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Abstract: Multi-energy reconstructions have become an
important research field in computed tomography in recent
years. Since modern reconstruction and postprocessing
techniques often employ deep learning strategies, there is a
high need for large, diverse and adaptable multi-energy
datasets. Therefore, this work proposes a straightforward
pipeline for the generation of multi-energy cone-beam CT
projection data based on the established XCAT software
phantom with arbitrary desired X-ray spectra. We evaluate the
effort and time required for dataset generation and utilize the
generated data for model-based iterative reconstruction
exemplarily. This approach provides an understanding of the
current pipeline’s bottlenecks
suitability in producing high-quality projection datasets and
reconstructions. Thus, we contribute to open knowledge on
generation of large multi-energetic CT datasets for deep
learning purposes.

while demonstrating its
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1 Introduction

Modern multi-energy CT allows for more precise tissue
characterization and material identification than conventional
CT. Due to significant technological advancements in the form
of photon-counting detectors, this research field is of even
greater interest today. Considering that modern reconstruction
and postprocessing techniques aim to employ deep learning
strategies [1], there is a high need for large amounts of multi-
energy data that is adaptable to application specifications. To
our knowledge, there exist no medical open-access datasets
that include complete multi-energy cone-beam CT projection
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data. Even if such data was provided, some multi-energy
techniques also require exact knowledge of the X-ray spectra
and detector response of the underlying CT system. In general,
this information is not provided.

The XCAT software phantom [2] uses a specific set of
parameters to define a virtual patient with realistic shapes of
all body parts and organs. Each part is defined by non-uniform
rational B-Splines (NURBS). These splines can be visualized
as a curved 2D surface that forms a closed 3D shape. NURBS
surfaces are uniquely defined by so-called control points,
which are stored for each body part of the virtual patient.
Additionally, every body part has a material identifier that
represents its attenuation properties.

Simulation of physical processes like X-ray transmission can
be achieved with a variety of software products. In this work,
the X-ray projections are computed with aRTist [3], a software
that accepts arbitrary X-ray spectra and detector response
definitions and applies ray-casting to obtain realistic
projection values. aRTist supports virtual scene generation
from 3D object models of STL (Standard Tessellation
Language) or PLY (Polygon) format.

2 Methods

This work focuses on three tasks: First, the cone-beam CT
(CBCT) data generation from medical software phantoms
itself. Second, usage of the generated data with a physics-
informed material decomposition to exemplarily evaluate
accuracy of the image’s expected Hounsfield unit (HU) values.
Third, the consideration of time requirements for large dataset
generation. The proposed pipeline relies on different software
products that support GPU parallelization. The computation
time is dependent on the computational resources available. In
this work a workstation with AMD Ryzen 9 9900x processor,
64 GB RAM, and NVIDIA GeForce RTX 3080 Ti GPU with
16 GB VRAM is employed.

2.1 Data generation pipeline

We propose a semi-automatic pipeline for multi-energy data
generation of virtual patients. It is visualized in Figure 1 and
consists of four main steps:
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1. Patient
description

2. Separated surfaces

Figure 1: Visualization of proposed pipeline. First, the patient
is described in form of a parameter file. The second step
generates separated surfaces in form of NURBS control points
from XCAT phantom (2a right lung, 2b vertebra, 2c liver). In
the third step, the software solution achieves conjoined
material STLs (3a bone materials, 3b muscle, 3c different
organ materials). Lastly, a complete CT scan is performed in
aRTist simulation (4a simulated patient with source and
detector placement, 4b single projection image, 4c sinogram
of single detector row).

Patient description

Each virtual patient is described by a parameter file consisting
of randomized the parameters for XCAT phantom generation.
The patients are chosen to be female or male with a probability
of 50% each. All other parameters contain information on the

patients’ body part dimensions and follow a uniform
distribution within a specified parameter interval.
Headline 3rd level

Generation of body part surfaces

For each virtual patient, XCAT Phantom is employed to
extract the NURBS control points and the material identifier
for each body part surface. As suggested in [4], these surfaces
should be converted to STL for simulation time optimization.

Conversion to material selective STLs

For further processing we conjoin body part surfaces of the
same material identifier to reduce the number of loading and
material selecting steps. This is achieved by loading the
NURBS surfaces into a parametric modelling software. We
employ Rhino3D® since it supports programming via
customized Python scripts. The data for each material
identifier are selected and the respective NURBS information
is converted into surfaces of triangular facets. The converted
triangulation is stored as an STL file.

Radiographic simulation

For accurate simulation with aRTist, some crucial properties
must be defined:

The material selective STLs are imported into aRTist, where
they appear as separate layers. The attenuation coefficients for
each layer and for all relevant X-ray energies can be extracted
from the XCAT Phantom software. This information is
reformatted and loaded into aRTist’s material database. It is
important to load the STLs in the correct order since aRTist
overwrites material information of overlapping regions, e.g.
for the spine and the spinal cord. For each STL material layer
a material from the material database must be selected.

For multi-energy simulation at least two different X-ray
spectra must be utilized — one in each simulation process. In
this work, we focus on a dual-energy approach, resulting in
two spectra. Both are simulated as a tungsten source spectrum.
For the low energy spectrum, the source operates on 90 kVp
with a spectral filter of 3.5 mm aluminium. The high-energy
spectrum is produced with 150 kVp with a spectral filter of 2.0
mm copper. An energy-integrating detector of 2862 X 954
pixels with 0.15 mm detector pixel spacing and aRTist default
detector response is simulated. The detector response function
can be extracted for later use in the reconstruction. A fixed
maximum detector exposure is chosen, such that no over- or
under-exposure occurs while scanning. Furthermore, we
employ aRTist’s multisampling option with 10 samples per
projection value. A standard circular trajectory around the
patient’s chest with 720 projections in 0.5° angular steps is
selected. The source-isocenter distance (SID) and source-
detector distance (SDD) are chosen such that the full torso can
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be imaged from all angles (SID 500 mm; SDD 1000 mm).
The background intensity is estimated in a region of interest
and all  projection
images. To reduce noise, the projection images are rebinned to
954x318 pixels (with spacing 0.45 mm). The projections are
stored as a 3D sinogram in NIfTT format.

used for normalization on

2.2 Multi-energy reconstruction

To evaluate the usefulness and accuracy of the created dual-
we perform model-based
reconstruction (MBIR) to decompose into two basis materials
[5].
polychromatic projections. Let ,uj-’ (E;) be the attenuation of
material b € {1, ..., B} in voxel x}-b,j € {1,..,N}, where N is
the total number of voxels, for energy E, € {10,11, ... ,150}
keV. Then the projection value at detector element i is given

by
B N
p; = ZS(ER) exp <— Z ,u;’(Ek) Z aijx]l? , D
Ex b=1 j=1

with a;; indicating the system matrix entry for voxel j in ray i.
In the effective spectrum S, the information on the X-ray
spectrum and the detector response is combined. We employ
two basis materials (B = 2). MBIR computes the material
images x}’ by executing two steps: First, calculating the current
sinogram value and comparing it to the expected sinogram

energy sinograms, iterative

This method utilizes a physics model to calculate

value. Second, calculating a gradient from the sinogram
difference that adapts the image for the next iteration. We
apply MBIR with an almost-zero initialization image (value
107 in all voxels) and with pseudo-Huber regularization. The
algorithm converges if a predefined tolerance between the
estimated sinogram from equation (1) and the expected
sinogram values is reached. As basis materials, calcium (300
mg/ml) and polymethyl-methacrylate (short: PMMA, a soft
tissue equivalent material) is chosen. Virtual monoenergetic
images (VMIs) can visualize a CT image as if measured with
a monoenergetic X-ray source.
They can be calculated from the material decomposed images

x].{b=1}, xj{b=2} (with u}’ as defined for eq. (1)) as

VML (E) = u} (E) - x} + pi(E) - xF.

The energy E can be chosen arbitrarily since the attenuation
values for each individual basis material are known from
physics databases (e.g. NIST [6]).

3 Results

Figure 2 shows the exemplary generated projection datasets
of a virtual patient for both X-ray spectra employed. Since the
underlying geometry, spectra and detector properties are
known, the desired model-based reconstruction technique is
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Figure 2: Results of multi-energy simulation. a X-ray spectra, b low
and high energy projection data for the center detector row over a
full rotation, and c distribution of projection values.

applicable to the generated data. Gradient-based MBIR
achieves realistic results as shown in Figure 3. The image slice
in Figure 3a is taken as our baseline. The material
decomposition results in Figure 3b and 3c show expected
behaviour as only bone structures are visible in the calcium
image and seem virtually removed in the PMMA image. The
created VMI exhibits accuracy in terms of HU values for
different material ROIs as shown in Table 1. An important
aspect of creating big virtual datasets is the required generation
time. Table 2 provides benchmark timings for each step of the
proposed pipeline. It is apparent that the X-ray simulation
itself, even if executed with parallelization via GPU, takes up
the biggest percentage of pipeline execution time (ca. 89.5%).

.\\ A "

VMI 100 keV

Figure 3: Qualitative results of multi-energy reconstruction. a
Ground-truth phantom 100keV [Level: 0 HU, Window: 400 HU]. b,
¢ Material decomposition results with basis materials calcium (300
mg/ml) and PMMA, [L: 0.5, W: 1.0]. d Example VMI at 100 keV
calculated from decomposition results, [L: 0 HU, W: 400 HU]. All
images are reconstructed using a pixel spacing of 0.75 mm. ROls
for HU evaluation are marked in red.
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Additionally, it is noticeable that loading the data into
Rhino3D and aRTist from disk memory takes up a
significant amount of time (ca. 8.1%). It should be noted that
the steps were performed by manual execution. This means
that some amount of time is to be expected in between steps,
depending on manual workforce availability.

Table 1: HU values for calculated VMI in ROls (see Fig. 3)

Material Tissue  Muscle Lung Spine
Ground truth -25.7 14.2 -710.6 196.8
Mean in ROI -63.5 -14.2 -760.9 173.7
+ std +50.3 +63.4 +55.8 +80.1

Table 2: Benchmark times with standard deviation for ten
repetitions of each pipeline step and extrapolated time for
1000 virtual patients. For single patient: NURBS: ca. 1.1 m
control points (40 MB), STL: ca. 19.7 m triangles (1 GB)

Step Mean time (£ std) for  Estimation for
single virtual patient 1000 patients

1. Parameter 43.9 (£ 11.7) ms negligible

generation

2. NURBS 2:02 (£ 0:02) min 1d10h

generation

3. Rhino3D

- Loading NURBS 4:03 (% 0:20) min 2d19h

- STL generation 2:25 (£ 0:03) min 1d16h

4. aRTist

- Loading STLs 7:01 (x 0:07) min 4d22h

- Dual-energy 121:48 (+ 1:38) min 12 wks 14 h

X- ray simulation
Total 137:18 (£ 2:11) min 12 wks 11 d

4 Discussion and Outlook

The suggested pipeline for simulated CBCT data generation is
straightforward. We have shown that the simulated projections
obtain realistic HU values in the VMIs when applying an
exemplary multi-energetic reconstruction technique. In this
work, dual-energy data for an energy-integrating detector was
simulated. The simulation could be expanded for even more
energy spectra or photon-counting. However, the simulation
for each spectrum or photon-counting energy bin (Step 4,
aRTist) must be executed additionally. Parallelization on
multiple GPUs should be considered in this case. Furthermore,

disk and memory space must be reviewed since they grow
linearly with the number of spectral datasets. Preparation and
simulation time as well as the amount of data could be reduced
by utilizing only specific parts of the virtual patients and
reducing detector size or detector resolution. These parameters
should be chosen according to application need. As of now,
the data generation is only semi-automatic: Some of the steps
must be performed manually with periods of waiting time in
This makes the current pipeline
somewhat inefficient. In the future, we hope to circumvent
these problems by customized software solutions in Python for
STL generation from NURBS (e.g. via NURBS-Python [7])
and process from working memory directly. This will reduce

between interactions.

the time needed to load the different data formats from disk
memory and improve automation. In conclusion, the proposed
simulation pipeline is an important step towards large,
adaptable and diverse medical datasets that are essential for
training in deep learning tasks for medical multi-energy
imaging.
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