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In this study, we use eight pairs of commodity futures data to investigate the impact
of the recently launched nighttime trading session by Chinese futures exchanges. We
conduct a thorough empirical analysis on the cross-market information transmission
mechanisms between China and the U.S. We apply various econometric analyses
including the co-integration analysis, the forecast error variance decomposition
analysis, and the volatility spillover analysis with a bivariate GARCH model.
Findings in this study indicate that, after the launching of nighttime-trading hours
in China, the price discovery function of the Chinese futures market is noticeably
improved, and that the Chinese market began to dominate the U.S. market in the
bidirectional volatility spillover process. Thus, the introduction of the nighttime-
trading hours appears to be an effective step toward China’s long-term goal of
establishing pricing power in key commodities on the global financial market.
Keywords: Chinese futures market, market linkage, nighttime trading.

1. Introduction

This paper investigates the effectiveness of the recently launched nighttime
trading sessions on futures exchanges in China. We pay particular attention to the
price linkages between the Chinese and US commodity futures market that is a global
market leader and the implications behind the policy change allowing extended trading
hours. Although the futures market started much later in China than in developed
markets, it has been growing rapidly over the past couple of decades and drawn wide
attention among investors around the world. In terms of the trading volume, many
commodity futures in China are now among the most heavily traded contracts in global
derivatives markets. China has three commodity futures exchanges and one financial
futures exchange: the Shanghai Futures Exchange (SHFE), the Dalian Commodity
Exchange (DCE), the Zhengzhou Commodity Exchange (ZCE), and the China
Financial Futures Exchange (CFFEX). The futures market in China is dominated by
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various commodity futures in terms of trading volume and is characterized by frequent
product innovations.

As one of the world’s largest consumers of raw materials, China is trying to
expand the influence of its domestic market on commodity futures prices through the
development of its futures market. For a long time, the Chinese futures market was
accessible only during daytime trading hours. The lack of trading opportunities during
nighttime hours impeded the timely information transmission from active markets
overseas to futures prices on the domestic Chinese market. To further improve the
Chinese futures markets ability to compete globally and eventually establish the ability
to set prices in key futures commodities, nighttime trading was launched by leading
futures exchanges in China in 2013, beginning in July with the SHFE for gold and
silver futures. Shortly afterward, the DCE and ZCE followed suit. By the end of 2015,
28 commodity futures in China had launched nighttime trading sessions.

The microstructure literature implies that information is revealed in security prices
with trades (e.g., Copeland and Galai, 1983; Easley and O’Hara, 1987; Glosten and
Milgrom, 1985; Hasbrouck, 1988, 1991; Kyle, 1985). For example, Garbade and Silber
(1983) examine the price discovery function of the futures markets to confirm the
leading role of futures markets over cash markets in terms of the incorporation of new
information into prices. In addition, some empirical studies discuss the price discovery
realized outside the trading periods in equity markets (Barclay and Hendershott, 2008;
Cao, Ghysels and Hatheway, 2000). The implementation of nighttime trading sessions
for commodity futures in China enables domestic traders to better manage their risk
through prompt trading after new information is released in other markets while it
is nighttime in China. The basic functions of the futures market — providing price
discovery and hedging for domestic traders — are expected to be enhanced.

Prior studies have investigated the features of trading activities in futures
markets and how those activities interact with pricing dynamics in the market (e.g.,
Bessembinder and Seguin, 1992, 1993; Chan, Fung and Leung, 2004; Fung, Mai and
Zhao, 2016; Fung and Patterson, 1999; Fung and Patterson, 2001; Kao and Fung, 2012;
Pliska and Shalen, 1991). Other streams in the literature explore cross-market analysis,
which investigates linkage between futures and spot markets or the transmission of
information across futures markets in different geographic locations (e.g., Eun and
Shim, 1989; Fung, Leung and Xu, 2001; Ghosh, Saidi and Johnson, 1999; Xu and
Fung, 2005; Kao, Ho and Fung, 2015). Despite the rising importance of Chinese
commodity futures in the world derivatives market, few studies have thoroughly
investigated the mechanisms of the Chinese futures market and its linkage with other
markets. Fung, Tse, Yau and Zhao (2013) empirically investigate the efficiency of the
Chinese commodity futures market. A recent paper by Fung, Mai and Zhao (2016)
finds that, after nighttime trading was launched in China, the interaction between
volatility and trading activity conform better to patterns observed in developed markets
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and show improved price efficiency in the Chinese futures market.

Many Chinese metal and agricultural futures are heavily traded and already rank at
the top among peers globally, with support from the Chinese government to become
globally competitive. Commodity futures traded on Chinese exchanges have distinctive
characteristics and appear to serve various policy purposes. Some of these futures, such
as iron ore, copper, and soybean meal, have shown increasing influence on commodity
prices in the global market, while others, for instance, cotton and soybean futures,
focus more on the local market by providing domestic traders with the basic functions
of futures—price discovery and hedging.

Driven by strong domestic demand, China is the top consumer of many
commodities. As widely reported in the media, China is the world’s leading importer
of iron ore, and its trading volume of iron ore futures is far above that of its peers in
other global markets. Unlike iron ore futures in other markets, which are based on steel
index prices and use cash settlement, Chinese iron ore futures use physical delivery
as the settlement method to better reflect market forces. The high liquidity of Chinese
iron ore futures attracts many investors and cash market traders. In addition to iron ore,
China is also known for its heavy consumption of other commodities, such as copper
and soybean meal. Futures contracts on such commodities in China are expected to
become more internationalized and to play a more important role in the global market.
The launching of nighttime trading allows more timely absorption of information from
other active markets overseas, and thus better cross-market price linkage is expected.
This change should therefore enable the Chinese futures market to have a greater
impact on the global market and, in the long run, gain the power to set prices.

The price of several futures contracts in China, such as soybean and cotton, is
affected by domestic government policies to a higher degree than elsewhere. The cross-
market price linkage between China and the United States should show the underlying
forces affecting futures prices. In the past, cotton futures prices in China, for example,
deviated substantially from international prices because prices in China were driven by
government policies more than by market forces. In 2014, China gradually moved from
direct price support (through the cotton reserve policy) to a target price mechanism,
which emphasizes the role of market forces in determining the cotton price (MacDonald,
Gale and Hansen, 2015). Since then, many large consumers of cotton in China, such as
textile manufacturers, have turned to the futures market for hedging tools against risks
from the market-determined cash price. Correspondingly, the trading volume of cotton
in China increased markedly from 2013 to 2014, and the price discovery function
of cotton futures was thus utilized much more effectively than before. The pricing
mechanism for Chinese soybean futures experienced similar changes as market forces
began to play a key role. Many enterprises in industries related to soybeans began to
actively participate in the futures market for hedging purposes. For these commodities
in China, opening the futures market at night could reduce the price deviation between
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domestic and international markets and thus help establish a domestic price center that
truly reflects aggregate demand and supply to facilitate hedging and price discovery.

This study examines the changes in dynamics of and information flows between
China and the United States, the largest futures markets in the world, following the
launching of the nighttime trading session in China. We focus on the cross-market
information transmission mechanism between the commodities that are traded
simultaneously in the Chinese and US futures markets. Our paper contributes to the
literature in the following aspects. First, examining the impact of the recent policy
change on cross-market linkage between these two countries sheds light on the
evolution of the Chinese futures market and its role in the global financial market.
Second, our sample consists of eight pairs of commodity futures traded in both the
United States and China. After the implementation of the nighttime trading hours, some
of the Chinese futures are found to have greater impact on the global market, while
others are not, reflecting that the sample commodity futures serve different policy
purposes in China. Third, we conduct a co-integration analysis to analyze the price
discovery process and estimate volatility spillover with bivariate GARCH models to
show price linkage across markets. The combination of the two modeling techniques,
each capturing different perspectives on the data, can produce a more complete picture
of the fundamental market dynamics.

The main findings are summarized as follows. First of all, there is solid
bidirectional long-run feedback in futures prices between the Chinese and US futures
markets during the full sample period. Second, during both the pre- and post-nighttime
trading subsample periods, the US market plays a leading role in price discovery for
the commodities studied. Most importantly, we observe several interesting patterns in
the Chinese market following the policy change. Two commodities in China—soybean
meal and iron ore futures—appear to be global leaders in the making. Copper, gold,
and soybean oil futures in China have become more active global competitors since
nighttime trading was launched. In contrast, Chinese silver, soybean, and cotton futures
are being established as domestic centers. Third, since the introduction of nighttime
trading, more volatility spillover is found from the Chinese market to the US market
than the other way around.

The new trading policy allowing extended trading hours has been shown to be
an effective step in strengthening China’s status in the cross-market information
transmission mechanism and improving the market’s price discovery function, both
of which are consistent with policy makers’ long-term goal of establishing price-
setting power in key commodities in the global market. The empirical results in this
study provide practitioners interested in the Chinese futures markets with important
information and offer other emerging markets possible strategies for developing their
derivatives markets.

The remainder of the paper proceeds as follows. We describe research methodology
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and the data in Sections 2 and 3, respectively. We present the empirical results in
Section 4. Section 5 discusses and summarizes the main findings.

2. Econometric Methodology

In this section, we describe the econometric methods we employ to investigate
price and return dynamics and volatility spillover effect across the Chinese and
US commodity futures markets. Our empirical framework is the standard vector
autoregression (VAR) model. Let y, = {y, ,, », ,} denote a (2 x 1) vector that includes
Chinese and US futures contract prices (measured in logarithms) for a commodity,
respectively. Assuming the existence of co-integration between the two nonstationary
prices due to the law of one price or no arbitrage, the data-generating process of y,can
be written as a standard vector error correction model (VECM) with £ lags:

k
Ay,=aﬂ'yt7,+ZF1Ayt71+y+gt t=L2,---,T), (1)
=1

where A is the difference operator (Ay, =y, — y,,), @ and f are both (2 x r) matrices
of parameters (r < 2) with f describing » long-run equilibriums among the two
endogenous price variables, I'; is a (2 x 2) matrix of coefficients describing short-run
dynamics, and u is a (2 % 1) vector of constants, and finally, ¢, is a (2 X 1) zero-mean
vector with a potentially time-varying variance covariance matrix H,, which is positive
definite. Therefore, the VECM (1) can be used to study both short-run dynamics and
the long-run relationship in the commodity futures markets.

Market prices in China and the United States are nonsynchronous since, on any given
calendar day (), the US market opens and closes after the Chinese market. To account for
this timing difference, we replace lags of Chinese market prices y, .1, V1.1 ---» V1,4 10 the
second equation of model 1 with US prices with y, ,, ¥, .1, ..., ¥ 4. Correspondingly,
the co-integrating vector (8,3, ., — fo,. 1) also becomes (B, y, ,— f, ¥, 1) in the
equation. Due to this change, we no longer estimate and conduct co-integration test
in model 1 using Johansen’s (1991) full information maximum likelihood procedure.
Instead, we impose the theoretical restriction that the two prices do not deviate from
each other for too long and follow the law of one price (except for transaction costs).
Put another way, we assume the co-integration rank is one and the co-integrating
vector is known after normalization = {1, —1}."

For the purpose of innovations accounting, we compute the popular forecast error
variance decomposition (FEVD) based on model 1 to better estimate short-run dynamic

' Empirically, we find that both error correction terms Vi1 = Yo0) and (g, — ,,.,) are stationary
processes, which provides indirect evidence in support of the restriction we impose on model 1.
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linkages of prices and returns across the markets.' Note that the existence of strong
contemporaneous correlations among securities market innovations often casts doubt
on the traditional orthogonalized FEVD based on the recursive Choleski factorization
of VAR innovations. The reason is that the Choleski factorization depends on the
order of variables in the VAR system. However, the use of Choleski factorization is
appropriate for the non-overlapping data we use here. This is because, as pointed out
earlier, the Chinese market opens and closes before the US market, underlying shocks
from market 1 (the Chinese market) can cause same-day changes in market 2 (the
US market) while shocks from the US market can affect the China market only in the
following day. This provides a natural order for the two price series in the bivariate
VAR.

Further exploiting rich information embedded in the co-integration model, we also
study volatility spillover between the two markets. In estimating co-integration model
1 and conducting FEVD, we have followed the practice and assumed that the variance
and covariance matrix H, of the error term ¢, remains constant during some prespecified
period. However, one of the stylized facts about security returns is that they feature
significant time-varying (conditional) variance (volatility) and covariance. To study the
volatility spillover across the markets, we adopt a sequential procedure and explicitly
model the heteroscedasticity in the error term ¢, which is estimated from the first-
stage VECM model 1. Specifically, we model ¢, as following a bivariate GARCH(1,1)
process whose second moments are specified as the popular BEKK model proposed by
Engle and Kroner (1995) (BEKK):

H,=CC"+ A',&',A+B'H, B, ()

where parameter matrices C, A, and B capture the constant part of the variance, the
ARCH, and the GARCH effects, respectively.” In particular, matrix 4 has the following
form:

A= , 3)

dey  Auu

where, in general, a., # a,c. An obvious advantage of the BEKK model over other
specifications is that each term is positive semidefinite by construction, which is
important because optimization may run into a negative definite matrix and cause
convergence issues in small samples. The cost is that, with all the parameters entering

" As FEVD is a standard tool and well known, we omit the computation details here.

> We do not consider other more complicated multivariate GARCH specifications since the size of the
post-nighttime-trading sample period is small.
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the model through quadratic forms, they are not globally identified. That is, changing

the signs of all elements of C, B, or 4 will have no effect on the likelihood function.
This model specification suggests that the ARCH component of the conditional

variance for the Chinese market (market 1) is the sum of three terms (i.c.,

aécgé,t—l +2accacyc 8yt aéuff,,f,l ). Therefore, the spillover effect of volatility
originating in the US market on Chinese market volatility is captured by the latter
two terms. Nevertheless, since the effect reflected in the middle cross-product term is
difficult to isolate, in the empirical section we focus only on the direct effect, namely,
coefficient a . Similarly, we use a,. to measure the spillover effect of Chinese market
volatility on the US market.

Given a sample of T observations, the parameters of the two-factor GARCH-BEKK
Equations (2)—(3) are estimated by maximizing the conditional log-likelihood function:

T T
L=Y10)=Y (—%n log(27) _%mg H,| —%e;Hﬂeo, @)
=1 =1

where n = 2 is the dimension of the bivariate GARCH model, and 6 denotes the vector
of all the parameters to be estimated, including HO, the initial values of the variance
and covariance, which we treat as unknown parameters.

To measure how the extended nighttime trading session affects the price
information role played by the Chinese market, we include a dummy variable in both
the mean equation (1) and conditional variance equation (2). The dummy variable
takes the value of 0 for sample observations before the introduction of nighttime
trading and 1 for observations thereafter. We allow the dummy variable to interact with
all right-hand-side variables. So, all coefficients are allowed to vary across the two
subsample periods. For example, the estimate of the adjustment vector in model 1 for
the second subsample period would be (a + 1) , where « is the vector of adjustment
effect estimates for the default case (the pre-nighttime-trading period) and 4 is the
coefficient vector associated with the interaction term of the dummy variable and the
error correction term. Similarly, the coefficient matrix A of the ARCH component in
the second subsample period would be computed as follows:

©)

(A+A):[acc+ﬂcc aUC+ﬂUc:|

dey + Ay Ayy + Ay
where 4 measures the spillover effect in the pre-nighttime-trading sample period and

A is the coefficient matrix associated with the interaction terms of the dummy variable
and the quadratic error terms ¢,,¢’,; in BEKK model 2.
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3. Data

Despite its rapid development and growing importance among global financial
markets, the futures market in China was accessible only during daytime trading hours
until 2013, when the Shanghai Futures Exchange introduced nighttime trading for
its gold and silver futures. Numerous commodity futures at major futures exchanges
in China have now adopted nighttime trading hours in addition to daytime trading,
so futures traders in China can trade on new information released from markets
overseas sooner than before. By the end of 2015, nighttime trading sessions had
been implemented in China for 28 commodity futures, including gold, silver, copper
cathode, aluminum, zinc, lead, steel rebar, natural rubber, bitumen, hot rolled coils,
nickels, and tin futures on the SHFE; RBD palm olein, metallurgical coke, no. 1
soybeans, no. 2 soybeans, soybean meal, crude soybean oil, coking coal, and iron ore
futures on the DCE; white sugar, pure terephthalic acid (PTA), no. 1 cotton, rapeseed
meal, methanol, rapeseed oil, flat glass, and thermal coal futures on the ZCE.

In this study, we collect daily futures settlement prices from the Commodity
Systems Inc. (CSI) database. Eight of the commodity futures traded in China could be
matched up with comparable futures contracts traded on US exchanges and are thus
included in our sample. Selected commodity futures contracts include copper, gold,
silver, soybeans, soybean meal, soybean oil, iron ore, and cotton. The sample period is
from the earliest available date in the CSI database to February 2016. Since the sample
includes eight pairs of price series from two different markets, China and the United
States, we construct standardized price quotation units so that the prices of the Chinese
futures and US futures are comparable. In particular, we convert price quotations for
Chinese futures to those of US futures using foreign exchange rate data retrieved from
FRED, Federal Reserve Bank of St. Louis. We generate continuous futures price time
series by rolling over to the next nearby contract when its open interest is larger.

Table 1 summarizes information on the sample. All the Chinese futures price
quotations are transformed to the same quotation units used on the US market. The
last two columns present the launch date and hours of nighttime trading sessions in
China. In a later analysis, we divide the full sample data into subsamples: “Before
nighttime trading,” which includes futures data prior to the launching of nighttime
trading in China, and “After nighttime trading,” which refers to the time period after
the launching of nighttime trading.

Table 2 presents descriptive statistics of futures returns for the full sample, the “before
nighttime trading” subsample, and the “after nighttime trading” subsample. The statistics
for each commodity futures are presented in separate panels. The futures return (R)) is
constructed as the log difference of daily settlement prices (i.e., R, = log (P,) — log (P,,))).



58 China Finance and Economic Review

Table 1. Summary of Sample Futures

China market U.S. market . nghttlmeitradmg m
Price Sample  Sample China

Contract Contract quote start end )
(symbol) Exchange (Symbol) Exchange Launching  Hours

Copper cathode
(CU)

SHFE Copper (HG) COMEX cents/Ibs. 12/11/20032/29/2016 12/20/201321:00-1:00

USD/troy

Gold (AU) SHFE Gold (GC) COMEX ounce 1/17/2008 2/29/2016 7/5/2013  21:00-2:30

Silver (AG) SHFE Silver (S)  COMEX gi?:csétmy 12/31/20122/29/2016 7/5/2013  21:00-2:30

No.Tsoybeans g govpean(s)  CBOT ™Y 12/11/20032/29/2016 12/26/201421:00-23:30
(A) bushel

Soybeanmeal - Soybeanmeal gy USD/short o1y 00635990016 12/26/201421:00-23:30
(M) (ZM) ton

Crude soybean 1y, Soybean ol - piyp oibs 5/19/2008 2/20/2016 12/26/201421:00-23:30
oil (Y) (ZL)

Iron ore (I) DCE  Iron ore (TIO) NYMEX USD/ton  10/18/20132/29/2016 12/26/201421:00-23:30
Cotton No. 1 Cotton No. 2 ICE . .
P ZCE oy Futures USCENS/bs. 6/1/2004 212012016 12/12/201421:00-23:30

Note: The price quotes of the Chinese futures are standardized to be consistent with US futures.

Table 2. Summary Statistics

Full sample Before nighttime trading After nighttime trading
US China US China UsS China
Panel A. Copper
Mean 0.00031 0.00049 0.00055 0.00072 -0.00080 -0.00060
Std. 0.0194 0.0151 0.0206 0.0160 0.0126 0.0096
Skewness -0.184™" —0.243™ -0.210™" —0.254"" 0.005 —0.450""
Kurtosis 3.635" 1.759"™ 3.246"" 13817 1.833™ 3.569"
Panel B. Gold
Mean 0.00011 0.00010 0.00017 0.00019 ~0.00004 ~0.00009
Std. 0.0129 0.0118 0.0140 0.0133 0.0102 0.0082
Skewness -0.252™" 0397 -0.372™" 04727 0.3927" 0.330™
Kurtosis 5.228"" 4.406™ 5121 3.660"" 1.862™" 2.249™
Panel C. Silver
Mean ~0.00104 ~0.00097 ~0.00394 ~0.00426 ~0.00048 ~0.00037
Std. 0.0180 0.0133 0.0212 0.0197 0.0173 0.0117
Skewness -0.415" —-0.712"" ~-1.701"" ~1.085™ 0.076 -0.026
Kurtosis 46817 5.8037" 8.3107" 4353 2.628" 2,761
Panel D. Soybean
Mean 0.00016 0.00010 0.00025 0.00023 ~0.00066 ~0.00116
Std. 0.0161 0.0102 0.0165 0.0104 0.0119 0.0077
Skewness 0215 -0.314™ -0.228" —0.347" —0.034 0.103
Kurtosis 1.994™ 3.519™ 1.8197 3.465™ 46107 2.542™"
Panel E. Soybean meal
Mean 0.00036 0.00023 0.00049 0.00035 ~0.00083 ~0.00086

Std. 0.0181 0.0120 0.0185 0.0123 0.0134 0.0088
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Full sample Before nighttime trading After nighttime trading
UsS China US China US China
Skewness -0.142™ —-0.190"" -0.165™ -0.215™ 0.223 0.154
Kurtosis 1.718"" 1.912™ 1.604™" 1.845™ 2.540™" 1.001""
Panel F. Soybean oil
Mean ~0.00056 ~0.00042 ~0.00059 ~0.00047 ~0.00041 ~0.00016
Std. 0.0153 0.0118 0.0156 0.0123 0.0140 0.0087
Skewness 0.055 —0.542™" 0.056 —0.568"" 0.059 0.111
Kurtosis 2292 3.001" 2.529™ 2.858™ 0.007 0.977"
Panel G. Iron ore
Mean -0.00122 ~0.00126 ~0.00110 ~0.00214 ~0.00135 ~0.00034
Std. 0.0143 0.0139 0.0087 0.0118 0.0183 0.0158
Skewness 0.299" -0.185" 0.299” -0.371" 0.271" -0.177
Kurtosis 5367 1.586™" 10.907"" 1.632"™" 2.602"" 1.157™
Panel H. Cotton
Mean ~0.00028 ~0.00017 ~0.00029 ~0.00008 ~0.00022 ~0.00099
Std. 0.0172 0.0091 0.0178 0.0094 0.0116 0.0062
Skewness -0.111" -0.223" -0.123" —-0.224™ 0.311" —0.642""
Kurtosis 1.298™ 7.786" 1.144™ 7.569"" 1.827" 23177

*x

Note: ™", " and " are significant at the 1%, 5% and 10% level, respectively.

All eight Chinese futures exhibit significant negative skewness and excess kurtosis
for the subsample before nighttime trading, while five of these futures (i.e., silver,
soybean, soybean meal, soybean oil, and iron ore) no longer demonstrate negative
skewness in the subsample after nighttime trading. Thus, sample futures on the Chinese
market exhibit improved normality in the distribution of returns after the change in
trading hours. Similarly, negative skewness in the copper, silver, soybean, and soybean
meal futures in the US market is observed only in the subsample before nighttime
trading. Overall, the summary statistics for the returns of sample futures indicate that
the distribution of Chinese futures returns become more symmetric after nighttime
trading hours are launched, showing that more balanced information is reflected in
the prices on the market. As both the Chinese and US futures markets appear to suffer
more from downside risk (i.c., negative skewness) in returns for the subsample before
nighttime trading, the inclusion of data during the 2008 financial crisis in the pre-
nighttime trading sample period may also play a role in the pattern observed.

Many Chinese commodity futures are now playing an important role in the world
market. For example, in 2015, soybean meal, soybean oil, cotton, and soybean futures
on Chinese exchanges ranked first, fifth, sixteenth, and eighteenth, respectively, among
the world’s most heavily traded agricultural futures.' Table 3 presents the annual
trading volume of the sample futures from both markets from 2013 to 2015. As futures
in the Chinese and US markets are traded in different contract sizes, we convert

' Will Acworth, “2015 Annual Survey: Global Derivatives Volume”, March 15, 2016, retrieved from
http://marketvoicemag.org/?q=content/2015-annual-survey-global-derivatives-volume/.
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Chinese futures’ trading volume to an equivalent value that is directly comparable to
US futures. Thus, the trading volume of Chinese futures as shown in the table is in
its standardized form. For the most recent year, 2015, we observe that the Chinese
copper, soybean meal, soybean oil, and iron ore futures were traded more actively than
their US counterparts, while heavier trading of gold, soybeans, and cotton futures is
found in the US market. For silver futures, trading volume in both markets is relatively
close, following a drop in the Chinese market from the previous year. The increasing
popularity of iron ore futures trading in recent years has drawn wide attention in the
market. The trading volume of Chinese iron ore futures increased by 170% in 2015
from 2014.

Table 3. Annual Trading Volume (2013-2015)

2015 2014 2013
Futures
China uUsS China uUsS China [ON]
Copper 38941772 16986055 31089686 14591200 28349586 17127383
Gold 8139657 41847338 7672895 40518804 6458376 47294551
Silver 13964957 13454406 18662290 13696961 16707685 14475593
Soybeans 1382225 54095051 1998466 49169361 807802 46721081

Soybean meal 31911548 24315276 22596135 20637382 29250659 20237181

Soybean oil 33989458 28897275 23546308 23769391 35396891 23805912
Iron ore 51914417 136158 19271826 24988 437843 22302

Cotton 4985199 6726586 7006692 5787883 1642898 6155024

Sources: China Futures Association website (http://www.cfachina.org/); CME Group website (http://www.
cmegroup.con/); ICE Futures U.S. website (https://www.theice.com/futures-us).

Notes: The values shown in the table are number of contracts traded during the year. As futures contracts in

China and the United States are traded in different sizes, all the Chinese futures trading volume data

shown in the table are the equivalent US trading volume based on the contract size of US futures.

After the standardization, volume data from different markets are directly comparable.

We first test the order of integration of the futures (log) prices on both the Chinese
and US markets for the eight commodities using the popular augmented Dickey-
Fuller test. The null hypothesis is that the price contains a unit root. The results are
summarized in Table 4. We consider two testing models, one allowing for a linear time
trend in addition to a drift and the other allowing a drift only. When the model includes
a drift term only, the null hypothesis cannot be rejected for all eight commodity prices
at the conventional 5% significance level. The results in the last column show that
we also fail to reject the null hypothesis for all but one variable when both a drift and
a linear trend are included in the model. The exception is futures prices for silver,
for which we reject the unit-root hypothesis at the 5% level. Nevertheless, we again
fail to reject the null at the less conservative 1% level. Overall, we conclude that all
prices are level nonstationary. We then proceed to test for the nonstationarity of the
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first differences of the prices. The unit-root hypothesis can now be rejected for all
first-differenced prices in both markets. These results combine to suggest that the
commodity futures prices in both markets can be characterized as /(1) variables.'

Table 4. Results of ADF Unit Root Tests

With an intercept With an intercept & trend
Lag order ADF Lag order ADF
Copper
usS 1 -2.651 1 -1.823
China 1 -2.580 1 -1.706
Gold
UsS 0 -1.633 0 -1.380
China 1 -1.555 1 -1.286
Silver
UsS 0 -2.406 0 -3.685"
China 1 -2.576 1 -3.615"
Soybean
us 0 -1.640 0 -1.607
China 1 -1.393 1 -1.137
Soybean meal
UsS 0 -1.849 0 -2.199
China 1 -1.754 1 -1.521
Soybean oil
us 0 -1.719 0 -1.758
China 1 -1.374 1 -1.467
Iron ore
Us 0 -1.210 0 -1.558
China 1 -1.173 1 -2.706
Cotton
UsS 0 -1.650 0 -1.484
China 1 -1.002 1 0.189

Notes: This table reports augmented Dickey Fuller (ADF) test results. The number of lagged terms included
in the tests is determined by BIC. The null hypothesis is that the series contains a unit root. * null
hypothesis is rejected at the 5% level.

4. Empirical Results

4.1. Estimation of the Co-Integration Model

As the initial step in estimating a VAR model, we determine the autoregressive

' We also conduct an ADF test for nonstationarity allowing one structural break in the data using a
procedure proposed by Carrion-i-Silvestre, Kim and Perron (2009). We fail to reject the unit-root
hypothesis for all but three price series at the 5% significance level (silver in the United States and
silver and iron ore in China).
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lag order k in the model by minimizing the popular Schwarz’s Bayesian information
criterion (BIC), assuming a maximum of ten lags. The optimal lag orders are 3, 6, 2, 1,
1,2, 1, and 1 for copper, gold, silver, soybean, soybean meal, soybean oil, iron ore, and
cotton, respectively (the lag orders of the underlying VARs in levels would be 4, 7, 3, 2,
2,3, 2, and 2). Table 5 reports the parameter estimation results of co-integration model
(1), imposing the restriction = {1 ,—1} on the co-integration space. To save space, the
short-run dynamics are not reported. Columns 1—4 report the constants (x, and w,) and
the estimates of the adjustment coefficients «, and a,, for the full sample period. The
corresponding results for the first and the second subsamples are presented in columns

5-8 and 9-12, respectively.

Table 5. The Key Parameter Estimates of the Vector Error Correction Models

Full sample

My @ H (5]

Before nighttime trading

H 31 M %

After nighttime trading

M % H %

Panel A. Copper (k= 3)

0.008"" ~0.052""-0.009"" 0.062""
(5.897) (—5.838) (-4.015) (4.098)

0.008" ~0.055""-0.010"" 0.070""
(5.638) (=5.494) (=3.977) (4.118)

0.004" —0.026" -0.004 0.022
(1.871) (=1.976) (~1.114) (0.876)

Panel B. Gold (k = 6)

0.001""-0.107"" ~0.001 0.095""
(3.248) (~4.963) (—1.481) (2.763)

0.001""-0.128"™ ~0.000 0.081"
(2.827) (—4.641) (-0.712) (1.868)

0.001" —0.065" -0.002"" 0.157""
(1.840) (-2.505) (-2.466) (2.841)

Panel C. Silver (k=2)

0.001 —0.022" —0.003" 0.041"
(1.273) (=1.931) (=2.340) (2.044)

0.013" —0.37177-0.022" 0.484"
(2.598) (=3.284) (-2.553) (2.503)

0.002" —0.028" —0.002 0.027
(2.327) (-2.554) (~1.471) (1.309)

Panel D. Soybean (k= 1)

0.002" —-0.004™ —0.003" 0.007"
(2.182) (-2.291) (~1.928) (2.174)

0.001 -0.003 —0.004" 0.011""
(1.598) (~1.499) (-2.408) (2.669)

0.001 —0.003 —0.008 0.011
(0.296) (-0.495) (~1.203) (1.095)

Panel E. Soybean meal (k= 1)

0.002" —-0.006" ~0.003™ 0.013""
(2.258) (-2.476) (-2.355) (2.695)

0.002" —0.007" -0.003™ 0.012"
(2.351) (=2.508) (=2.056) (2.439)

0.008" —0.046™ —-0.011" 0.052
(2.223) (-2.518) (=1.652) (1.593)

Panel F. Soybean oil (k= 2)

ok

0.001  —0.003 —0.008™" 0.034
(0.374) (~0.528) (-3.816) (3.837)

ok

ok

0.000 —0.003 —0.009"" 0.036

(0.273) (~0.410) (~3.598) (3.635)

0.002 —0.007 —0.009" 0.033
(0.558) (~0.624) (-1.657) (1.621)

Panel G. Iron ore (k= 1)

0.001 —0.017 -0.007"" 0.036"
(0.626) (—1.219) (-2.765) (2.312)

0.003 —0.037 —0.013"70.096™"
(0.768) (~1.403) (-3.139) (3.143)

0.010° —0.054" —0.013" 0.062”
(1.817) (~1.954) (-2.283) (2.100)

Panel H. Cotton (k= 1)

~0.000 0.000 —0.005"" 0.011""
(-0.216) (0.187) (=3.222) (3.432)

0.000 —0.000 —0.005"" 0.011""

—0.004 0.008 —0.007" 0.020"

(0.328) (-0.264) (-3.058) (3.264) (~1.606) (1.289) (-2.493) (2.383)

Notes: This table reports the parameter estimates of the VECM model (1) for the eight commodity futures

prices in both U.S. and Chinese markets. The co-integrating vector is known g = {1, —1}. k is

the number of the lag order. Short-run dynamics I's are not shown to save space. The values in

parentheses are White heteroscedasticity-consistent z-statistics. ",

5% and 1% level, respectively.

and " are significant at the 10%,

Focusing on the parameters for the Chinese market (¢, and «,), there is a positive

drift in the returns on seven commodities, of which four are statistically significant.
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The adjustment coefficient a,, measuring how rapidly the Chinese market responds
to mispricing (namely, the error correction term (y,,, — »,.,)), is negative in all eight
cases. This result is as expected, since when the lag price in the Chinese market is
higher than that in the US market (the error correction term is positive), we expect a
decrease in the current Chinese commodity price (hence, negative returns) to revert to
the equilibrium price. o, is also statistically significant for copper, gold, soybean, and
soybean meal at the 5% level and for silver at the marginal 10% level.

Comparing the magnitude of adjustment in the before- and after-nighttime-
trading samples, we find that o, is smaller for copper, gold, and silver following the
introduction of nighttime trading. In contrast, a; becomes larger for soybean meal
and iron ore. Note that a coefficient may be statistically significant in the full sample
and yet imprecisely estimated in either subsample (e.g., a, for soybean). This is likely
because the sample size is smaller in the subsample periods. Noticeably, a,, the speed
with which the US market responds to mispricing (y,,, — 1»,..;), is significant at the 10%
level for all eight commodities (in fact, it is significant at the 5% or better level for
seven commodities) before nighttime trading was introduced in China. The adjustment
is significant for three commodities (gold, iron ore, and cotton) only in the more recent
sample period. The response is also stronger for gold and cotton.

In summary, according to the full sample estimation results, five out of the eight
Chinese futures (i.e., copper, gold, silver, soybean, and soybean meal) and all eight US
futures have significant error correction terms, implying that, in the bivariate system,
more futures respond to mispricing in the US market than in the Chinese market in
terms of statistical significance. These results indicate bidirectional adjustment to
deviations in futures prices for most sample futures, yet the Chinese market dominates
the US market in soybean oil, iron ore, and cotton futures. The relatively leading role
taken by Chinese soybean oil and iron ore futures in the long-run feedback relationship
is consistent with China’s large trading volume in these commodities. The cotton price
in China is relatively more policy driven, and the insignificant adjustment coefficient
of this commodity is also as expected. From the subsample analysis, we find changes
in the relative strengths of the cross-market price error correction after the launching
of nighttime trading in China. On both markets, the copper and silver futures seem to
become less responsive to price discrepancies. However, the gold and cotton futures in
the United States, as well as soybean meal and iron ore futures in China, adjust more
quickly to mispricing in the post-nighttime trading subsample.

The VECM analysis indicates close price linkage in the long term between the
Chinese and US futures markets. The introduction of nighttime trading in China has
brought noticeable changes to the relative responsiveness of each market to price
discrepancies. The changes vary across commodities.
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4.2. Innovations Accounting by FEVD

To illustrate the economic significance and the short-run dynamic pattern in
information transmission between the two futures markets, we use FEVD—the
percentage of price variations in the Chinese and US market at time #+/ that are due to
shocks to the market itself at time . The decomposition is based on the VECM model
parameters estimated above, and the largest / considered is 10 (days). Not surprisingly,
at the longer horizon (4 = 10), the cross-market impact is generally more intense.

Table 6 reports the results of variance decomposition at the three-day and ten-day
horizons for simplicity.” Because each VAR system has only two prices, the variance
decomposition of the Chinese (or US) market attributable to shocks to the Chinese and
the US markets sum to 100%. Here, we focus on comparing the decompositions from
the two subsamples. The results based on the full sample, where no dummy variable is
included in model 1, are not reported because of space considerations.

Table 6 indicates several patterns arising from the variance decomposition analysis.
The US market is a global leader in price discovery for commodity futures. For all the
sample futures, the forecast error variance in the US market is mainly due to its own
market shocks (i.e., more than 80%). After nighttime trading was launched in China,
the impact of domestic market shocks on six out of the eight US futures has increased,
while the forecast error variance of soybean meal and iron ore futures are affected
more by cross-market information.

Table 6. Forecast Error Variance Decompositions

China market US market
Horizon Before nighttime After nighttime Before nighttime After nighttime
trading trading trading trading
Panel A. Copper (k= 3)
3 70.668 55.100 88.226 93.028
10 60.057 42.621 77.629 86.328
Panel B. Gold (k= 6)
3 52.724 41.054 86.975 92.115
10 31.415 29.810 80.497 81.813
Panel C. Silver (k=2)
3 57.580 63.722 80.725 91.783
10 44.465 52.882 67.125 87.244
Panel D. Soybean (k= 1)
3 88.998 92.993 93.984 98.107

' One can also conduct an impulse response analysis to summarize the dynamics of price changes.
Here we use variance decomposition because the sizes of shocks to the prices are likely to change over
the sample period and variance decompositions inherently account for the varying shock size when
dynamics from different subsamples are compared.

> We compute 90% confidence intervals for the point estimates of the decomposition by the bootstrap
method. For ease of presentation, they are not shown in the table.
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China market US market
Horizon Before nighttime After nighttime Before nighttime After nighttime
trading trading trading trading
10 85.751 90.596 90.850 96.417
Panel E. Soybean Meal (k= 1)
3 87.476 86.405 96.940 95.509
10 82.954 73.644 94.978 90.502
Panel F. Soybean Oil (k= 2)
3 81.884 72.864 86.427 97.653
10 78.459 67.595 75.530 94.793
Panel G. Iron Ore (k=1)
3 98.322 92.165 82.870 79.606
10 95.854 83.584 57.626 68.420
Panel H. Cotton (k= 1)
3 93.271 94.306 95.835 98.941
10 91.336 94.982 93.011 97.069

Notes: The forecast error variance decomposition is conducted based on the vector error correction model (1)
with one known co-integrating vector = {1, —1} (parameter estimates are reported in Table 3). Table
entries are the decompositions (in percentage) of price variations in a market which are due to shocks
to the market itself at the 3- and 10-day horizons. Bootstrap confidence intervals are not reported for

ease of presentation.

Shocks to Chinese markets also play a dominant role in affecting the variations
in futures prices. Several patterns are noted. First, the Chinese soybean meal and
iron ore futures are global leaders in the making because they illustrate that China is
the world’s top consumer and has become affected less by domestic market shocks
and more by shocks from the US market (i.e., the impact of shocks from China fell
from 87.5% to 86.4% for soybean meal and from 98.3% to 92.2% for iron ore). At
the same time, these Chinese futures affect the US market in a more effective way
during the post-nighttime-trading subsample, as domestic market shocks lessened for
both corresponding US futures. Their trading volume of these two commodities has
been consistently higher than counterparts in the United States and increased from
2013 to 2015 (Table 3). In particular, the trading volume of Chinese iron ore futures
has increased at a stunning rate, and in recent years it has dominated US futures (in
terms of the number of contracts traded in 2015, trading volume for iron ore totaled
51914417 in China and 136158 in the United States).' Similarly, Chinese soybean meal
futures are the world’s most heavily traded agricultural futures, and the new nighttime
trading policy has reinforced their popularity as well as global impact. The ramification
is that these commodities are trying to become global price leaders as they allow more
US information flow into the domestic market and exert a greater effect on the US
market with this rapidly increasing trading volume.

' The trading volume for Chinese futures is converted into an equivalent value in US terms based on
contract-size differences between the two markets. For instance, 51914417 is a transformed Chinese
futures trading volume, which is directly comparable to US futures.
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Second, Chinese copper, gold, and soybean oil futures are being developed into
global competitors. In the post-nighttime-trading subsample, their price variations
become less dependent on domestic market shocks (i.e., from 70.7% to 55.1%
for copper, 52.7% to 41.1% for gold, and 81.9% to 72.9% for soybean oil), while
corresponding US futures have increased dependence on their domestic market. The
changes indicate that these Chinese commodities are embracing more information
from the US market and, at the same time, trying to maintain their important role in the
domestic market, given the large proportion of price variation explained by domestic
market shocks (i.e., the impact of shocks from the Chinese market range from 41.1%
for gold to 72.9% for soybean oil during the post-nighttime-trading subsample at the
three-day horizon). Table 3 also shows that in recent years Chinese copper and gold
futures have been traded more intensively. Although the volume is still relatively small
compared with futures in the United States, trading in Chinese gold futures has been
gradually catching up. Soybean oil futures, after dropping from 2013 to 2014, quickly
picked up in 2015, when trading volume in both surpassed the level in the United
States. Thus, this group of Chinese futures, either through their continuous increases
in trading (i.e., copper and gold) or a quick recovery from previous downturns (i.e.,
soybean oil), is becoming more powerful players and competitors in the global
commodity futures market.

Third, the remaining three Chinese commodities—soybeans, cotton, and silver—
are becoming domestic centers for price discovery. In China, the price of agricultural
commodities, such as soybeans and cotton, had been subject to heavy government
regulations. Futures prices for these commodities deviated from those on the
international market. The shift from direct price supports to a target price mechanism
starting in 2014 gradually restored the hedging and price discovery functions of futures
markets. As shown in Table 6, the price variations in these futures exhibit increased
exposure to domestic market shocks (i.e., from 57.6% to 63.7% for silver, 89% to
93% for soybeans, and 93.3% to 94.3% for cotton). Thus, these commodities in China
are ignoring turbulence on the global market and becoming more independent. Also,
the shocks of these Chinese futures have a smaller impact on the US market in the
post-nighttime-trading subsample (i.e., corresponding US futures are more affected
by shocks from the US market itself), so their focus is the Chinese domestic market.
These findings are consistent with China’s transition stage, in which market forces are
now replacing government policies in determining the price of these commodities.
From 2013 to 2014, trading volume in Chinese cotton and soybean futures significantly
increased. A slide occurred the following year, when regulatory measures were
imposed to curb excessive speculation in the futures market. Soybeans and cotton,
which are heavily affected by government policies while silver also appears to be
affected by domestic forces in China. The trading of silver experienced a worldwide
contraction in 2015. The decrease in trading volume on the SHFE is more than 25%,
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while the decrease in silver trading in the US market that year was around 2%. In
addition to its safe haven feature, which is similar to the gold, silver is also used in
the industry and thus is more sensitive to changes in industrial demand and market
fundamentals.

Put together, the findings from the variance decomposition analysis show that the
launching of nighttime trading in China has effectively affected the price discovery
in both the Chinese and US futures markets, and that the outcomes vary across
commodities.' Clearly, the new trading policy serves these commodities in different
ways. The majority of Chinese commodities are striving to be more integrated into
and exerting more impact on the global market, and a few commodities (i.e., silver,
soybean, and cotton) in China are focusing more on the domestic market.

4.3. Volatility Spillover

In this subsection, we present the results on volatility spillover between the Chinese
market and the US market, which are estimated from the GARCH-BEKK model (2)
with a nighttime-trading dummy variable interacting with all right-hand-side predictive
variables. Table 7 reports the two parameter estimates of our central interests, a, and
acy, along with their robust standard errors by the quasi maximum likelihood method
as briefly discussed in section 2. The left-hand panel shows the estimates for the
sample observations before nighttime trading sessions were introduced. The volatility
transmission from the Chinese market to the US market (a,) is statistically highly
significant for six commodities. It is zero in the market for copper and insignificant
for silver. The results in column 2 (a.,;) show that volatility in the Chinese market
is affected by lagged volatility in the US market for six commodities at the 5%
significance level and for one commodity (soybean oil) at the 10% level, although
these effects are in general smaller in magnitude than the volatility spillover effects
from the Chinese market to the US market. The evidence in Panel G suggests that
volatility in the US iron ore market does not spill over to the Chinese market, further
indicating the leading role of the Chinese iron ore futures market.

Table 7. Volatility Spillover

Before nighttime trading After nighttime trading Log likelihood
dyc Adcy (@yc+ he) (ayc+ hey)
Panel A. Copper
0.002 0.051"" 0.140” 0.092"" 17090.00
(0.121) (7.211) (2.319) (3.630)

" As a robustness check, we conduct the Granger-causality test between Chinese and US futures
based on VECM model 1. The test result shows bidirectional causality for all the eight sample futures
at conventional significance level, both before and after the nighttime trading. Thus, the evidence
supports strong short-term cross-market interactions between China and the United States.
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Before nighttime trading After nighttime trading Log likelihood
Ayc Adcy (@yc + Mye) (aye+ Aey)
Panel B. Gold
0307 0.065" 0.308"" 0.029 13026.21
(12.167) (5.786) (8.531) (0.653)
Panel C. Silver

0.145 0.128" 0.3517" 0.183™ 4580.30

(0.795) (2.094) (8.706) (17.635)
Panel D. Soybean
0.194" 0.143™ 0.223" 0.150™ 17272.05
(25.738) (14.900) (2.067) (2.990)
Panel E. Soybean meal
0.301" 0.038" 0.466"" 0.015 16334.64
(27.147) (12.001) (7.901) (0.601)
Panel F. Soybean oil
0.160™" 0.022° 0.280" 0.060" 11355.96
(9.529) (1.917) (2.255) (1.987)
Panel G. Iron ore
0.259™ 0.045 0.120™" 0.032 3033.38
(4.060) 0.411) (3.768) (1.407)
Panel H. Cotton

0.698"" 0.126™ 0.536"" 0.030 16500.41
(14.790) (17.220) (2.730) (0.103)

Notes: The square of a, is the estimate of the pre-night-trading spillover effect of lagged volatility (squared
residuals) of the Chinese markets on the volatility of US markets. Similarly, a., measures the effect
of lagged volatility of the US market on the volatility of the Chinese market. azz'uc and a;w measure
the corresponding post-night-trading spillover effect. They are the parameters in the bivariate
GARCH-BEKK model for the residuals estimated from the earlier-stage vector error correction
model (1). Values in parentheses are maximum likelihood estimates of -statistics.

Focusing on the middle panel of Table 7, we find that the introduction of nighttime
trading sessions overall has strengthened the volatility transmission from the Chinese
market to the US market (a,¢). Specifically, the spillover effect turns statistically
significant for copper and silver. Quantitatively, the effect becomes larger in the most
recent period for copper, silver, and all three soybean-related commodities and remains
largely the same for gold. The estimate decreases from 0.26 to 0.12 for iron ore (Panel
G) and from 0.70 to 0.54 for cotton (Panel H). The additional trading hours have had
more mixed results on the volatility transmission from the US market to the Chinese
market (ac). The spillover effect remains statistically significant and becomes larger
in magnitude for copper, silver, soybean, and soybean oil. In contrast, the effect turns
insignificant from the first to the second sample period for the other three commodities,
gold, soybean meal, and cotton. It remains insignificant in both periods for iron ore.

Findings from the volatility spillover analysis provide important evidence of the
effectiveness of the new trading policy in China. First, linkage between the Chinese
and US futures markets became stronger after the implementation of nighttime trading
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hours. In particular, five of the Chinese future (i.e., copper, silver, soybean, soybean
meal, and soybean oil) and four of the US futures (i.e., copper, silver, soybean, and
soybean oil) have increased the cross-market level of information transmission, while
the Chinese market appears to be more integrated with the global futures market during
the post-nighttime-trading subsample. Second, we find stronger bidirectional volatility
spillover for copper, silver, soybean, and soybean oil futures. For these commodities,
therefore, volatility in the Chinese (or US) market is more sensitive to innovations
from the US (or Chinese) market with nighttime trading hours in China. Third, for
gold, soybean meal, iron ore, and cotton futures, the Chinese market is now taking a
leading role in the information transmission process, as significant volatility spillover
is found from China to the United States, but not the other way around.

In short, the launching of nighttime trading in China is followed by closer linkage
between the Chinese and US markets in price volatility. The role of the Chinese market
in the cross-market information transmission mechanism is also effectively reinforced
with extended trading hours at night, such that innovations from the Chinese market
appear to have stronger influence on the volatility of the US market than before.

5. Conclusions

In this study, we use daily data on commodity futures on the Chinese and US
exchanges to investigate the changes in the information transmission mechanism
between these two important futures markets after nighttime trading was launched
in China. Although started much later than its counterparts in developed markets,
futures trading in China experienced rapid expansion and development during the past
couple of decades. A series of regulatory changes have been implemented to improve
the price discovery function and thus the overall efficiency of the futures market in
China, among which the introduction of nighttime trading in 2013 is a significant step
in achieving these goals. We investigate the effect of the additional nighttime trading
hours on the cross-market information flows between Chinese and US futures markets.
In particular, we test for influence on the price discovery process and volatility
spillover between the two markets.

Our sample consists of eight commodity futures simultaneously traded in both
China and the United States, with four metal futures (i.e., copper, gold, silver, and
iron ore) and four agricultural futures (i.e., soybean, soybean meal, soybean oil, and
cotton) from each market. The full sample spans from the earliest available date in the
CSI database to the end of February 2016. Based on the date that nighttime trading
sessions were implemented for the eight Chinese futures, two subsamples, before
nighttime trading and after nighttime trading, are constructed to explore cross-market
information flows during the pre- and post-nighttime-trading periods.

Chinese and US markets are found to be closely related during the full sample
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period as their futures prices adjust actively to mispricing. In particular, the Chinese
market dominates the US market in soybean oil, iron ore, and cotton futures. The
introduction of nighttime trading has brought changes in both the significance and
adjustment speed in the error correction process between these two markets. The
variance decomposition analysis indicates that the US market has the leading role in
price discovery both before and after nighttime trading was introduced. The Chinese
market, based on the changes in the effect of domestic market shocks as well as its
influence on the US market, has shown three development trends: as domestic center
(i.e., silver and soybean), global competitor (i.e., copper, gold, and soybean oil), and
global leader (i.c., soybean meal, iron ore). Significant volatility spillover is found
in both directions, indicating bidirectional information transmission between these
two markets. There is evidence of closer cross-market linkage and stronger volatility
spillover from the Chinese market to the US market in the post-nighttime-trading
period.

In conclusion, our empirical tests detect close linkage between China and the
United States in both futures prices and price volatility. Specifically, the launching
of nighttime trading hours for Chinese futures markets brought significant changes
to the price discovery process in these markets, and it has a profound impact on the
cross-market information transmission mechanism. While the changes in the relative
strength of long-term price causality vary across commodities, the Chinese market
is now taking a leading role in the volatility spillover process. Therefore, the recent
policy change in China has effectively enhanced information flow and enabled better
linkage between the Chinese and US markets. It has proved to be a solid step in further
internationalizing the Chinese futures market and strengthening China’s price-setting
power in key commodities on the global market.
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