjiang 487.17

Foshan 1766.97 Maoming 1550.30
Shaoguan 277.72 Zhaoqing 465.57
Heyuan 261.81 Qingyuan 263.22
Meizhou 331.03 Chaozhou 490.17
Huizhou 331.03 Jieyang 827.97
Shanwei 976.59 Yunfu 334.65
Dongguan 1275.71 Average 1042.32

According to Table 1, the CSP of carbon emissions across various municipal cities
in 2020 were assessed. Guangzhou, Shenzhen, Zhuhai, Foshan, Huizhou, Zhongshan,
Jiangmen, and Zhaoqing exhibited relatively high CSP of carbon emissions, indicating
that these areas would face increased economic costs to accomplish additional carbon
reduction. Shenzhen recorded the highest CSP at 4921.09 yuan/ton, while Shaoguan
recorded the lowest CSP at 277.72 yuan/ton.

The shadow price difference of carbon emission rights between Shenzhen and
Shaoguan is as high as 17 times. This phenomenon is the result of the multiple effects
of regional economic structure, energy efficiency and market mechanism. The specific
driving reasons include the fundamental differences between economic development
stage and industrial structure, the regional differentiation of carbon market activity and
policy implementation intensity, the great contrast between energy structure and green
technology penetration, and the policy effect of spatial constraints and ecological red line.

Since the emission reduction technology and policy is changing, the shadow of
carbon emissions price also experiences constant change and gradually deviates from
the real carbon emissions intrinsic value, leading to huge error in the assessment results.
When comparing the CSP before and after adjustment in Table 1 and Table 2, it is
observed that Shenzhen’s CSP decreased by 172.24 yuan due to time adjustment and
by 162.01 yuan due to market adjustment. Similarly, Shaoguan’s CSP decreased by 9.72
yuan due to time adjustment and by 9.14 yuan due to market adjustment. This suggests
that cities with higher CSP experience a larger difference before and after adjustment,
indicating a greater impact from time and market factors.
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Table 2. Revised Shadow Price of Cities in Guangdong Province

City Time Market City Time Market
calibration modification calibration modification
Guangzhou 2596.52 2602.12 Zhongshan 1019.31 1021.51
Shenzhen 4748.85 4759.08 Jiangmen 918.02 920.00
Zhuhai 1130.50 1132.93 Yangjaing 381.68 382.50
Shantou 789.15 790.85 Zhanjiang 470.12 471.13
Foshan 1705.12 1708.80 Maoming 1496.04 1499.27
Shaoguan 268.00 268.58 Zhaoqing 449.37 450.34
Heyuan 252.65 253.19 Qingyuan 254.01 254.56
Meizhou 319.44 320.13 Chaozhou 473.01 474.03
Huizhou 942.41 944.44 Jieyang 798.99 800.72
Shanwei 555.49 556.69 Yunfu 322.93 323.63
Dongguan 1231.06 1233.71

The main reason why the calculated shadow price of carbon emission right
gradually deviates from its intrinsic value over time is the dynamic complexity of
carbon emission right pricing. On the one hand, technological progress and policy
iteration directly change the supply and demand relationship of carbon emission
rights. For example, clean energy technology breakthrough may reduce the cost of
enterprise emission reduction and thus reduce the demand for carbon emission rights.
On the other hand, the adjustment of carbon market mechanism design (such as quota
allocation method and market coverage) will reshape the price formation mechanism.
Time adjustment reflects the structural decline of emission reduction cost under
the long-term trend, while market adjustment reflects the repair effect of short-term
imbalance between supply and demand. The combined action of the two leads to the
amplification of the adjustment range of cities with high shadow price.

Appendix online shows the marginal impact of carbon emission reduction
in Guangdong in 2020. Table 3 illustrates that the marginal abatement costs for
carbon emissions in various cities in Guangdong province in 2020 were all positive,
suggesting that increases in population and area led to a rise in the value of carbon
emission allowances. The highest marginal abatement cost resulting from population
changes was 3.53x10” in Heyuan, while the lowest was 2.49x10” in Shenzhen.
Regarding area expansion, the highest marginal abatement cost was 973.22 in Yunfu,
with the lowest being 9.27 in Guangzhou. The marginal abatement cost attributed to
population in each city in Guangdong province was less than that for area, indicating
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that fluctuations in the value of carbon emissions allowances driven by population
growth are more pronounced than those driven by area growth.

Table 3. Marginal Cost of Emissions Reduction in Each City in Guangdong Province in 2020.

Marginal cost Marginal cost Marginal cost ~ Marginal cost
City (Population) (Area) City (Population) (Area)
(person/ton) (km*/ton) (person/ton) (km?*/ton)
Guangzhou 436e" 9.27 Zhongshan 3.43¢” 57.25
Shenzhen 2.49¢” 9.70 Jiangmen 2.01e” 87.23
Zhuhai 9.77¢ ™ 219.11 Yangjaing 293¢ 766.26
Shantou 2.62¢ 87.38 Zhanjiang 2.36e " 326.43
Foshan 2.74¢ " 15.80 Maoming 1.97¢ 164.27
Shaoguan 2.22¢" 774.04 Zhaoqing 2.85¢ 347.39
Heyuan 3.53¢” 912.75 Qingyuan 4.40¢” 522.92
Meizhou 4.04¢ " 670.64 Chaozhou 4.67¢" 266.00
Huizhou 1.28¢ 56.05 Jieyang 1.07¢™* 95.38
Shanwei 2.42¢" 388.63 Yunfu 1.28¢” 973.22
Dongguan 9.98¢" 23.98

6. Conclusions and Policy Implications

This study aims to explore how population growth and area expansion affect
the value of carbon emission allowances amid urbanization. By applying marginal
production theory and treating carbon emission allowances as production factors, the
research employs the translog production function to quantify their influence. The
objective is to develop a CSP evaluation model for carbon emission allowances under
different urban carbon emission pressures.

The analysis reveals that currently, half of China’s cities are categorized as carbon
peak cities, suggesting effective control over total carbon emissions despite rapid
urban development. Overall, there is a positive correlation between societal factors
and the value of carbon emission allowances in China. Among these factors, carbon-
excessive cities experience the most significant impact on the value of carbon emission
allowances from societal factors, while plateau cities are least affected. Several factors
contribute to this scenario:

In light of the dual-carbon target, the government must implement measures to
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restrict total carbon emissions and gradually reduce the supply of carbon emission
allowances. As urban populations and areas expand, enterprises require additional
carbon emission allowances to meet their growing demands. However, government-
imposed supply constraints exacerbate the scarcity of carbon emission allowances,
thereby increasing their value.

When carbon emission pressure surpasses economic growth, regions require
stronger measures to curb carbon emissions and achieve carbon neutrality or reduction
goals. Urban population and area expansion lead to increased economic activities and
energy consumption, resulting in a significant rise in carbon emissions. This boosts the
demand for carbon emission allowances; thus, substantially elevating their value.

Regions experiencing significant carbon emissions pressure may witness an
increased trading activity in the carbon emissions allowance market due to the
population and area expansions. This increased trading can contribute to the escalation
of carbon emission allowance values.

Plateau cities might adopt proactive measures for carbon reduction, such as
advocating for clean energy and implementing carbon trading mechanisms. These
efforts assist in controlling overall carbon emissions to some degree by curbing the
surge in demand for carbon emission allowances and mitigating abrupt increases in
their value.

Current carbon trading market has limited regulation effect on excessive emission
cities, so policy tools should be combined with differentiation, such as regional carbon
emission cap and industry access limit to enhance the binding force; for cities with
carbon emission peak, emission reduction effect should be consolidated through low
carbon technology subsidies or green finance to avoid the total rebound; plateau and
coordinated cities can explore market incentive mechanisms to further improve emission
reduction efficiency. By building a quota exchange circle in urban agglomerations,
cross-city trading quotas are allowed, but a 5%-10% “cooperative adjustment fee” will
be levied on high-carbon industries such as thermal power and chemical industry.

For the four categories of cities, the step emission reduction target is formulated to
avoid “one size fits all” policy. We should promote carbon quota auction and dynamic
baseline adjustment in cities with excessive emission, enhance the inhibitory effect
of carbon price on urbanization expansion, and strengthen the carbon price signal,
implement hard constraints on carbon emissions by different industries, and set a five-
year reduction target on heavy industries (steel, cement, etc.). The carbon emission
baseline of energy-intensive industries should be tightened by 3%—-5% every year,
and enterprises that fail to meet the standards should purchase quotas according to
the difference. We should promote the upgrading of plateau cities to coordinated
type through financial support, accelerating the low-carbon transformation of energy
and industrial structure, and promoting technology-driven decoupling. Hence, the
carbon emissions allowance market serves as just one tool for carbon reduction and
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should be supplemented with other measures to comprehensively advance low-carbon
transformation. Cities should prioritize the promotion of low-carbon development
and improve efforts in carbon emissions control, avoiding over-reliance on the carbon
emissions allowance market mechanism alone.

This research also has some limitations. The research mainly focuses on the
impact of supply and demand policies on the value of carbon emission rights, but
in practice, the operation of carbon emission rights market is also affected by many
other policy factors, such as carbon tax policy and renewable energy subsidy policy.
The combination of these policies and the uncertainty of policy changes may have
an important impact on the results of the value assessment of carbon emission rights,
which are not fully considered in the study. The urban GHG emissions data used in the
study cover only the four years of 2005, 2010, 2015 and 2020, with long time intervals,
and may not fully capture the dynamic process of urban carbon emissions, especially
in terms of changing trends and short-term fluctuations between adjacent years.
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