
 

 

 

Laura Hellwege*, Carla Gensana Claus, Moritz Schaar, Thorsten M. Buzug and Maik Stille 

Generation of realistic multi-energetic cone-beam 

CT datasets based on medical software phantoms 

Abstract: Multi-energy reconstructions have become an 

important research field in computed tomography in recent 

years. Since modern reconstruction and postprocessing 

techniques often employ deep learning strategies, there is a 

high need for large, diverse and adaptable multi-energy 

datasets. Therefore, this work proposes a straightforward 

pipeline for the generation of multi-energy cone-beam CT 

projection data based on the established XCAT software 

phantom with arbitrary desired X-ray spectra. We evaluate the 

effort and time required for dataset generation and utilize the 

generated data for model-based iterative reconstruction 

exemplarily. This approach provides an understanding of the 

current pipeline’s bottlenecks while demonstrating its 

suitability in producing high-quality projection datasets and 

reconstructions. Thus, we contribute to open knowledge on 

generation of large multi-energetic CT datasets for deep 

learning purposes. 
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1 Introduction 

Modern multi-energy CT allows for more precise tissue 

characterization and material identification than conventional 

CT. Due to significant technological advancements in the form 

of photon-counting detectors, this research field is of even 

greater interest today. Considering that modern reconstruction 

and postprocessing techniques aim to employ deep learning 

strategies [1], there is a high need for large amounts of multi-

energy data that is adaptable to application specifications. To 

our knowledge, there exist no medical open-access datasets 

that include complete multi-energy cone-beam CT projection 

data. Even if such data was provided, some multi-energy 

techniques also require exact knowledge of the X-ray spectra 

and detector response of the underlying CT system. In general, 

this information is not provided.  

The XCAT software phantom [2] uses a specific set of 

parameters to define a virtual patient with realistic shapes of 

all body parts and organs. Each part is defined by non-uniform 

rational B-Splines (NURBS). These splines can be visualized 

as a curved 2D surface that forms a closed 3D shape. NURBS 

surfaces are uniquely defined by so-called control points, 

which are stored for each body part of the virtual patient. 

Additionally, every body part has a material identifier that 

represents its attenuation properties. 

Simulation of physical processes like X-ray transmission can 

be achieved with a variety of software products. In this work, 

the X-ray projections are computed with aRTist [3], a software 

that accepts arbitrary X-ray spectra and detector response 

definitions and applies ray-casting to obtain realistic 

projection values. aRTist supports virtual scene generation 

from 3D object models of STL (Standard Tessellation 

Language) or PLY (Polygon) format.  

2 Methods 

This work focuses on three tasks: First, the cone-beam CT 

(CBCT) data generation from medical software phantoms 

itself. Second, usage of the generated data with a physics-

informed material decomposition to exemplarily evaluate 

accuracy of the image’s expected Hounsfield unit (HU) values. 

Third, the consideration of time requirements for large dataset 

generation. The proposed pipeline relies on different software 

products that support GPU parallelization. The computation 

time is dependent on the computational resources available. In 

this work a workstation with AMD Ryzen 9 9900x processor, 

64 GB RAM, and NVIDIA GeForce RTX 3080 Ti GPU with 

16 GB VRAM is employed.  

 

2.1 Data generation pipeline 

We propose a semi-automatic pipeline for multi-energy data 

generation of virtual patients. It is visualized in Figure 1 and 

consists of four main steps:  
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Patient description 

Each virtual patient is described by a parameter file consisting 

of randomized the parameters for XCAT phantom generation. 

The patients are chosen to be female or male with a probability 

of 50% each. All other parameters contain information on the 

patients’ body part dimensions and follow a uniform 

distribution within a specified parameter interval.  

Headline 3rd level 

Generation of body part surfaces 

For each virtual patient, XCAT Phantom is employed to 

extract the NURBS control points and the material identifier 

for each body part surface. As suggested in [4], these surfaces 

should be converted to STL for simulation time optimization. 

Conversion to material selective STLs 

For further processing we conjoin body part surfaces of the 

same material identifier to reduce the number of loading and 

material selecting steps. This is achieved by loading the 

NURBS surfaces into a parametric modelling software. We 

employ Rhino3D® since it supports programming via 

customized Python scripts. The data for each material 

identifier are selected and the respective NURBS information 

is converted into surfaces of triangular facets. The converted 

triangulation is stored as an STL file. 

Radiographic simulation  

For accurate simulation with aRTist, some crucial properties 

must be defined:  

The material selective STLs are imported into aRTist, where 

they appear as separate layers. The attenuation coefficients for 

each layer and for all relevant X-ray energies can be extracted 

from the XCAT Phantom software. This information is 

reformatted and loaded into aRTist’s material database.  It is 

important to load the STLs in the correct order since aRTist 

overwrites material information of overlapping regions, e.g. 

for the spine and the spinal cord. For each STL material layer 

a material from the material database must be selected.  

For multi-energy simulation at least two different X-ray 

spectra must be utilized – one in each simulation process. In 

this work, we focus on a dual-energy approach, resulting in 

two spectra. Both are simulated as a tungsten source spectrum. 

For the low energy spectrum, the source operates on 90 kVp 

with a spectral filter of 3.5 mm aluminium. The high-energy 

spectrum is produced with 150 kVp with a spectral filter of 2.0 

mm copper. An energy-integrating detector of 2862 × 954 

pixels with 0.15 mm detector pixel spacing and aRTist default 

detector response is simulated. The detector response function 

can be extracted for later use in the reconstruction. A fixed 

maximum detector exposure is chosen, such that no over- or 

under-exposure occurs while scanning. Furthermore, we 

employ aRTist’s multisampling option with 10 samples per 

projection value. A standard circular trajectory around the 

patient’s chest with 720 projections in 0.5° angular steps is 

selected. The source-isocenter distance (SID) and source-

detector distance (SDD) are chosen such that the full torso can 

3. Material STLs 

1. Patient 

description 

3a 3b 3c 

4. Radiographic simulation 

4a 

4b 

4c 

 

2. Separated surfaces 

2a 2b 2c 

Figure 1: Visualization of proposed pipeline. First, the patient 

is described in form of a parameter file. The second step 

generates separated surfaces in form of NURBS control points 

from XCAT phantom (2a right lung, 2b vertebra, 2c liver). In 

the third step, the software solution achieves conjoined 

material STLs (3a bone materials, 3b muscle, 3c different 

organ materials). Lastly, a complete CT scan is performed in 

aRTist simulation (4a simulated patient with source and 

detector placement, 4b single projection image, 4c sinogram 

of single detector row). 
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be imaged from all angles (SID 500 mm; SDD  1000 mm).  

The background intensity is estimated in a region of interest 

and used for normalization on all projection 

images. To reduce noise, the projection images are rebinned to 

954×318 pixels (with spacing 0.45 mm). The projections are 

stored as a 3D sinogram in NIfTI format. 

2.2 Multi-energy reconstruction 

To evaluate the usefulness and accuracy of the created dual-

energy sinograms, we perform model-based iterative 

reconstruction (MBIR) to decompose into two basis materials 

[5]. This method utilizes a physics model to calculate 

polychromatic projections. Let 𝜇𝑗
𝑏(𝐸𝑘) be the attenuation of 

material 𝑏 ∈ {1, … , 𝐵} in voxel 𝑥𝑗
𝑏 , 𝑗 ∈ {1, … , 𝑁} , where 𝑁 is 

the total number of voxels, for energy 𝐸𝑘 ∈ {10, 11, … , 150} 

keV. Then the projection value at detector element 𝑖 is given 

by 

𝑝𝑖
𝑆 = ∑ 𝑆(𝐸𝑘) exp (− ∑ 𝜇𝑗

𝑏(𝐸𝑘) 

𝐵

𝑏=1

∑ 𝑎𝑖𝑗𝑥𝑗
𝑏

𝑁

𝑗=1

)

𝐸𝑘

,     (1) 

with 𝑎𝑖𝑗 indicating the system matrix entry for voxel 𝑗 in ray 𝑖. 

In the effective spectrum 𝑆, the information on the X-ray 

spectrum and the detector response is combined. We employ 

two basis materials (𝐵 = 2).  MBIR computes the material 

images 𝑥𝑗
𝑏 by executing two steps: First, calculating the current 

sinogram value and comparing it to the expected sinogram 

value. Second, calculating a gradient from the sinogram 

difference that adapts the image for the next iteration.  We 

apply MBIR with an almost-zero initialization image (value 

10−6 in all voxels) and with pseudo-Huber regularization. The 

algorithm converges if a predefined tolerance between the 

estimated sinogram from equation (1) and the expected 

sinogram values is reached. As basis materials, calcium (300 

mg/ml) and polymethyl-methacrylate (short: PMMA, a soft 

tissue equivalent material) is chosen. Virtual monoenergetic 

images (VMIs) can visualize a CT image as if measured with 

a monoenergetic X-ray source.  

They can be calculated from the material decomposed images 

𝑥𝑗
{𝑏=1}

, 𝑥𝑗
{𝑏=2}

  (with 𝜇𝑗
𝑏 as defined for eq. (1)) as 

VMI𝑗(𝐸) = 𝜇𝑗
1(𝐸) ⋅ 𝑥𝑗

1 +  𝜇𝑗
2(𝐸) ⋅ 𝑥𝑗

2. 

The energy 𝐸 can be chosen arbitrarily since the attenuation 

values for each individual basis material are known from 

physics databases (e.g. NIST [6]).  

3 Results 

Figure 2 shows the exemplary generated projection datasets 

of a virtual patient for both X-ray spectra employed. Since the 

underlying geometry, spectra and detector properties are 

known, the desired model-based reconstruction technique is  

applicable to the generated data. Gradient-based MBIR 

achieves realistic results as shown in Figure 3. The image slice 

in Figure 3a is taken as our baseline. The material 

decomposition results in Figure 3b and 3c show expected 

behaviour as only bone structures are visible in the calcium 

image and seem virtually removed in the PMMA image. The 

created VMI exhibits accuracy in terms of HU values for 

different material ROIs as shown in Table 1. An important 

aspect of creating big virtual datasets is the required generation 

time. Table 2 provides benchmark timings for each step of the 

proposed pipeline. It is apparent that the X-ray simulation 

itself, even if executed with parallelization via GPU, takes up 

the biggest percentage of pipeline execution time (ca. 89.5%).   

 

b c 

a 

Figure 2: Results of multi-energy simulation. a X-ray spectra, b low 

and high energy projection data for the center detector row over a 

full rotation, and c distribution of projection values. 

 

Results of multi-energy simulation. a X-ray spectra, b low and high 

energy projection data for the center detector row over a full 

rotation, and c distribution of projection values. 

a b 

c 

GT Calcium 300 mg/ml 

VMI 100 keV PMMA d 

Figure 3: Qualitative results of multi-energy reconstruction. a 

Ground-truth phantom 100keV [Level: 0 HU, Window: 400 HU]. b, 

c Material decomposition results with basis materials calcium (300 

mg/ml) and PMMA, [L: 0.5, W: 1.0]. d Example VMI at 100 keV 

calculated from decomposition results, [L: 0 HU, W: 400 HU]. All 

images are reconstructed using a pixel spacing of 0.75 mm. ROIs 

for HU evaluation are marked in red. 
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Additionally, it is noticeable that loading the data into 

Rhino3D and aRTist from disk memory takes up a 

significant amount of time (ca. 8.1%). It should be noted that 

the steps were performed by manual execution. This means 

that some amount of time is to be expected in between steps, 

depending on manual workforce availability. 
 

 

 

4 Discussion and Outlook 

The suggested pipeline for simulated CBCT data generation is 

straightforward. We have shown that the simulated projections 

obtain realistic HU values in the VMIs when applying an 

exemplary multi-energetic reconstruction technique. In this 

work, dual-energy data for an energy-integrating detector was 

simulated. The simulation could be expanded for even more 

energy spectra or photon-counting. However, the simulation 

for each spectrum or photon-counting energy bin (Step 4, 

aRTist) must be executed additionally. Parallelization on 

multiple GPUs should be considered in this case. Furthermore, 

disk and memory space must be reviewed since they grow 

linearly with the number of spectral datasets. Preparation and 

simulation time as well as the amount of data could be reduced 

by utilizing only specific parts of the virtual patients and 

reducing detector size or detector resolution. These parameters 

should be chosen according to application need. As of now, 

the data generation is only semi-automatic: Some of the steps 

must be performed manually with periods of waiting time in 

between interactions. This makes the current pipeline 

somewhat inefficient. In the future, we hope to circumvent 

these problems by customized software solutions in Python for 

STL generation from NURBS (e.g. via NURBS-Python [7]) 

and process from working memory directly. This will reduce 

the time needed to load the different data formats from disk 

memory and improve automation. In conclusion, the proposed 

simulation pipeline is an important step towards large, 

adaptable and diverse medical datasets that are essential for 

training in deep learning tasks for medical multi-energy 

imaging. 
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Table 1: HU values for calculated VMI in ROIs (see Fig. 3) 

Material Tissue Muscle  Lung Spine 

Ground truth -25.7 14.2 -710.6 196.8 

Mean in ROI 

± std 

-53.5  

± 50.3 

-14.2 

± 63.4 

-760.9 

± 55.8 

173.7 

± 80.1 

Table 2: Benchmark times with standard deviation for ten 

repetitions of each pipeline step and extrapolated time for 

1000 virtual patients. For single patient: NURBS: ca. 1.1 m 

control points (40 MB), STL: ca. 19.7 m triangles (1 GB) 

Step Mean time (± std) for 

single virtual patient 

Estimation for 

1000 patients 

1. Parameter 

generation 

43.9 (± 11.7) ms negligible 

2. NURBS 

generation 

2:02 (± 0:02) min 1 d 10 h 

3. Rhino3D 

· Loading NURBS  

 

4:03 (± 0:20) min 

 

2 d 19 h 

· STL generation  2:25 (± 0:03) min 1 d 16 h  

4. aRTist 

· Loading STLs 

· Dual-energy  

  X- ray simulation 

 

7:01 (± 0:07) min 

121:48 (± 1:38) min 

 

4 d 22 h  

12 wks 14 h 

Total  137:18 (± 2:11) min  12 wks 11 d 
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