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Abstract: Gait analysis provides insights into human motion
by examining how individuals walk. However, the high cost
associated with gait centers prevents conducting gait analysis
regularly, reducing opportunities for early detection and
prevention of gait-related issues before pain or injuries occur.
The approach presented in this paper integrates low-cost yet
computationally powerful hardware with signal processing
and machine learning to develop a wearable sensor node
placed at the pelvis that continuously collects gait data,
providing personalized gait analysis. By positioning the
wearable at the pelvis, gait asymmetries can be captured
accurately. The approach is validated in a laboratory
experiment with 15 participants walking on a treadmill and
verified in a free-moving environment. Results indicate that
the wearable detects gait asymmetries effectively, enhancing
applicability in both clinical and non-clinical settings,
supporting rehabilitation and preventive care in a cost-efficient
manner.
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1 Introduction

Human gait reflects complex coordination across the body,
involving balance and mobility mechanisms that are
susceptible to asymmetries caused by injury, aging, or by
inherent body asymmetries [1]. Gait asymmetries can arise
from injury compensation, muscle weakness, joint issues, or
neurological conditions such as strokes and Parkinson’s
disease [2]. Physiological differences, such as leg length
discrepancies or pelvic misalignment, as well as
proprioceptive impairments and fatigue, also contribute to
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asymmetrical movement patterns. These asymmetries often
reflect unique (for each individual) body adaptive strategies to
maintain stability and minimize discomfort, highlighting the
importance of personalized analysis [3]. Traditional gait
analysis systems, though effective, are typically costly and
confined to controlled environments [4]. With recent advances
in machine learning (ML) and the reduction of sensor costs,
new systems for portable gait analysis have been proposed [5].
Due to the rapid development of Internet of Things (loT) and
big data technologies, gait analysis based on ML methods have
been proposed [6]. However, these innovations still have not
found their way out of research and clinical environments to
conduct gait analysis in everyday contexts, due to a lack of
approaches that effectively obtain relevant personal gait
information from the large amount of data being collected.

Thus, this study proposes collecting gait data exclusively
from the pelvis, as the anatomical interface between the upper
and lower body and efficiently analyze it using signal
processing and ML models. By doing so, the system enhances
portability while preserving critical insights into gait
dynamics. This study focuses on gait-asymmetry detection
through a dual approach: first, by extracting and comparing
standard spatio-temporal parameters, and second, by
examining dynamic movement patterns of the pelvis. By
integrating these aspects, the system provides a deep
understanding of functional body adaptations, offering
enhanced accuracy in identifying gait asymmetries and their
underlying causes. This approach highlights functional body
adaptations, offering a deeper understanding of human gait
beyond traditional methodologies that assume an “ideal” gait
pattern. ML enhances the detection of gait events and
asymmetries, improving accessibility for broader populations.
Combining sensor placement on the pelvis with advanced
analytics creates an efficient, low-cost system suitable for
clinical and non-clinical applications alike.

The rest of the paper briefly introduces the methods to
conduct portable gait analysis and describes the tests and
results that validate the methods. Finally, the conclusions
highlight future work in the field of portable gait analysis.
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2 Methods

2.1.1 Gait biomechanics

Human gait follows a periodic pattern known as the gait cycle,
which consists of a full stride from the initial contact of one
foot to its next ground contact [1]. This cycle is divided into
two main phases, (1) the stance phase, where the foot remains
in contact with the ground, and (2) the swing phase, where the
foot moves forward. The stance phase includes subphases,
such as heel strike, double-support time (when both feet are on
the ground) and foot flat, which facilitate weight distribution
and stability. Additionally, the double-support time during the
stance phase enhances balance and is particularly relevant for
individuals with mobility impairments.

The stance phase includes two key events: initial contact
(IC), when the heel first touches the ground to absorb impact,
and toe-off (TO), when the foot pushes off to propel the body
forward. In this paper, gait analysis is conducted during
different gait phases to detect asymmetries based on the
acceleration data. The data is collected by a portable sensor
node (wearable), consisting of a microcontroller and an inertial
measurement unit (IMU). The method used to conduct gait
analysis based on the acceleration data is divided into to steps:
1. Gait-phase detection algorithm: The algorithm is based on

long-short-term-memory (LSTM) networks, used to

segment gait phases, including double-support times and
heel strikes of each leg. The LSTM network is trained to
automatically detect the two gait phases double support
and heel strike, setting the basis for automating the
segmentation of the complete gait cycle.

2. Asymmetry detection: Two methods are used to detect gait
asymmetries in the abovementioned gait phases:

e Spatio-temporal analysis, which is a common
analysis to detect anomalies in individual gait when
compared to “golden standards”. In this paper, the
goal is to identify significant discrepancies in the
double-support time phase to reveal gait adaptations
in individuals with injuries.

e Amplitude and signal-shape analysis. The dynamic
movement patterns of the pelvis are analyzed, going
beyond deviations from the golden standards. Signal
amplitudes from the acceleration data are used to
detect asymmetrical impacts during heel strikes. Gait
asymmetries that derive into asymmetrical
musculoskeletal  development, which is an
unconscious human adaption, can be identified to
predict and thus avoid pain or injuries in the long
term.

2.1.2 A portable gait analysis system

The portable gait analysis system is a wearable that includes
an Arduino MKR Wi-Fi 1010 and a Bosch BNO085 IMU,
providing a compact, low-cost solution. The strategic
placement of the IMU on the sacral region of the pelvis
minimizes soft tissue artifact interference because it collects
gait data from a low-fat part of the body. The placement
captures the role of the pelvis as a central biomechanical link
between the upper and lower body, facilitating standardized
and reliable data collection. Issues in the upper body manifest
in altered pelvic motion, while irregularities in the lower body
are directly translated into the dynamics of the pelvis, offering
comprehensive insights into gait patterns.

Placing a single sensor on the pelvis offers multiple
advantages. First, it significantly reduces the overall cost of
the system, making it more accessible for widespread use. This
low-cost approach facilitates large-scale data collection and
minimizes errors during measurement. Additionally, using a
single sensor standardizes data collection, avoiding
interpretability issues caused by soft tissue artifacts and body
type variations that can arise with multiple sensors placed on
different parts of the body.

By measuring gait asymmetries at the pelvis, not only can
spatio-temporal parameters be extracted, but the dynamics of
pelvic movement during gait can also be analyzed. The
wearable that is placed at the pelvis with the help of a belt is
depicted in Figure 1, including all its hardware components.

Interruptor

Figure 1: Hardware components of the wearable
forming the portable gait analysis system.
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3 Validation and results

In this section, the setup of the validation test is briefly
outlined, followed by the results of conducting gait analyses
on 15 participants. The goal of the test is to prove that the
portable gait analysis system can detect gait asymmetries
based on the methods explained in Section 2.

3.1.1 Validation test setup

The participants completed a questionnaire on health and
fitness before the experiment. Then, they carried the wearable
using a securely fastened belt and stood upright for calibration
to ensure accurate data collection. To validate the accuracy of
the IMU measurements, the system was tested using a
treadmill with load cells to detect the double-support times.
The load cells measure ground reaction forces during walking.
The load-cell measurements served as a reliable external
reference for identifying IC and TO events, key indicators of
the double-support phase. The experiment was designed to
include walking at four different speeds, with each speed
session lasting 50 seconds, equivalent to capturing 5000 data
samples. The data samples were stored on the SD card of the
wearable and then transmitted to a laptop for conducting gait
analysis in Matlab.

3.1.2 Training and validation of the LSTM network

To identify gait phases and investigate asymmetries, an LSTM
network was trained and tested. The initial step involved
performing manual labeling for IC and TO. This procedure is
labor-intensive and demands significant concentration. To
guarantee the accuracy of the labels, a verification algorithm
was implemented to confirm the correctness of the labelled
data, ensuring that the LSTM network is not trained on
erroneous information. To train the LSTM, 70% of the dataset
was allocated for training, while the remaining 30% was
reserved for testing.

The confusion matrix in Figure 2 shows the LSTM
performance for gait-event detection on the test dataset,
comparing true class labels with predicted. For the double-
support left stance phase (in which the left leg is in contact
with the ground first), the true positive rate was 96.2%, with

Double_support_left_stance

Double_support_right_stance

True Class

n/a

Predicted Class

Figure 2: Confusion matrix representing the result of the
automated data labeling conducted by the LSTM network.

3.8% misclassified as “n/a”. For double-support right stance,
the true positive rate was 95.3%, with 4.7% misclassified as
“nfa”. The “n/a” class was correctly classified 97.5% of the
time, with false positives of 1.1% for double-support left
stance and 1.4% for double-support right stance.

3.1.3 Spatio-temporal gait analysis

After the double-support times are accurately determined by
the LSTM network, the stance time and swing times were
derived. With these parameters, stride duration and cadence
were easily calculated. It was observed that individuals with
injuries showed a distinct difference in double-support times.
An exemplary result is presented in Table 1, where the double-
support time, measured in centiseconds (cs), for the right leg
is longer than for the left leg. The test subject has a partial tear
of one of the cruciate ligaments in the right knee. The
prolonged double-support time indicates that the subject relies
more on both legs being in contact with the ground, which
helps to distribute weight and reduce stress on the injured
knee. In healthy individuals, the double-support time
measurements were much more consistent, with the average
difference not exceeding 0.4 cs, indicating a stable and
uniform gait pattern. While useful, spatio-temporal metrics
may miss subtle gait discrepancies indicating underlying
issues. To achieve a more comprehensive analysis, a shape
analysis on the IMU data was conducted, as shown in the
following subsection.
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Table 1: Asymmetries observed in the double-support times.

Parameters L&R stance L stance R stance
Double- 13.75+1.19 13.69+1.24 13.85+1.18
support time

Stance time 56.04+2.28 56.55+2.20 55.50+2.37
Swing time 42.29+1.95 41.64+2.34 42.86+1.33
Stride time 111.08+2.36

Cadence time 110.23

3.1.4 Analysis of gait dynamics

The results of one participant are shown in this subsection to
exemplify the limitations of studying gait analysis using
spatio-temporal metrics and comparing them using golden
standards. During the tests, a participant reported left-thigh
discomfort, yet spatio-temporal metrics such as cadence and
double-support times showed no asymmetries between legs.
This suggested a normal gait under basic observation.
However, after recognizing the inability of spatio-temporal
metrics to detect a known injury, a more detailed analysis
using the collected acceleration data was conducted. In
Figure 3, a noticeable difference in amplitudes between the
labelled points 5 and 6 suggest that the body decelerates the
movement before IC with the left foot to reduce impact,
resulting in deceleration of the anterior-posterior movement.
Additionally, the heel strike impact shows a lower amplitude,
likely due to the deceleration mentioned above.

To test this hypothesis, the roll and yaw velocities was
analyzed. The left stance showed significantly smaller
maximum amplitudes just before IC, indicating slower
movement, while the yaw velocity was higher in the right
stance, suggesting increased rotational speed in the transverse
plane. Figure 3 further highlights differences in the sagittal
plane, where the right stance follows the expected pattern, but
the left stance fails to reach the same amplitude.
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Figure 3: Acceleration data in the z-axis of a subject with
discomfort in the left thigh.
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Figu|;e 4: Asymmetrhy in pelvi§ rotation due to Injury.

During the tests, other asymmetries linked to gait
dynamics were obtained. The asymmetry depicted in Figure 4
is linked to a rotated pelvis, likely a result of a past cruciate
ligament injury, which was reported by a participant. Figure 4
shows the results of acceleration forces during double-support
times of the participant, which Owas experiencing chronic
pain. The participant was informed of the result of the test.
Results of the gait dynamic analysis may thus give information
of underlying injuries causing pain.

4 Summary and conclusions

Combining wearable technology and ML, the portable gait
system presented in this paper detects asymmetries with high
precision and efficiency. A gait-phase detection algorithm
using LSTM networks, identifies gait asymmetries in spatio-
temporal metrics, and signal amplitude analysis, examining
pelvis dynamics to uncover unconscious gait adaptations. The
approach enables early detection of asymmetrical muscular
development, helping to prevent long-term pain or injuries.
Future work will focus on feedback mechanisms and
incorporating data from subjects with other gait abnormalities.
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