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Abstract: Recent advances in deep learning enable esti-
mation of a patient’s "ECG age" from standard short-term
12-lead electrocardiogram (ECG). This study introduces se-
quential ECG age predictions in continuous 24-hour Holter
ECG recordings of chronic heart failure (CHF) patients. Us-
ing publicly available data from the MUSIC study, we ana-
lyzed data from 869 CHF patients, assessing both the differ-
ences (predicted ECG age vs actual chronological age) and
dynamic —including variability and entropy-based complex-
ity—to characterize temporal fluctuations over 24h. After au-
tomated removal of segments based on signal-to-noise ratio
(SNR), 222 deceased patients were matched 1:1 with 222 sur-
viving patients by sex, NYHA class, and age. While the pre-
dicted ECG age is similar across CHF patients, our findings
indicate lower variability but increased complexity (approxi-
mate and sample entropy) in deceased compared to surviving
patients, suggesting more irregular predicted ECG age dynam-
ics among those who experienced adverse outcomes. Our re-
sults suggest that longitudinal evaluation of predictions from
an end-to-end deep learning model can uncover subtle tempo-
ral dynamics potentially valuable for risk stratification.
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1 Introduction

Chronological aging is a recognized risk factor for cardio-
vascular diseases [1], yet the processes underlying biologi-
cal aging can diverge considerably among individuals. In prior
work [2], we used a deep learning approach to estimate a pa-
tient’s “heart” age from standard 12-lead electrocardiograms
(ECGs), demonstrating correlations with the incidence and
prevalence of chronic heart failure (CHF) [2]. Although these
findings indicate promise for ECG-based age estimation as a
novel bioindicator, its stability over extended monitoring peri-
ods and under ambulatory conditions remains unclear.

Holter ECGs are routinely employed in CHF management
for prolonged arrhythmic surveillance, offering the unique op-
portunity to monitor ECG-derived age continuously for 24
hours or more [3, 4]. However, ambulatory recordings are fre-
quently affected by patient movement, speech, and environ-
mental factors that introduce substantial noise. Recent evi-
dence suggests that deep neural networks can effectively man-
age such variability, with initial layers often learning robust
features resilient to common artifacts [2, 5]. Building on these
insights, our study investigates the stability and variability
of ECG-derived age predictions across a full day of Holter
recordings in a CHF cohort. Specifically, we quantify both the
overall differences (predicted ECG age - chronological age)
and the temporal fluctuations by non-linear dynamics metrics
like entropy, hypothesizing that pronounced variability or el-
evated complexity might reflect latent pathological processes
(see Figure 1).

Fig. 1: Graphical abstract: Differences between chronological and
predicted ages are computed across the recording period, and
time-series analyses (including entropy-based complexity metrics)
are applied to capture dynamic variations and underlying trends.
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2 Materials and Methods

2.1 Dataset

We used the publicly available MUSIC (Muerte Súbita en In-
suficiencia Cardíaca) database [6] from Spain, a prospective,
multi-center registry designed to identify risk factors in pa-
tients with symptomatic CHF. The cohort predominantly com-
prises individuals in NYHA class II–III (indicating mild to
moderate limitations in physical activity due to heart failure)
who each underwent a 24-hour Holter ECG recording. From
the full dataset, 869 patients were identified with Holter ECG
and complete follow-up, which lasted a median of 44 months
with outpatient visits every six months.

From these patients, we selected 444 individuals (222
who later died and 222 who remained alive) and matched
them 1:1 by sex, NYHA class, and age (within 2 years). This
matched sub-cohort had a mean age of 63.4 years (SD: 10.7),
with 75.2% being male. By NYHA classification, 152 were in
NYHA II and 70 were in NYHA III.

To prepare each Holter recording, the first 30 seconds
were discarded and then segmented into 10-second windows
with a 5-second overlap. The three recorded orthogonal Frank
leads (X, Y, Z) sampled at 200 Hz were transformed into a 12-
lead ECG configuration via the Uijen matrix [7, 8] and resam-
pled to 400 Hz. On average, each 24-hour Holter ECG yielded
roughly 16, 584 ten-second windows (SD: 884).

Automated filtering was performed to remove segments
with poor signal quality due to motion artefacts (SNR, thresh-
old: 2 dB), resulting in approximately 15.64% of segments be-
ing excluded (SD:11.89%) [9].

For subsequent analyses, patients were categorized into
two primary outcome groups:
– Alive: Patients who remained alive at the end of the

follow-up period.
– Deceased: Patients who died from cardiac-related or other

complications during the follow-up period.

2.2 Analysis

We applied a previously validated 1DResNet architecture
[2, 5, 10] to each filtered 10-second ECG segment, thereby
generating window-level predicted ECG age estimates. These
estimates were subsequently aggregated per patient, yielding
both moment statistics (mean, median, minimum, maximum,
and standard deviation (SD)) and complexity measures (ap-
proximate entropy and sample entropy). While the SD explic-
itly captures variability among the segment-level predictions,
the minimum and maximum additionally reflect the overall

range. Approximate entropy quantifies the likelihood that pat-
terns of length 𝑚 in the prediction time series remain simi-
lar upon extension by one observation; the distance between
two patterns 𝑥 and 𝑦 is defined by the Chebyshev distance
𝐷(𝑥, 𝑦) = max𝑖(|𝑥𝑖−𝑦𝑖|) for 𝑖 = 1, . . . ,𝑚, with the similarity
threshold 𝑟 typically set to 𝑟 = 0.2 SD and 𝑚 = 2. Higher ap-
proximate entropy values indicate greater unpredictability and
irregularity [11]. Sample entropy likewise characterizes com-
plexity by evaluating the regularity of the time series but is
less sensitive to data length; it uses the same pattern length,
distance, and threshold definitions as approximate entropy yet
differs in its calculation. Higher sample entropy values signify
increased complexity and reduced predictability [11].

We summarized the differences between predicted ECG
age and chronological age to assess predictive accuracy. Non-
linear dynamics were examined through these entropy metrics
to elucidate temporal complexity and irregularity patterns. The
resulting distributions were visualized via violin plots, which
combine kernel density estimates and boxplot. All statistical
analyses and visualizations were implemented in Python using
the libraries ”matplotlib” and ”seaborn”, and the correspond-
ing code is openly available for reproducibility.

3 Results

Figure 2 displays the distribution of ECG-derived age differ-
ences (predicted ECG age minus chronological age) for the
matched Alive and Deceased groups. Both groups exhibit sim-
ilar distributions centered near zero, without statistically sig-
nificant differences across mean, median, minimum, or max-
imum differences (Mann–Whitney U test, 0.7090, 0.6574,
0.4220, and 0.1923, respectively). Most CHF patients exhibit
positive mean and median differences, indicating a general
overestimation of their predicted ECG age. Furthermore, the
considerable spread between minimum and maximum differ-
ences in both groups highlights notable within-patient variabil-
ity in ECG age throughout the 24-hour recording period.

Figure 3 illustrates the distributions of SD, Approximate
Entropy, and Sample Entropy of ECG-derived age predictions
over 24 hours for the same matched groups. Deceased patients
demonstrate significantly lower SD values, indicating reduced
variability, yet exhibit significantly higher entropy values, sug-
gesting increased complexity or instability in their predicted
ECG age dynamics. These findings indicate that death in CHF
patients is associated with less variable but more irregular pre-
dicted ECG age fluctuations compared to surviving matched
counterparts.
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Fig. 2: Violin plots displaying difference between predicted ECG age and chronological age for matched Alive and Deceased groups.
Patients were matched 1:1 by sex, NYHA class, and age within 2 years (222 Deceased matched with 222 Alive). Each metric was com-
pared between Deceased and Alive using the Mann–Whitney U test, yielding no significant differences. The respective p values were
0.7090, 0.6574, 0.4220, and 0.1923, indicating no significant differences. The majority of CHF patients are overestimated in their pre-
dicted ECG age, indicated by positive mean and median difference.

Fig. 3: Violin plots displaying the distributions of SD, Approximate Entropy, and Sample Entropy from predicted ECG age over 24
hours for matched Alive and Deceased groups. Patients were matched 1:1 by sex, NYHA class, and age within 2 years (222 deceased
matched with 222 alive). Each metric was compared between Deceased and Alive with the Mann–Whitney U test. Statistical significance
is indicated with * for p <0.05 and ** for p < 0.01. Deceased patients exhibited significantly lower variability (SD, p = 0.0343) and higher
entropy (Approximate Entropy, p = 0.0032; Sample Entropy, p = 0.0046), suggesting increased instability in their predicted ECG age dy-
namics.

4 Discussion

Our findings indicate that variability and non-linear dynamics
of the predicted ECG age provide subtle distinctions between
alive and deceased CHF patient groups. Utilizing Frank leads
suited for 24-hour recordings and excluding noise artifacts via
SNR thresholds, we observed ECG age fluctuations across the
day—likely attributable to diurnal variability and patient activ-
ities. However, these fluctuations were not time-synchronous
between recordings, so the exact timing (e.g., morning vs.
evening) and nature of patient activity remain unknown. De-
spite this limitation, distinct patterns emerged based on clini-

cal outcome: deceased patients displayed significantly reduced
variability (lower SD) accompanied by increased complexity
metrics compared to matched survivors. These findings sug-
gest a heightened degree of disorganization in cardiac electri-
cal activity or autonomic dysregulation, potentially reflecting
fibrotic or hypertrophic changes often reported in heart fail-
ure [2, 12].

While variations in predicted ECG age may stem partly
from unfiltered artifacts, the consistent differences among the
deceased cohort indicate that these fluctuations could reflect
pathophysiological processes rather than artifacts alone. Re-
peated ECG age assessments across multiple time windows
may help overcome inherent ambulatory recording fluctua-
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tions, boosting reliability for longitudinal patient evaluation.
Indeed, previous research underscores the prognostic value of
measuring variability in heart failure [12].

Although Frank leads facilitate continuous monitoring,
single-time-point ECG age estimates from standard 12-lead
ECGs may suffice in more controlled clinical settings [2, 5].
Future studies should validate these observations in larger
prospective cohorts to elucidate whether heightened complex-
ity in predicted ECG age directly signifies pathological re-
modeling or elevated cardiovascular risk in CHF management.
Moreover, integrating population-based data[2, 10] can further
distinguish physiological variability from disease-specific, po-
tentially advancing ECG age as a robust non-invasive prognos-
tic biomarker in diverse clinical contexts.

5 Conclusion

This study demonstrates the application of ECG age predic-
tion in 24-hour Holter recordings as a dynamic biomarker for
CHF patients. Our analysis reveals that metrics derived from
continuous ECG age monitoring, particularly entropy-based
complexity measures, could provide meaningful insights into
patient outcomes. Specifically, decreased variability and in-
creased complexity among deceased patients highlight the po-
tential clinical value. Further validation in larger, prospective
cohorts is needed to fully explore its predictive power and
practical clinical utility.

Code availability:

All code is open source available here.
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