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Portable gait-asymmetry detection using low-

cost hardware and machine learning 

asymmetrical movement patterns. These asymmetries often 

reflect unique (for each individual) body adaptive strategies to 

maintain stability and minimize discomfort, highlighting the 

importance of personalized analysis [3]. Traditional gait 

analysis systems, though effective, are typically costly and 

confined to controlled environments [4]. With recent advances 

in machine learning (ML) and the reduction of sensor costs, 

new systems for portable gait analysis have been proposed [5]. 

Due to the rapid development of Internet of Things (IoT) and 

big data technologies, gait analysis based on ML methods have 

been proposed [6]. However, these innovations still have not 

found their way out of research and clinical environments to 

conduct gait analysis in everyday contexts, due to a lack of 

approaches that effectively obtain relevant personal gait 

information from the large amount of data being collected. 

Thus, this study proposes collecting gait data exclusively 

from the pelvis, as the anatomical interface between the upper 

and lower body and efficiently analyze it using signal 

processing and ML models. By doing so, the system enhances 

portability while preserving critical insights into gait 

dynamics. This study focuses on gait-asymmetry detection 

through a dual approach: first, by extracting and comparing 

standard spatio-temporal parameters, and second, by 

examining dynamic movement patterns of the pelvis. By 

integrating these aspects, the system provides a deep 

understanding of functional body adaptations, offering 

enhanced accuracy in identifying gait asymmetries and their 

underlying causes. This approach highlights functional body 

adaptations, offering a deeper understanding of human gait 

beyond traditional methodologies that assume an “ideal” gait 

pattern. ML enhances the detection of gait events and 

asymmetries, improving accessibility for broader populations. 

Combining sensor placement on the pelvis with advanced 

analytics creates an efficient, low-cost system suitable for 

clinical and non-clinical applications alike. 

The rest of the paper briefly introduces the methods to 

conduct portable gait analysis and describes the tests and 

results that validate the methods. Finally, the conclusions 

highlight future work in the field of portable gait analysis. 
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Abstract: Gait analysis provides insights into human motion 

by examining how individuals walk. However, the high cost 

associated with gait centers prevents conducting gait analysis 

regularly, reducing opportunities for early detection and 

prevention of gait-related issues before pain or injuries occur. 

The approach presented in this paper integrates low-cost yet 

computationally powerful hardware with signal processing 

and machine learning to develop a wearable sensor node 

placed at the pelvis that continuously collects gait data, 

providing personalized gait analysis. By positioning the 

wearable at the pelvis, gait asymmetries can be captured 

accurately. The approach is validated in a laboratory 

experiment with 15 participants walking on a treadmill and 

verified in a free-moving environment. Results indicate that 

the wearable detects gait asymmetries effectively, enhancing 

applicability in both clinical and non-clinical settings, 

supporting rehabilitation and preventive care in a cost-efficient 

manner. 

Keywords: Gait analysis, machine learning, wearable 

technology, Internet of Things. 

1 Introduction 

Human gait reflects complex coordination across the body, 

involving balance and mobility mechanisms that are 

susceptible to asymmetries caused by injury, aging, or by 

inherent body asymmetries [1]. Gait asymmetries can arise 

from injury compensation, muscle weakness, joint issues, or 

neurological conditions such as strokes and Parkinson’s 

disease [2]. Physiological differences, such as leg length 

discrepancies or pelvic misalignment, as well as 

proprioceptive impairments and fatigue, also contribute to 
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2 Methods 

2.1.1 Gait biomechanics 

Human gait follows a periodic pattern known as the gait cycle, 

which consists of a full stride from the initial contact of one 

foot to its next ground contact [1]. This cycle is divided into 

two main phases, (1) the stance phase, where the foot remains 

in contact with the ground, and (2) the swing phase, where the 

foot moves forward. The stance phase includes subphases, 

such as heel strike, double-support time (when both feet are on 

the ground) and foot flat, which facilitate weight distribution 

and stability. Additionally, the double-support time during the 

stance phase enhances balance and is particularly relevant for 

individuals with mobility impairments. 

The stance phase includes two key events: initial contact 

(IC), when the heel first touches the ground to absorb impact, 

and toe-off (TO), when the foot pushes off to propel the body 

forward. In this paper, gait analysis is conducted during 

different gait phases to detect asymmetries based on the 

acceleration data. The data is collected by a portable sensor 

node (wearable), consisting of a microcontroller and an inertial 

measurement unit (IMU). The method used to conduct gait 

analysis based on the acceleration data is divided into to steps: 

1. Gait-phase detection algorithm: The algorithm is based on 

long-short-term-memory (LSTM) networks, used to 

segment gait phases, including double-support times and 

heel strikes of each leg. The LSTM network is trained to 

automatically detect the two gait phases double support 

and heel strike, setting the basis for automating the 

segmentation of the complete gait cycle. 

2. Asymmetry detection: Two methods are used to detect gait 

asymmetries in the abovementioned gait phases: 

• Spatio-temporal analysis, which is a common 

analysis to detect anomalies in individual gait when 

compared to “golden standards”. In this paper, the 

goal is to identify significant discrepancies in the 

double-support time phase to reveal gait adaptations 

in individuals with injuries. 

• Amplitude and signal-shape analysis. The dynamic 

movement patterns of the pelvis are analyzed, going 

beyond deviations from the golden standards. Signal 

amplitudes from the acceleration data are used to 

detect asymmetrical impacts during heel strikes. Gait 

asymmetries that derive into asymmetrical 

musculoskeletal development, which is an 

unconscious human adaption, can be identified to 

predict and thus avoid pain or injuries in the long 

term. 

2.1.2 A portable gait analysis system 

The portable gait analysis system is a wearable that includes 

an Arduino MKR Wi-Fi 1010 and a Bosch BNO085 IMU, 

providing a compact, low-cost solution. The strategic 

placement of the IMU on the sacral region of the pelvis 

minimizes soft tissue artifact interference because it collects 

gait data from a low-fat part of the body. The placement 

captures the role of the pelvis as a central biomechanical link 

between the upper and lower body, facilitating standardized 

and reliable data collection. Issues in the upper body manifest 

in altered pelvic motion, while irregularities in the lower body 

are directly translated into the dynamics of the pelvis, offering 

comprehensive insights into gait patterns. 

Placing a single sensor on the pelvis offers multiple 

advantages. First, it significantly reduces the overall cost of 

the system, making it more accessible for widespread use. This 

low-cost approach facilitates large-scale data collection and 

minimizes errors during measurement. Additionally, using a 

single sensor standardizes data collection, avoiding 

interpretability issues caused by soft tissue artifacts and body 

type variations that can arise with multiple sensors placed on 

different parts of the body.  

By measuring gait asymmetries at the pelvis, not only can 

spatio-temporal parameters be extracted, but the dynamics of 

pelvic movement during gait can also be analyzed. The 

wearable that is placed at the pelvis with the help of a belt is 

depicted in Figure 1, including all its hardware components. 

 

Figure 1: Hardware components of the wearable 
forming the portable gait analysis system. 
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3 Validation and results 

In this section, the setup of the validation test is briefly 

outlined, followed by the results of conducting gait analyses 

on 15 participants. The goal of the test is to prove that the 

portable gait analysis system can detect gait asymmetries 

based on the methods explained in Section 2.  

3.1.1 Validation test setup 

The participants completed a questionnaire on health and 

fitness before the experiment. Then, they carried the wearable 

using a securely fastened belt and stood upright for calibration 

to ensure accurate data collection. To validate the accuracy of 

the IMU measurements, the system was tested using a 

treadmill with load cells to detect the double-support times. 

The load cells measure ground reaction forces during walking. 

The load-cell measurements served as a reliable external 

reference for identifying IC and TO events, key indicators of 

the double-support phase. The experiment was designed to 

include walking at four different speeds, with each speed 

session lasting 50 seconds, equivalent to capturing 5000 data 

samples. The data samples were stored on the SD card of the 

wearable and then transmitted to a laptop for conducting gait 

analysis in Matlab. 

3.1.2 Training and validation of the LSTM network 

To identify gait phases and investigate asymmetries, an LSTM 

network was trained and tested. The initial step involved 

performing manual labeling for IC and TO. This procedure is 

labor-intensive and demands significant concentration. To 

guarantee the accuracy of the labels, a verification algorithm 

was implemented to confirm the correctness of the labelled 

data, ensuring that the LSTM network is not trained on 

erroneous information. To train the LSTM, 70% of the dataset 

was allocated for training, while the remaining 30% was 

reserved for testing.  

The confusion matrix in Figure 2 shows the LSTM 

performance for gait-event detection on the test dataset, 

comparing true class labels with predicted. For the double-

support left stance phase (in which the left leg is in contact 

with the ground first), the true positive rate was 96.2%, with 

3.8% misclassified as “n/a”. For double-support right stance, 

the true positive rate was 95.3%, with 4.7% misclassified as 

“n/a”. The “n/a” class was correctly classified 97.5% of the 

time, with false positives of 1.1% for double-support left 

stance and 1.4% for double-support right stance. 

3.1.3 Spatio-temporal gait analysis 

After the double-support times are accurately determined by 

the LSTM network, the stance time and swing times were 

derived. With these parameters, stride duration and cadence 

were easily calculated. It was observed that individuals with 

injuries showed a distinct difference in double-support times. 

An exemplary result is presented in Table 1, where the double-

support time, measured in centiseconds (cs), for the right leg 

is longer than for the left leg. The test subject has a partial tear 

of one of the cruciate ligaments in the right knee. The 

prolonged double-support time indicates that the subject relies 

more on both legs being in contact with the ground, which 

helps to distribute weight and reduce stress on the injured 

knee. In healthy individuals, the double-support time 

measurements were much more consistent, with the average 

difference not exceeding 0.4 cs, indicating a stable and 

uniform gait pattern. While useful, spatio-temporal metrics 

may miss subtle gait discrepancies indicating underlying 

issues. To achieve a more comprehensive analysis, a shape 

analysis on the IMU data was conducted, as shown in the 

following subsection.

Figure 3: Anomaly in the forces at the heel strike gait cycle. 

Figure 2: Confusion matrix representing the result of the 
automated data labeling conducted by the LSTM network. 
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3.1.4 Analysis of gait dynamics 

The results of one participant are shown in this subsection to 

exemplify the limitations of studying gait analysis using 

spatio-temporal metrics and comparing them using golden 

standards. During the tests, a participant reported left-thigh 

discomfort, yet spatio-temporal metrics such as cadence and 

double-support times showed no asymmetries between legs.  

This suggested a normal gait under basic observation. 

However, after recognizing the inability of spatio-temporal 

metrics to detect a known injury, a more detailed analysis 

using the collected acceleration data was conducted. In 

Figure 3, a noticeable difference in amplitudes between the 

labelled points 5 and 6 suggest that the body decelerates the 

movement before IC with the left foot to reduce impact, 

resulting in deceleration of the anterior-posterior movement. 

Additionally, the heel strike impact shows a lower amplitude, 

likely due to the deceleration mentioned above.  

To test this hypothesis, the roll and yaw velocities was 

analyzed. The left stance showed significantly smaller 

maximum amplitudes just before IC, indicating slower 

movement, while the yaw velocity was higher in the right 

stance, suggesting increased rotational speed in the transverse 

plane. Figure 3 further highlights differences in the sagittal 

plane, where the right stance follows the expected pattern, but 

the left stance fails to reach the same amplitude.  

During the tests, other asymmetries linked to gait 

dynamics were obtained. The asymmetry depicted in Figure 4 

is linked to a rotated pelvis, likely a result of a past cruciate 

ligament injury, which was reported by a participant. Figure 4 

shows the results of acceleration forces during double-support 

times of the participant, which 0was experiencing chronic 

pain. The participant was informed of the result of the test. 

Results of the gait dynamic analysis may thus give information 

of underlying injuries causing pain. 

4 Summary and conclusions 

Combining wearable technology and ML, the portable gait 

system presented in this paper detects asymmetries with high 

precision and efficiency. A gait-phase detection algorithm 

using LSTM networks, identifies gait asymmetries in spatio-

temporal metrics, and signal amplitude analysis, examining 

pelvis dynamics to uncover unconscious gait adaptations. The 

approach enables early detection of asymmetrical muscular 

development, helping to prevent long-term pain or injuries. 

Future work will focus on feedback mechanisms and 

incorporating data from subjects with other gait abnormalities. 

Author Statement 

The author state no funding involved. Authors state no conflict 

of interest. Informed consent has been obtained from all 

individuals included in this study.  

References 
[1] M. W. Whittle, Gait analysis: an introduction. Butterworth-

Heinemann, 1991 
[2] C. Hansen, Reliability of IMU-Derived Temporal Gait Parameters 

in Neurological Diseases, Sensors, 22:6, 2022 

[3] M. E. Harrington, A. B. Zavatsky, S. E. M. Lawson, Z. Yuan, and 
T. N. Theologis, Prediction of the hip joint centre in adults, 

children, and patients with cerebral palsy based on magnetic 

resonance imaging, J. Biomech., 40:3, 595–602, 2007 
[4] A. A. Hulleck, D. Menoth Mohan, N. Abdallah, M. El Rich, and K. 

Khalaf, Present and future of gait assessment in clinical practice: 

Towards the application of novel trends and technologies, Front. 
Med. Technol., 4, 2022 

[5] E. Digo, E. Panero, V. Agostini, and L. Gastaldi, Comparison of 

IMU set-ups for the estimation of gait spatio-temporal parameters 
in an elderly population, Proc. Inst. Mech. Eng. Part, 237:1, 61–73, 

2023 

[6] A. Saboor, Latest Research Trends in Gait Analysis Using Wearable 
Sensors and Machine Learning: A Systematic Review, IEEE Access, 

8, 167830–167864, 2020 

Parameters L&R stance L stance R stance 

Double-

support time 

13.75±1.19 13.69±1.24 13.85±1.18 

Stance time 56.04±2.28 56.55±2.20 55.50±2.37 

Swing time 42.29±1.95 41.64±2.34 42.86±1.33 

Stride time 111.08±2.36 

Cadence time 110.23 

Table 1: Asymmetries observed in the double-support times. 

Figure 4: Asymmetry in pelvis rotation due to Injury. 

Figure 3: Acceleration data in the z-axis of a subject with 
discomfort in the left thigh. 
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