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Does More Trading Lead to Better Market Linkage? 
Evidence from the Commodity Futures Markets

Hung-Gay Fung, Zijun Wang, Lin Zhao*1

In this study, we use eight pairs of commodity futures data to investigate the impact 
of the recently launched nighttime trading session by Chinese futures exchanges. We 
conduct a thorough empirical analysis on the cross-market information transmission 
mechanisms between China and the U.S. We apply various econometric analyses 
including the co-integration analysis, the forecast error variance decomposition 
analysis, and the volatility spillover analysis with a bivariate GARCH model. 
Findings in this study indicate that, after the launching of nighttime-trading hours 
in China, the price discovery function of the Chinese futures market is noticeably 
improved, and that the Chinese market began to dominate the U.S. market in the 
bidirectional volatility spillover process. Thus, the introduction of the nighttime-
trading hours appears to be an effective step toward China’s long-term goal of 
establishing pricing power in key commodities on the global financial market.
Keywords:　�Chinese futures market, market linkage, nighttime trading.

1. Introduction

This paper investigates the effectiveness of the recently launched nighttime 
trading sessions on futures exchanges in China. We pay particular attention to the 
price linkages between the Chinese and US commodity futures market that is a global 
market leader and the implications behind the policy change allowing extended trading 
hours. Although the futures market started much later in China than in developed 
markets, it has been growing rapidly over the past couple of decades and drawn wide 
attention among investors around the world. In terms of the trading volume, many 
commodity futures in China are now among the most heavily traded contracts in global 
derivatives markets. China has three commodity futures exchanges and one financial 
futures exchange: the Shanghai Futures Exchange (SHFE), the Dalian Commodity 
Exchange (DCE), the Zhengzhou Commodity Exchange (ZCE), and the China 
Financial Futures Exchange (CFFEX). The futures market in China is dominated by 
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various commodity futures in terms of trading volume and is characterized by frequent 
product innovations. 

As one of the world’s largest consumers of raw materials, China is trying to 
expand the influence of its domestic market on commodity futures prices through the 
development of its futures market. For a long time, the Chinese futures market was 
accessible only during daytime trading hours. The lack of trading opportunities during 
nighttime hours impeded the timely information transmission from active markets 
overseas to futures prices on the domestic Chinese market. To further improve the 
Chinese futures markets ability to compete globally and eventually establish the ability 
to set prices in key futures commodities, nighttime trading was launched by leading 
futures exchanges in China in 2013, beginning in July with the SHFE for gold and 
silver futures. Shortly afterward, the DCE and ZCE followed suit. By the end of 2015, 
28 commodity futures in China had launched nighttime trading sessions. 

The microstructure literature implies that information is revealed in security prices 
with trades (e.g., Copeland and Galai, 1983; Easley and O’Hara, 1987; Glosten and 
Milgrom, 1985; Hasbrouck, 1988, 1991; Kyle, 1985). For example, Garbade and Silber 
(1983) examine the price discovery function of the futures markets to confirm the 
leading role of futures markets over cash markets in terms of the incorporation of new 
information into prices. In addition, some empirical studies discuss the price discovery 
realized outside the trading periods in equity markets (Barclay and Hendershott, 2008; 
Cao, Ghysels and Hatheway, 2000). The implementation of nighttime trading sessions 
for commodity futures in China enables domestic traders to better manage their risk 
through prompt trading after new information is released in other markets while it 
is nighttime in China. The basic functions of the futures market – providing price 
discovery and hedging for domestic traders – are expected to be enhanced. 

Prior studies have investigated the features of trading activities in futures 
markets and how those activities interact with pricing dynamics in the market (e.g., 
Bessembinder and Seguin, 1992, 1993; Chan, Fung and Leung, 2004; Fung, Mai and 
Zhao, 2016; Fung and Patterson, 1999; Fung and Patterson, 2001; Kao and Fung, 2012; 
Pliska and Shalen, 1991). Other streams in the literature explore cross-market analysis, 
which investigates linkage between futures and spot markets or the transmission of 
information across futures markets in different geographic locations (e.g., Eun and 
Shim, 1989; Fung, Leung and Xu, 2001; Ghosh, Saidi and Johnson, 1999; Xu and 
Fung, 2005; Kao, Ho and Fung, 2015). Despite the rising importance of Chinese 
commodity futures in the world derivatives market, few studies have thoroughly 
investigated the mechanisms of the Chinese futures market and its linkage with other 
markets. Fung, Tse, Yau and Zhao (2013) empirically investigate the efficiency of the 
Chinese commodity futures market. A recent paper by Fung, Mai and Zhao (2016) 
finds that, after nighttime trading was launched in China, the interaction between 
volatility and trading activity conform better to patterns observed in developed markets 
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and show improved price efficiency in the Chinese futures market. 
Many Chinese metal and agricultural futures are heavily traded and already rank at 

the top among peers globally, with support from the Chinese government to become 
globally competitive. Commodity futures traded on Chinese exchanges have distinctive 
characteristics and appear to serve various policy purposes. Some of these futures, such 
as iron ore, copper, and soybean meal, have shown increasing influence on commodity 
prices in the global market, while others, for instance, cotton and soybean futures, 
focus more on the local market by providing domestic traders with the basic functions 
of futures—price discovery and hedging. 

Driven by strong domestic demand, China is the top consumer of many 
commodities. As widely reported in the media, China is the world’s leading importer 
of iron ore, and its trading volume of iron ore futures is far above that of its peers in 
other global markets. Unlike iron ore futures in other markets, which are based on steel 
index prices and use cash settlement, Chinese iron ore futures use physical delivery 
as the settlement method to better reflect market forces. The high liquidity of Chinese 
iron ore futures attracts many investors and cash market traders. In addition to iron ore, 
China is also known for its heavy consumption of other commodities, such as copper 
and soybean meal. Futures contracts on such commodities in China are expected to 
become more internationalized and to play a more important role in the global market. 
The launching of nighttime trading allows more timely absorption of information from 
other active markets overseas, and thus better cross-market price linkage is expected. 
This change should therefore enable the Chinese futures market to have a greater 
impact on the global market and, in the long run, gain the power to set prices.

The price of several futures contracts in China, such as soybean and cotton, is 
affected by domestic government policies to a higher degree than elsewhere. The cross-
market price linkage between China and the United States should show the underlying 
forces affecting futures prices. In the past, cotton futures prices in China, for example, 
deviated substantially from international prices because prices in China were driven by 
government policies more than by market forces. In 2014, China gradually moved from 
direct price support (through the cotton reserve policy) to a target price mechanism, 
which emphasizes the role of market forces in determining the cotton price (MacDonald, 
Gale and Hansen, 2015). Since then, many large consumers of cotton in China, such as 
textile manufacturers, have turned to the futures market for hedging tools against risks 
from the market-determined cash price. Correspondingly, the trading volume of cotton 
in China increased markedly from 2013 to 2014, and the price discovery function 
of cotton futures was thus utilized much more effectively than before. The pricing 
mechanism for Chinese soybean futures experienced similar changes as market forces 
began to play a key role. Many enterprises in industries related to soybeans began to 
actively participate in the futures market for hedging purposes. For these commodities 
in China, opening the futures market at night could reduce the price deviation between 
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domestic and international markets and thus help establish a domestic price center that 
truly reflects aggregate demand and supply to facilitate hedging and price discovery.

This study examines the changes in dynamics of and information flows between 
China and the United States, the largest futures markets in the world, following the 
launching of the nighttime trading session in China. We focus on the cross-market 
information transmission mechanism between the commodities that are traded 
simultaneously in the Chinese and US futures markets. Our paper contributes to the 
literature in the following aspects. First, examining the impact of the recent policy 
change on cross-market linkage between these two countries sheds light on the 
evolution of the Chinese futures market and its role in the global financial market. 
Second, our sample consists of eight pairs of commodity futures traded in both the 
United States and China. After the implementation of the nighttime trading hours, some 
of the Chinese futures are found to have greater impact on the global market, while 
others are not, reflecting that the sample commodity futures serve different policy 
purposes in China. Third, we conduct a co-integration analysis to analyze the price 
discovery process and estimate volatility spillover with bivariate GARCH models to 
show price linkage across markets. The combination of the two modeling techniques, 
each capturing different perspectives on the data, can produce a more complete picture 
of the fundamental market dynamics.

The main findings are summarized as follows. First of all, there is solid 
bidirectional long-run feedback in futures prices between the Chinese and US futures 
markets during the full sample period. Second, during both the pre- and post-nighttime 
trading subsample periods, the US market plays a leading role in price discovery for 
the commodities studied. Most importantly, we observe several interesting patterns in 
the Chinese market following the policy change. Two commodities in China—soybean 
meal and iron ore futures—appear to be global leaders in the making. Copper, gold, 
and soybean oil futures in China have become more active global competitors since 
nighttime trading was launched. In contrast, Chinese silver, soybean, and cotton futures 
are being established as domestic centers. Third, since the introduction of nighttime 
trading, more volatility spillover is found from the Chinese market to the US market 
than the other way around.

The new trading policy allowing extended trading hours has been shown to be 
an effective step in strengthening China’s status in the cross-market information 
transmission mechanism and improving the market’s price discovery function, both 
of which are consistent with policy makers’ long-term goal of establishing price-
setting power in key commodities in the global market. The empirical results in this 
study provide practitioners interested in the Chinese futures markets with important 
information and offer other emerging markets possible strategies for developing their 
derivatives markets. 

The remainder of the paper proceeds as follows. We describe research methodology 
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and the data in Sections 2 and 3, respectively. We present the empirical results in 
Section 4. Section 5 discusses and summarizes the main findings. 

2. Econometric Methodology 

In this section, we describe the econometric methods we employ to investigate 
price and return dynamics and volatility spillover effect across the Chinese and 
US commodity futures markets. Our empirical framework is the standard vector 
autoregression (VAR) model. Let yt = {y1, t, y2, t} denote a (2 × 1) vector that includes 
Chinese and US futures contract prices (measured in logarithms) for a commodity, 
respectively. Assuming the existence of co-integration between the two nonstationary 
prices due to the law of one price or no arbitrage, the data-generating process of yt can 
be written as a standard vector error correction model (VECM) with k lags:

1 1
1
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where Δ is the difference operator (Δyt = yt – yt-1), α and β are both (2 × r) matrices 
of parameters (r < 2) with β describing r long-run equilibriums among the two 
endogenous price variables, Γl is a (2 × 2) matrix of coefficients describing short-run 
dynamics, and µ is a (2 × 1) vector of constants, and finally, εt is a (2 × 1) zero-mean 
vector with a potentially time-varying variance covariance matrix Ht, which is positive 
definite. Therefore, the VECM (1) can be used to study both short-run dynamics and 
the long-run relationship in the commodity futures markets. 

Market prices in China and the United States are nonsynchronous since, on any given 
calendar day (t), the US market opens and closes after the Chinese market. To account for 
this timing difference, we replace lags of Chinese market prices y1, t-1, y1, t-2, …, y1,t-k, in the 
second equation of model 1 with US prices with y1, t, y1, t-1, …, y1, t-k+1. Correspondingly, 
the co-integrating vector (β1 y1, t-1 – β2y2, t-1) also becomes (β1 y1, t – β2 y2, t-1) in the 
equation. Due to this change, we no longer estimate and conduct co-integration test 
in model 1 using Johansen’s (1991) full information maximum likelihood procedure. 
Instead, we impose the theoretical restriction that the two prices do not deviate from 
each other for too long and follow the law of one price (except for transaction costs). 
Put another way, we assume the co-integration rank is one and the co-integrating 
vector is known after normalization β = {1, –1}.1

For the purpose of innovations accounting, we compute the popular forecast error 
variance decomposition (FEVD) based on model 1 to better estimate short-run dynamic 

1 Empirically, we find that both error correction terms (y1,t-1 – y2,t-1) and (y1,t – y2,t-1) are stationary 
processes, which provides indirect evidence in support of the restriction we impose on model 1.



55Hung-Gay Fung, Zijun Wang, Lin Zhao

linkages of prices and returns across the markets.1 Note that the existence of strong 
contemporaneous correlations among securities market innovations often casts doubt 
on the traditional orthogonalized FEVD based on the recursive Choleski factorization 
of VAR innovations. The reason is that the Choleski factorization depends on the 
order of variables in the VAR system. However, the use of Choleski factorization is 
appropriate for the non-overlapping data we use here. This is because, as pointed out 
earlier, the Chinese market opens and closes before the US market, underlying shocks 
from market 1 (the Chinese market) can cause same-day changes in market 2 (the 
US market) while shocks from the US market can affect the China market only in the 
following day. This provides a natural order for the two price series in the bivariate 
VAR.

Further exploiting rich information embedded in the co-integration model, we also 
study volatility spillover between the two markets. In estimating co-integration model 
1 and conducting FEVD, we have followed the practice and assumed that the variance 
and covariance matrix Ht of the error term εt remains constant during some prespecified 
period. However, one of the stylized facts about security returns is that they feature 
significant time-varying (conditional) variance (volatility) and covariance. To study the 
volatility spillover across the markets, we adopt a sequential procedure and explicitly 
model the heteroscedasticity in the error term εt, which is estimated from the first-
stage VECM model 1. Specifically, we model εt as following a bivariate GARCH(1,1) 
process whose second moments are specified as the popular BEKK model proposed by 
Engle and Kroner (1995) (BEKK):

Ht = CC' + A'εt-1ε't-1A+B'Ht-1B,� (2)

where parameter matrices C, A, and B capture the constant part of the variance, the 
ARCH, and the GARCH effects, respectively.2 In particular, matrix A has the following 
form:

,CC UC

CU UU

a a
A

a a
 

=  
 

� (3)

where, in general, aCU ≠ aUC. An obvious advantage of the BEKK model over other 
specifications is that each term is positive semidefinite by construction, which is 
important because optimization may run into a negative definite matrix and cause 
convergence issues in small samples. The cost is that, with all the parameters entering 

1 As FEVD is a standard tool and well known, we omit the computation details here.
2 We do not consider other more complicated multivariate GARCH specifications since the size of the 
post-nighttime-trading sample period is small. 
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the model through quadratic forms, they are not globally identified. That is, changing 
the signs of all elements of C, B, or A will have no effect on the likelihood function. 

This model specification suggests that the ARCH component of the conditional 
variance for the Chinese market (market 1) is the sum of three terms (i.e., 

2 2 2 2
, 1 , 1 , 1 , 12CC C t CC CU C t U t CU U ta a a aε ε ε ε− − − −+ + ). Therefore, the spillover effect of volatility 

originating in the US market on Chinese market volatility is captured by the latter 
two terms. Nevertheless, since the effect reflected in the middle cross-product term is 
difficult to isolate, in the empirical section we focus only on the direct effect, namely, 
coefficient a2

CU. Similarly, we use a2
UC to measure the spillover effect of Chinese market 

volatility on the US market.
Given a sample of T observations, the parameters of the two-factor GARCH-BEKK 

Equations (2)–(3) are estimated by maximizing the conditional log-likelihood function:
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where n = 2 is the dimension of the bivariate GARCH model, and θ denotes the vector 
of all the parameters to be estimated, including H0, the initial values of the variance 
and covariance, which we treat as unknown parameters.

To measure how the extended nighttime trading session affects the price 
information role played by the Chinese market, we include a dummy variable in both 
the mean equation (1) and conditional variance equation (2). The dummy variable 
takes the value of 0 for sample observations before the introduction of nighttime 
trading and 1 for observations thereafter. We allow the dummy variable to interact with 
all right-hand-side variables. So, all coefficients are allowed to vary across the two 
subsample periods. For example, the estimate of the adjustment vector in model 1 for 
the second subsample period would be (α + λ) , where α is the vector of adjustment 
effect estimates for the default case (the pre-nighttime-trading period) and λ is the 
coefficient vector associated with the interaction term of the dummy variable and the 
error correction term. Similarly, the coefficient matrix A of the ARCH component in 
the second subsample period would be computed as follows:

( ) ,CC CC UC UC

CU CU UU UU

a a
A

a a
λ λ
λ λ
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� (5)

where A measures the spillover effect in the pre-nighttime-trading sample period and 
Λ is the coefficient matrix associated with the interaction terms of the dummy variable 
and the quadratic error terms εt-1ε't-1 in BEKK model 2.
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3. Data

Despite its rapid development and growing importance among global financial 
markets, the futures market in China was accessible only during daytime trading hours 
until 2013, when the Shanghai Futures Exchange introduced nighttime trading for 
its gold and silver futures. Numerous commodity futures at major futures exchanges 
in China have now adopted nighttime trading hours in addition to daytime trading, 
so futures traders in China can trade on new information released from markets 
overseas sooner than before. By the end of 2015, nighttime trading sessions had 
been implemented in China for 28 commodity futures, including gold, silver, copper 
cathode, aluminum, zinc, lead, steel rebar, natural rubber, bitumen, hot rolled coils, 
nickels, and tin futures on the SHFE; RBD palm olein, metallurgical coke, no. 1 
soybeans, no. 2 soybeans, soybean meal, crude soybean oil, coking coal, and iron ore 
futures on the DCE; white sugar, pure terephthalic acid (PTA), no. 1 cotton, rapeseed 
meal, methanol, rapeseed oil, flat glass, and thermal coal futures on the ZCE.

In this study, we collect daily futures settlement prices from the Commodity 
Systems Inc. (CSI) database. Eight of the commodity futures traded in China could be 
matched up with comparable futures contracts traded on US exchanges and are thus 
included in our sample. Selected commodity futures contracts include copper, gold, 
silver, soybeans, soybean meal, soybean oil, iron ore, and cotton. The sample period is 
from the earliest available date in the CSI database to February 2016. Since the sample 
includes eight pairs of price series from two different markets, China and the United 
States, we construct standardized price quotation units so that the prices of the Chinese 
futures and US futures are comparable. In particular, we convert price quotations for 
Chinese futures to those of US futures using foreign exchange rate data retrieved from 
FRED, Federal Reserve Bank of St. Louis. We generate continuous futures price time 
series by rolling over to the next nearby contract when its open interest is larger.

Table 1 summarizes information on the sample. All the Chinese futures price 
quotations are transformed to the same quotation units used on the US market. The 
last two columns present the launch date and hours of nighttime trading sessions in 
China. In a later analysis, we divide the full sample data into subsamples: “Before 
nighttime trading,” which includes futures data prior to the launching of nighttime 
trading in China, and “After nighttime trading,” which refers to the time period after 
the launching of nighttime trading. 

Table 2 presents descriptive statistics of futures returns for the full sample, the “before 
nighttime trading” subsample, and the “after nighttime trading” subsample. The statistics 
for each commodity futures are presented in separate panels. The futures return (Rt) is 
constructed as the log difference of daily settlement prices (i.e., Rt = log (Pt) – log (Pt-1)).
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Table 1. Summary of Sample Futures

China market U.S. market
Price 
quote

Sample 
start

Sample 
end

Nighttime trading in 
China

Contract 
(symbol) Exchange Contract 

(Symbol) Exchange Launching Hours

Copper cathode 
(CU) SHFE Copper (HG) COMEX cents/lbs. 12/11/2003 2/29/2016 12/20/201321:00-1:00

Gold (AU) SHFE Gold (GC) COMEX USD/troy 
ounce 1/17/2008 2/29/2016 7/5/2013 21:00-2:30

Silver (AG) SHFE Silver (SI) COMEX cents/troy 
ounce 12/31/20122/29/2016 7/5/2013 21:00-2:30

No. 1 soybeans 
(A) DCE Soybean (S) CBOT cents/

bushel 12/11/2003 2/29/2016 12/26/201421:00-23:30

Soybean meal 
(M) DCE Soybean meal 

(ZM) CBOT USD/short 
ton 12/11/2003 2/29/2016 12/26/201421:00-23:30

Crude soybean 
oil (Y) DCE Soybean oil 

(ZL) CBOT cents/lbs. 5/19/2008 2/29/2016 12/26/201421:00-23:30

Iron ore (I) DCE Iron ore (TIO) NYMEX USD/ton 10/18/20132/29/2016 12/26/201421:00-23:30

Cotton No. 1 
(CF) ZCE Cotton No. 2 

(CT)
ICE 

Futures UScents/lbs. 6/1/2004 2/29/2016 12/12/201421:00-23:30

Note: The price quotes of the Chinese futures are standardized to be consistent with US futures.

Table 2. Summary Statistics 

Full sample  Before nighttime trading After nighttime trading
US China US China US China

Panel A. Copper
Mean 0.00031 0.00049 0.00055 0.00072 -0.00080 -0.00060
Std. 0.0194 0.0151 0.0206 0.0160 0.0126 0.0096

Skewness −0.184*** –0.243*** –0.210*** –0.254*** 0.005 –0.450***

Kurtosis 3.635*** 1.759*** 3.246*** 1.381*** 1.833*** 3.569***

Panel B. Gold
Mean 0.00011 0.00010 0.00017 0.00019 –0.00004 –0.00009
Std. 0.0129 0.0118 0.0140 0.0133 0.0102 0.0082

Skewness –0.252*** –0.397*** –0.372*** –0.472*** 0.392*** 0.330***

Kurtosis 5.228*** 4.406*** 5.121*** 3.660*** 1.862*** 2.249***

Panel C. Silver
Mean –0.00104 –0.00097 –0.00394 –0.00426 –0.00048 –0.00037
Std. 0.0180 0.0133 0.0212 0.0197 0.0173 0.0117

Skewness –0.415*** –0.712*** –1.701*** –1.085*** 0.076 –0.026
Kurtosis 4.681*** 5.803*** 8.310*** 4.353*** 2.628*** 2.761***

Panel D. Soybean
Mean 0.00016 0.00010 0.00025 0.00023 –0.00066 –0.00116
Std. 0.0161 0.0102 0.0165 0.0104 0.0119 0.0077

Skewness –0.215*** –0.314*** –0.228*** –0.347*** –0.034 0.103
Kurtosis 1.994*** 3.519*** 1.819*** 3.465*** 4.610*** 2.542***

Panel E. Soybean meal
Mean 0.00036 0.00023 0.00049 0.00035 –0.00083 –0.00086
Std. 0.0181 0.0120 0.0185 0.0123 0.0134 0.0088
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Full sample  Before nighttime trading After nighttime trading
US China US China US China

Skewness –0.142*** –0.190*** –0.165*** –0.215*** 0.223 0.154
Kurtosis 1.718*** 1.912*** 1.604*** 1.845*** 2.540*** 1.001***

Panel F. Soybean oil
Mean –0.00056 –0.00042 –0.00059 –0.00047 –0.00041 –0.00016
Std. 0.0153 0.0118 0.0156 0.0123 0.0140 0.0087

Skewness 0.055 –0.542*** 0.056 –0.568*** 0.059 0.111
Kurtosis 2.292*** 3.001*** 2.529*** 2.858*** 0.007 0.977***

Panel G. Iron ore
Mean –0.00122 –0.00126 –0.00110 –0.00214 –0.00135 –0.00034
Std. 0.0143 0.0139 0.0087 0.0118 0.0183 0.0158

Skewness 0.299*** –0.185* 0.299** –0.371** 0.271* –0.177
Kurtosis 5.367*** 1.586*** 10.907*** 1.632*** 2.602*** 1.157***

Panel H. Cotton
Mean –0.00028 –0.00017 –0.00029 –0.00008 –0.00022 –0.00099
Std. 0.0172 0.0091 0.0178 0.0094 0.0116 0.0062

Skewness –0.111** –0.223*** –0.123** –0.224*** 0.311** –0.642***

Kurtosis 1.298*** 7.786*** 1.144*** 7.569*** 1.827*** 2.317***

Note: ***, ** and * are significant at the 1%, 5% and 10% level, respectively.

All eight Chinese futures exhibit significant negative skewness and excess kurtosis 
for the subsample before nighttime trading, while five of these futures (i.e., silver, 
soybean, soybean meal, soybean oil, and iron ore) no longer demonstrate negative 
skewness in the subsample after nighttime trading. Thus, sample futures on the Chinese 
market exhibit improved normality in the distribution of returns after the change in 
trading hours. Similarly, negative skewness in the copper, silver, soybean, and soybean 
meal futures in the US market is observed only in the subsample before nighttime 
trading. Overall, the summary statistics for the returns of sample futures indicate that 
the distribution of Chinese futures returns become more symmetric after nighttime 
trading hours are launched, showing that more balanced information is reflected in 
the prices on the market. As both the Chinese and US futures markets appear to suffer 
more from downside risk (i.e., negative skewness) in returns for the subsample before 
nighttime trading, the inclusion of data during the 2008 financial crisis in the pre-
nighttime trading sample period may also play a role in the pattern observed. 

Many Chinese commodity futures are now playing an important role in the world 
market. For example, in 2015, soybean meal, soybean oil, cotton, and soybean futures 
on Chinese exchanges ranked first, fifth, sixteenth, and eighteenth, respectively, among 
the world’s most heavily traded agricultural futures.1 Table 3 presents the annual 
trading volume of the sample futures from both markets from 2013 to 2015. As futures 
in the Chinese and US markets are traded in different contract sizes, we convert 

1 Will Acworth, “2015 Annual Survey: Global Derivatives Volume”, March 15, 2016, retrieved from 
http://marketvoicemag.org/?q=content/2015-annual-survey-global-derivatives-volume/.



60 China Finance and Economic Review

Chinese futures’ trading volume to an equivalent value that is directly comparable to 
US futures. Thus, the trading volume of Chinese futures as shown in the table is in 
its standardized form. For the most recent year, 2015, we observe that the Chinese 
copper, soybean meal, soybean oil, and iron ore futures were traded more actively than 
their US counterparts, while heavier trading of gold, soybeans, and cotton futures is 
found in the US market. For silver futures, trading volume in both markets is relatively 
close, following a drop in the Chinese market from the previous year. The increasing 
popularity of iron ore futures trading in recent years has drawn wide attention in the 
market. The trading volume of Chinese iron ore futures increased by 170% in 2015 
from 2014.

Table 3. Annual Trading Volume (2013–2015)

Futures
2015 2014 2013

China US China US China US

Copper 38941772 16986055 31089686 14591200 28349586 17127383

Gold 8139657 41847338 7672895 40518804 6458376 47294551

Silver 13964957 13454406 18662290 13696961 16707685 14475593

Soybeans 1382225 54095051 1998466 49169361 807802 46721081

Soybean meal 31911548 24315276 22596135 20637382 29250659 20237181

Soybean oil 33989458 28897275 23546308 23769391 35396891 23805912

Iron ore 51914417 136158 19271826 24988 437843 22302

Cotton 4985199 6726586 7006692 5787883 1642898 6155024

Sources:　�China Futures Association website (http://www.cfachina.org/); CME Group website (http://www.
cmegroup.com/); ICE Futures U.S. website (https://www.theice.com/futures-us).

Notes:　�The values shown in the table are number of contracts traded during the year. As futures contracts in 
China and the United States are traded in different sizes, all the Chinese futures trading volume data 
shown in the table are the equivalent US trading volume based on the contract size of US futures. 
After the standardization, volume data from different markets are directly comparable. 

We first test the order of integration of the futures (log) prices on both the Chinese 
and US markets for the eight commodities using the popular augmented Dickey-
Fuller test. The null hypothesis is that the price contains a unit root. The results are 
summarized in Table 4. We consider two testing models, one allowing for a linear time 
trend in addition to a drift and the other allowing a drift only. When the model includes 
a drift term only, the null hypothesis cannot be rejected for all eight commodity prices 
at the conventional 5% significance level. The results in the last column show that 
we also fail to reject the null hypothesis for all but one variable when both a drift and 
a linear trend are included in the model. The exception is futures prices for silver, 
for which we reject the unit-root hypothesis at the 5% level. Nevertheless, we again 
fail to reject the null at the less conservative 1% level. Overall, we conclude that all 
prices are level nonstationary. We then proceed to test for the nonstationarity of the 
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first differences of the prices. The unit-root hypothesis can now be rejected for all 
first-differenced prices in both markets. These results combine to suggest that the 
commodity futures prices in both markets can be characterized as I(1) variables.1

Table 4. Results of ADF Unit Root Tests 

With an intercept With an intercept & trend
Lag order ADF Lag order ADF

Copper
US 1 -2.651 1 -1.823

China 1 -2.580 1 -1.706
Gold

US 0 -1.633 0 -1.380
China 1 -1.555 1 -1.286

Silver
US 0 -2.406 0 -3.685*

China 1 -2.576 1 -3.615*

Soybean
US 0 -1.640 0 -1.607

China 1 -1.393 1 -1.137
Soybean meal

US 0 -1.849 0 -2.199
China 1 -1.754 1 -1.521

Soybean oil
US 0 -1.719 0 -1.758

China 1 -1.374 1 -1.467
Iron ore

US 0 -1.210 0 -1.558
China 1 -1.173 1 -2.706

Cotton
US 0 -1.650 0 -1.484

China 1 -1.002 1 0.189

Notes:　�This table reports augmented Dickey Fuller (ADF) test results. The number of lagged terms included 
in the tests is determined by BIC. The null hypothesis is that the series contains a unit root. * null 
hypothesis is rejected at the 5% level.

4. Empirical Results

4.1. Estimation of the Co-Integration Model 

As the initial step in estimating a VAR model, we determine the autoregressive 

1 We also conduct an ADF test for nonstationarity allowing one structural break in the data using a 
procedure proposed by Carrion-i-Silvestre, Kim and Perron (2009). We fail to reject the unit-root 
hypothesis for all but three price series at the 5% significance level (silver in the United States and 
silver and iron ore in China).
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lag order k in the model by minimizing the popular Schwarz’s Bayesian information 
criterion (BIC), assuming a maximum of ten lags. The optimal lag orders are 3, 6, 2, 1, 
1, 2, 1, and 1 for copper, gold, silver, soybean, soybean meal, soybean oil, iron ore, and 
cotton, respectively (the lag orders of the underlying VARs in levels would be 4, 7, 3, 2, 
2, 3, 2, and 2). Table 5 reports the parameter estimation results of co-integration model 
(1), imposing the restriction β = {1 ,−1} on the co-integration space. To save space, the 
short-run dynamics are not reported. Columns 1–4 report the constants (μ1 and μ2) and 
the estimates of the adjustment coefficients α1 and α2, for the full sample period. The 
corresponding results for the first and the second subsamples are presented in columns 
5–8 and 9–12, respectively.

Table 5. The Key Parameter Estimates of the Vector Error Correction Models

Full sample Before nighttime trading After nighttime trading
μ1 α1 μ2 α2 μ1 α1 μ2 α2 μ1 α1 μ2 α2

Panel A. Copper (k = 3)
0.008*** –0.052***–0.009*** 0.062*** 0.008*** –0.055***–0.010*** 0.070*** 0.004* –0.026** –0.004 0.022
(5.897) (–5.838) (–4.015) (4.098) (5.638) (–5.494) (–3.977) (4.118) (1.871) (–1.976) (–1.114) (0.876)

Panel B. Gold (k = 6)
0.001*** –0.107*** –0.001 0.095*** 0.001*** –0.128*** –0.000 0.081* 0.001* –0.065** –0.002** 0.157***

(3.248) (–4.963) (–1.481) (2.763) (2.827) (–4.641) (–0.712) (1.868) (1.840) (–2.505) (–2.466) (2.841)
Panel C. Silver (k = 2)

0.001 –0.022* –0.003** 0.041** 0.013** –0.371*** –0.022** 0.484** 0.002** –0.028** –0.002 0.027
(1.273) (–1.931) (–2.340) (2.044) (2.598) (–3.284) (–2.553) (2.503) (2.327) (–2.554) (–1.471) (1.309)

Panel D. Soybean (k = 1)
0.002** –0.004** –0.003* 0.007** 0.001 –0.003 –0.004** 0.011*** 0.001 –0.003 –0.008 0.011
(2.182) (–2.291) (–1.928) (2.174) (1.598) (–1.499) (–2.408) (2.669) (0.296) (–0.495) (–1.203) (1.095)

Panel E. Soybean meal (k = 1)
0.002** –0.006** –0.003** 0.013*** 0.002** –0.007** –0.003** 0.012** 0.008** –0.046** –0.011* 0.052
(2.258) (–2.476) (–2.355) (2.695) (2.351) (–2.508) (–2.056) (2.439) (2.223) (–2.518) (–1.652) (1.593)

Panel F. Soybean oil (k = 2)
0.001 –0.003 –0.008*** 0.034*** 0.000 –0.003 –0.009*** 0.036*** 0.002 –0.007 –0.009* 0.033

(0.374) (–0.528) (–3.816) (3.837) (0.273) (–0.410) (–3.598) (3.635) (0.558) (–0.624) (–1.657) (1.621)
Panel G. Iron ore (k = 1)

0.001 –0.017 –0.007*** 0.036** 0.003 –0.037 –0.013*** 0.096*** 0.010* –0.054* –0.013** 0.062**

(0.626) (–1.219) (–2.765) (2.312) (0.768) (–1.403) (–3.139) (3.143) (1.817) (–1.954) (–2.283) (2.100)
Panel H. Cotton (k = 1)

–0.000 0.000 –0.005*** 0.011*** 0.000 –0.000 –0.005*** 0.011*** –0.004 0.008 –0.007** 0.020**

(–0.216) (0.187) (–3.222) (3.432) (0.328) (–0.264) (–3.058) (3.264) (–1.606) (1.289) (–2.493) (2.383)

Notes:　�This table reports the parameter estimates of the VECM model (1) for the eight commodity futures 
prices in both U.S. and Chinese markets. The co-integrating vector is known β = {1, –1}. k is 
the number of the lag order. Short-run dynamics Γs are not shown to save space. The values in 
parentheses are White heteroscedasticity-consistent t-statistics. *, ** and *** are significant at the 10%, 
5% and 1% level, respectively.

Focusing on the parameters for the Chinese market (μ1 and α1), there is a positive 
drift in the returns on seven commodities, of which four are statistically significant. 
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The adjustment coefficient α1, measuring how rapidly the Chinese market responds 
to mispricing (namely, the error correction term (y1,t-1 – y2,t-1)), is negative in all eight 
cases. This result is as expected, since when the lag price in the Chinese market is 
higher than that in the US market (the error correction term is positive), we expect a 
decrease in the current Chinese commodity price (hence, negative returns) to revert to 
the equilibrium price. α1 is also statistically significant for copper, gold, soybean, and 
soybean meal at the 5% level and for silver at the marginal 10% level. 

Comparing the magnitude of adjustment in the before- and after-nighttime-
trading samples, we find that α1 is smaller for copper, gold, and silver following the 
introduction of nighttime trading. In contrast, α1 becomes larger for soybean meal 
and iron ore. Note that a coefficient may be statistically significant in the full sample 
and yet imprecisely estimated in either subsample (e.g., α1 for soybean). This is likely 
because the sample size is smaller in the subsample periods. Noticeably, α2, the speed 
with which the US market responds to mispricing (y1,t – y2,t-1), is significant at the 10% 
level for all eight commodities (in fact, it is significant at the 5% or better level for 
seven commodities) before nighttime trading was introduced in China. The adjustment 
is significant for three commodities (gold, iron ore, and cotton) only in the more recent 
sample period. The response is also stronger for gold and cotton.

In summary, according to the full sample estimation results, five out of the eight 
Chinese futures (i.e., copper, gold, silver, soybean, and soybean meal) and all eight US 
futures have significant error correction terms, implying that, in the bivariate system, 
more futures respond to mispricing in the US market than in the Chinese market in 
terms of statistical significance. These results indicate bidirectional adjustment to 
deviations in futures prices for most sample futures, yet the Chinese market dominates 
the US market in soybean oil, iron ore, and cotton futures. The relatively leading role 
taken by Chinese soybean oil and iron ore futures in the long-run feedback relationship 
is consistent with China’s large trading volume in these commodities. The cotton price 
in China is relatively more policy driven, and the insignificant adjustment coefficient 
of this commodity is also as expected. From the subsample analysis, we find changes 
in the relative strengths of the cross-market price error correction after the launching 
of nighttime trading in China. On both markets, the copper and silver futures seem to 
become less responsive to price discrepancies. However, the gold and cotton futures in 
the United States, as well as soybean meal and iron ore futures in China, adjust more 
quickly to mispricing in the post-nighttime trading subsample. 

The VECM analysis indicates close price linkage in the long term between the 
Chinese and US futures markets. The introduction of nighttime trading in China has 
brought noticeable changes to the relative responsiveness of each market to price 
discrepancies. The changes vary across commodities.
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4.2. Innovations Accounting by FEVD

To illustrate the economic significance and the short-run dynamic pattern in 
information transmission between the two futures markets, we use FEVD—the 
percentage of price variations in the Chinese and US market at time t+h that are due to 
shocks to the market itself at time t.1 The decomposition is based on the VECM model 
parameters estimated above, and the largest h considered is 10 (days). Not surprisingly, 
at the longer horizon (h = 10), the cross-market impact is generally more intense. 

Table 6 reports the results of variance decomposition at the three-day and ten-day 
horizons for simplicity.2 Because each VAR system has only two prices, the variance 
decomposition of the Chinese (or US) market attributable to shocks to the Chinese and 
the US markets sum to 100%. Here, we focus on comparing the decompositions from 
the two subsamples. The results based on the full sample, where no dummy variable is 
included in model 1, are not reported because of space considerations.

Table 6 indicates several patterns arising from the variance decomposition analysis. 
The US market is a global leader in price discovery for commodity futures. For all the 
sample futures, the forecast error variance in the US market is mainly due to its own 
market shocks (i.e., more than 80%). After nighttime trading was launched in China, 
the impact of domestic market shocks on six out of the eight US futures has increased, 
while the forecast error variance of soybean meal and iron ore futures are affected 
more by cross-market information. 

Table 6. Forecast Error Variance Decompositions

Horizon
China market US market

Before nighttime 
trading

After nighttime 
trading

Before nighttime 
trading

After nighttime 
trading

Panel A. Copper (k = 3)
3 70.668 55.100 88.226 93.028
10 60.057 42.621 77.629 86.328

Panel B. Gold (k = 6)
3 52.724 41.054 86.975 92.115

10 31.415 29.810 80.497 81.813
Panel C. Silver (k = 2)

3 57.580 63.722 80.725 91.783
10 44.465 52.882 67.125 87.244

Panel D. Soybean (k = 1)
3 88.998 92.993 93.984 98.107

1 One can also conduct an impulse response analysis to summarize the dynamics of price changes. 
Here we use variance decomposition because the sizes of shocks to the prices are likely to change over 
the sample period and variance decompositions inherently account for the varying shock size when 
dynamics from different subsamples are compared. 
2 We compute 90% confidence intervals for the point estimates of the decomposition by the bootstrap 
method. For ease of presentation, they are not shown in the table.



65Hung-Gay Fung, Zijun Wang, Lin Zhao

Horizon
China market US market

Before nighttime 
trading

After nighttime 
trading

Before nighttime 
trading

After nighttime 
trading

10 85.751 90.596 90.850 96.417
Panel E. Soybean Meal (k = 1)

3 87.476 86.405 96.940 95.509
10 82.954 73.644 94.978 90.502

Panel F. Soybean Oil (k = 2)
3 81.884 72.864 86.427 97.653
10 78.459 67.595 75.530 94.793

Panel G. Iron Ore (k = 1)
3 98.322 92.165 82.870 79.606
10 95.854 83.584 57.626 68.420

Panel H. Cotton (k = 1)
3 93.271 94.306 95.835 98.941
10 91.336 94.982 93.011 97.069

Notes:　�The forecast error variance decomposition is conducted based on the vector error correction model (1) 
with one known co-integrating vector β = {1, –1} (parameter estimates are reported in Table 3). Table 
entries are the decompositions (in percentage) of price variations in a market which are due to shocks 
to the market itself at the 3- and 10-day horizons. Bootstrap confidence intervals are not reported for 
ease of presentation.

Shocks to Chinese markets also play a dominant role in affecting the variations 
in futures prices. Several patterns are noted. First, the Chinese soybean meal and 
iron ore futures are global leaders in the making because they illustrate that China is 
the world’s top consumer and has become affected less by domestic market shocks 
and more by shocks from the US market (i.e., the impact of shocks from China fell 
from 87.5% to 86.4% for soybean meal and from 98.3% to 92.2% for iron ore). At 
the same time, these Chinese futures affect the US market in a more effective way 
during the post-nighttime-trading subsample, as domestic market shocks lessened for 
both corresponding US futures. Their trading volume of these two commodities has 
been consistently higher than counterparts in the United States and increased from 
2013 to 2015 (Table 3). In particular, the trading volume of Chinese iron ore futures 
has increased at a stunning rate, and in recent years it has dominated US futures (in 
terms of the number of contracts traded in 2015, trading volume for iron ore totaled 
51914417 in China and 136158 in the United States).1 Similarly, Chinese soybean meal 
futures are the world’s most heavily traded agricultural futures, and the new nighttime 
trading policy has reinforced their popularity as well as global impact. The ramification 
is that these commodities are trying to become global price leaders as they allow more 
US information flow into the domestic market and exert a greater effect on the US 
market with this rapidly increasing trading volume. 

1 The trading volume for Chinese futures is converted into an equivalent value in US terms based on 
contract-size differences between the two markets. For instance, 51914417 is a transformed Chinese 
futures trading volume, which is directly comparable to US futures. 
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Second, Chinese copper, gold, and soybean oil futures are being developed into 
global competitors. In the post-nighttime-trading subsample, their price variations 
become less dependent on domestic market shocks (i.e., from 70.7% to 55.1% 
for copper, 52.7% to 41.1% for gold, and 81.9% to 72.9% for soybean oil), while 
corresponding US futures have increased dependence on their domestic market. The 
changes indicate that these Chinese commodities are embracing more information 
from the US market and, at the same time, trying to maintain their important role in the 
domestic market, given the large proportion of price variation explained by domestic 
market shocks (i.e., the impact of shocks from the Chinese market range from 41.1% 
for gold to 72.9% for soybean oil during the post-nighttime-trading subsample at the 
three-day horizon). Table 3 also shows that in recent years Chinese copper and gold 
futures have been traded more intensively. Although the volume is still relatively small 
compared with futures in the United States, trading in Chinese gold futures has been 
gradually catching up. Soybean oil futures, after dropping from 2013 to 2014, quickly 
picked up in 2015, when trading volume in both surpassed the level in the United 
States. Thus, this group of Chinese futures, either through their continuous increases 
in trading (i.e., copper and gold) or a quick recovery from previous downturns (i.e., 
soybean oil), is becoming more powerful players and competitors in the global 
commodity futures market.

Third, the remaining three Chinese commodities—soybeans, cotton, and silver—
are becoming domestic centers for price discovery. In China, the price of agricultural 
commodities, such as soybeans and cotton, had been subject to heavy government 
regulations. Futures prices for these commodities deviated from those on the 
international market. The shift from direct price supports to a target price mechanism 
starting in 2014 gradually restored the hedging and price discovery functions of futures 
markets. As shown in Table 6, the price variations in these futures exhibit increased 
exposure to domestic market shocks (i.e., from 57.6% to 63.7% for silver, 89% to 
93% for soybeans, and 93.3% to 94.3% for cotton). Thus, these commodities in China 
are ignoring turbulence on the global market and becoming more independent. Also, 
the shocks of these Chinese futures have a smaller impact on the US market in the 
post-nighttime-trading subsample (i.e., corresponding US futures are more affected 
by shocks from the US market itself), so their focus is the Chinese domestic market. 
These findings are consistent with China’s transition stage, in which market forces are 
now replacing government policies in determining the price of these commodities. 
From 2013 to 2014, trading volume in Chinese cotton and soybean futures significantly 
increased. A slide occurred the following year, when regulatory measures were 
imposed to curb excessive speculation in the futures market. Soybeans and cotton, 
which are heavily affected by government policies while silver also appears to be 
affected by domestic forces in China. The trading of silver experienced a worldwide 
contraction in 2015. The decrease in trading volume on the SHFE is more than 25%, 
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while the decrease in silver trading in the US market that year was around 2%. In 
addition to its safe haven feature, which is similar to the gold, silver is also used in 
the industry and thus is more sensitive to changes in industrial demand and market 
fundamentals. 

Put together, the findings from the variance decomposition analysis show that the 
launching of nighttime trading in China has effectively affected the price discovery 
in both the Chinese and US futures markets, and that the outcomes vary across 
commodities.1 Clearly, the new trading policy serves these commodities in different 
ways. The majority of Chinese commodities are striving to be more integrated into 
and exerting more impact on the global market, and a few commodities (i.e., silver, 
soybean, and cotton) in China are focusing more on the domestic market. 

4.3. Volatility Spillover

In this subsection, we present the results on volatility spillover between the Chinese 
market and the US market, which are estimated from the GARCH-BEKK model (2) 
with a nighttime-trading dummy variable interacting with all right-hand-side predictive 
variables. Table 7 reports the two parameter estimates of our central interests, aUC and 
aCU, along with their robust standard errors by the quasi maximum likelihood method 
as briefly discussed in section 2. The left-hand panel shows the estimates for the 
sample observations before nighttime trading sessions were introduced. The volatility 
transmission from the Chinese market to the US market (aUC) is statistically highly 
significant for six commodities. It is zero in the market for copper and insignificant 
for silver. The results in column 2 (aCU) show that volatility in the Chinese market 
is affected by lagged volatility in the US market for six commodities at the 5% 
significance level and for one commodity (soybean oil) at the 10% level, although 
these effects are in general smaller in magnitude than the volatility spillover effects 
from the Chinese market to the US market. The evidence in Panel G suggests that 
volatility in the US iron ore market does not spill over to the Chinese market, further 
indicating the leading role of the Chinese iron ore futures market.

Table 7. Volatility Spillover

Before nighttime trading After nighttime trading Log likelihood
aUC aCU (aUC + λUC) (aUC + λCU)

Panel A. Copper
0.002 0.051*** 0.140** 0.092*** 17090.00

(0.121) (7.211) (2.319) (3.630)

1 As a robustness check, we conduct the Granger-causality test between Chinese and US futures 
based on VECM model 1. The test result shows bidirectional causality for all the eight sample futures 
at conventional significance level, both before and after the nighttime trading. Thus, the evidence 
supports strong short-term cross-market interactions between China and the United States.
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Before nighttime trading After nighttime trading Log likelihood
aUC aCU (aUC + λUC) (aUC + λCU)

Panel B. Gold
0.307*** 0.065*** 0.308*** 0.029 13026.21
(12.167) (5.786) (8.531) (0.653)

Panel C. Silver
0.145 0.128** 0.351*** 0.183*** 4580.30

(0.795) (2.094) (8.706) (17.635)
Panel D. Soybean

0.194*** 0.143*** 0.223** 0.150*** 17272.05
(25.738) (14.900) (2.067) (2.990)

Panel E. Soybean meal
0.301*** 0.038*** 0.466*** 0.015 16334.64
(27.147) (12.001) (7.901) (0.601)

Panel F. Soybean oil
0.160*** 0.022* 0.280** 0.060** 11355.96
(9.529) (1.917) (2.255) (1.987)

Panel G. Iron ore
0.259*** 0.045 0.120*** 0.032 3033.38
(4.060) (0.411) (3.768) (1.407)

Panel H. Cotton
0.698*** 0.126*** 0.536*** 0.030 16500.41
(14.790) (17.220) (2.730) (0.103)

Notes:　�The square of aUC is the estimate of the pre-night-trading spillover effect of lagged volatility (squared 
residuals) of the Chinese markets on the volatility of US markets. Similarly, aCU measures the effect 
of lagged volatility of the US market on the volatility of the Chinese market. a2

2,UC and a2
2,CU measure 

the corresponding post-night-trading spillover effect. They are the parameters in the bivariate 
GARCH-BEKK model for the residuals estimated from the earlier-stage vector error correction 
model (1). Values in parentheses are maximum likelihood estimates of t-statistics. 

Focusing on the middle panel of Table 7, we find that the introduction of nighttime 
trading sessions overall has strengthened the volatility transmission from the Chinese 
market to the US market (aUC). Specifically, the spillover effect turns statistically 
significant for copper and silver. Quantitatively, the effect becomes larger in the most 
recent period for copper, silver, and all three soybean-related commodities and remains 
largely the same for gold. The estimate decreases from 0.26 to 0.12 for iron ore (Panel 
G) and from 0.70 to 0.54 for cotton (Panel H). The additional trading hours have had 
more mixed results on the volatility transmission from the US market to the Chinese 
market (aCU). The spillover effect remains statistically significant and becomes larger 
in magnitude for copper, silver, soybean, and soybean oil. In contrast, the effect turns 
insignificant from the first to the second sample period for the other three commodities, 
gold, soybean meal, and cotton. It remains insignificant in both periods for iron ore.

Findings from the volatility spillover analysis provide important evidence of the 
effectiveness of the new trading policy in China. First, linkage between the Chinese 
and US futures markets became stronger after the implementation of nighttime trading 
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hours. In particular, five of the Chinese future (i.e., copper, silver, soybean, soybean 
meal, and soybean oil) and four of the US futures (i.e., copper, silver, soybean, and 
soybean oil) have increased the cross-market level of information transmission, while 
the Chinese market appears to be more integrated with the global futures market during 
the post-nighttime-trading subsample. Second, we find stronger bidirectional volatility 
spillover for copper, silver, soybean, and soybean oil futures. For these commodities, 
therefore, volatility in the Chinese (or US) market is more sensitive to innovations 
from the US (or Chinese) market with nighttime trading hours in China. Third, for 
gold, soybean meal, iron ore, and cotton futures, the Chinese market is now taking a 
leading role in the information transmission process, as significant volatility spillover 
is found from China to the United States, but not the other way around. 

In short, the launching of nighttime trading in China is followed by closer linkage 
between the Chinese and US markets in price volatility. The role of the Chinese market 
in the cross-market information transmission mechanism is also effectively reinforced 
with extended trading hours at night, such that innovations from the Chinese market 
appear to have stronger influence on the volatility of the US market than before. 

5. Conclusions

In this study, we use daily data on commodity futures on the Chinese and US 
exchanges to investigate the changes in the information transmission mechanism 
between these two important futures markets after nighttime trading was launched 
in China. Although started much later than its counterparts in developed markets, 
futures trading in China experienced rapid expansion and development during the past 
couple of decades. A series of regulatory changes have been implemented to improve 
the price discovery function and thus the overall efficiency of the futures market in 
China, among which the introduction of nighttime trading in 2013 is a significant step 
in achieving these goals. We investigate the effect of the additional nighttime trading 
hours on the cross-market information flows between Chinese and US futures markets. 
In particular, we test for influence on the price discovery process and volatility 
spillover between the two markets. 

Our sample consists of eight commodity futures simultaneously traded in both 
China and the United States, with four metal futures (i.e., copper, gold, silver, and 
iron ore) and four agricultural futures (i.e., soybean, soybean meal, soybean oil, and 
cotton) from each market. The full sample spans from the earliest available date in the 
CSI database to the end of February 2016. Based on the date that nighttime trading 
sessions were implemented for the eight Chinese futures, two subsamples, before 
nighttime trading and after nighttime trading, are constructed to explore cross-market 
information flows during the pre- and post-nighttime-trading periods. 

Chinese and US markets are found to be closely related during the full sample 
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period as their futures prices adjust actively to mispricing. In particular, the Chinese 
market dominates the US market in soybean oil, iron ore, and cotton futures. The 
introduction of nighttime trading has brought changes in both the significance and 
adjustment speed in the error correction process between these two markets. The 
variance decomposition analysis indicates that the US market has the leading role in 
price discovery both before and after nighttime trading was introduced. The Chinese 
market, based on the changes in the effect of domestic market shocks as well as its 
influence on the US market, has shown three development trends: as domestic center 
(i.e., silver and soybean), global competitor (i.e., copper, gold, and soybean oil), and 
global leader (i.e., soybean meal, iron ore). Significant volatility spillover is found 
in both directions, indicating bidirectional information transmission between these 
two markets. There is evidence of closer cross-market linkage and stronger volatility 
spillover from the Chinese market to the US market in the post-nighttime-trading 
period. 

In conclusion, our empirical tests detect close linkage between China and the 
United States in both futures prices and price volatility. Specifically, the launching 
of nighttime trading hours for Chinese futures markets brought significant changes 
to the price discovery process in these markets, and it has a profound impact on the 
cross-market information transmission mechanism. While the changes in the relative 
strength of long-term price causality vary across commodities, the Chinese market 
is now taking a leading role in the volatility spillover process. Therefore, the recent 
policy change in China has effectively enhanced information flow and enabled better 
linkage between the Chinese and US markets. It has proved to be a solid step in further 
internationalizing the Chinese futures market and strengthening China’s price-setting 
power in key commodities on the global market. 
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