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Abstract: Artificial Intelligence (AI) continues to transform
medical imaging and surgical assistance systems, particularly
in laparoscopic surgeries. Accurate recognition of surgical in-
struments across space and time is vital for workflow analysis
and real-time decision support. This study presents a spatio-
temporal transformer-based approach for multi-label surgi-
cal tool recognition in laparoscopic videos. We fine-tune the
TimeSFormer network to capture spatial and temporal depen-
dencies across video frames. To address challenges like class
imbalance and visual occlusion, we incorporate a targeted data
augmentation pipeline, balanced batch sampling, and Focal
Loss. A new background masking technique further enhances
model focus on tool regions by blurring irrelevant textures.
Evaluated on the Cholec80 benchmark, our model achieves a
mean Average Precision (mAP) of 96.3%, outperforming prior
baselines. Attention heatmaps confirm effective tool tracking,
underscoring the promise of spatio-temporal transformers in
surgical Al
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1 Introduction

Minimally Invasive Surgery (MIS) enables surgeons to access
internal organs with minimal external incisions. A common
form of MIS is Laparoscopic Surgery (LS), widely used for
diagnosing and treating conditions of the gallbladder, gastroin-
testinal tract, and pancreas. Compared to traditional open pro-
cedures, LS offers several patient benefits, including reduced
post operative pain, faster recovery, and minimal scarring. In
LS, specialized surgical instruments are inserted through small
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incisions in the abdominal wall, and the procedure is guided
using a laparoscope, a slender instrument equipped with a
camera and light source. The laparoscope transmits real-time
video of the internal surgical site to external monitors, which
serve as the primary data source for this work. Analyzing these
videos offers value both intra operatively and post operatively.
In real time, automatic detection of surgical tools can assist
in identifying potential risks, such as instrument collisions or
unintended tissue contact. Post-surgery, tool analysis supports
surgical report generation, operating room resource manage-
ment, video indexing, and surgeon training [1]. In this pa-
per, we propose a spatio temporal transformer based model
for surgical tool classification in laparoscopic videos by fine-
tuning the TimeSFormer network [2]. The model applies di-
vided space-time attention to a sequence of eight video frames,
enabling it to capture both spatial and temporal dependen-
cies relevant to tool presence. This work extends our previ-
ous research using Vision Transformers (ViT) for frame level
tool classification [3], which demonstrated the effectiveness
of transformer-based models without relying on convolutional
architectures. By leveraging temporal information, our model
can better handle scenarios where tools are only partially visi-
ble or momentarily occluded due to motion blur, blood, tissue,
smoke, or fog. Temporal modeling allows the network to infer
tool presence even when individual frames lack clear visual
cues, offering improved robustness under challenging surgical
conditions.

2 Methodology

2.1 Dataset

We use the Cholec80 dataset [4], a widely used benchmark
for laparoscopic surgical video analysis. It contains 80 chole-
cystectomy procedures performed by 13 surgeons, recorded at
25 frames per second. Each frame is annotated with the pres-
ence of seven tools: Grasper, Hook, Scissors, Irrigator, Spec-
imen Bag, Bipolar, and Clipper. A tool is labeled as present
if at least half of its tip is visible. Tool identification is often
complicated by challenges such as blood and tissue occlusion,
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Fig. 1: Distribution of surgical tools in the training and testing set.

motion blur, lighting variations, cluttered scenes, smoke, and
fog. For preprocessing, every 50 frames are extracted from
each video. Each 50-frame clip is split into two 25-frame
blocks, and a one-hot encoded tool label vector is generated for
each. These are merged into a single vector representing tool
presence across the 50-frame span. This approach offers bet-
ter temporal coverage than using only 25-frame clips, which
may capture limited motion. From each 50-frame segment,
8 frames are selected using linear spacing to ensure uniform
temporal distribution. This sampling preserves spatio tempo-
ral context while maintaining consistent labels, enabling the
model to leverage visual and temporal cues during fine tuning.

2.2 Data Imbalance
As illustrated in Figure 1, certain tool classes—specifically

scissors and clipper—are significantly underrepresented in the
dataset. This class imbalance can lead to biased model predic-
tions, where the model tends to favor majority classes while
neglecting minority ones. To mitigate this is, three comple-
mentary strategies were applied. First, data augmentation was
performed at the preprocessing stage to increase the num-
ber of training samples for the underrepresented classes. Sec-
ond, a class-balanced sampler was used during training to en-
sure that each batch contains a more uniform distribution of
classes, thereby improving the model’s exposure to minority
categories. Lastly, Focal Loss was applied as the objective
function to further reduce the influence of well-classified ex-
amples and encourage the model to focus on harder, less fre-
quent samples.

2.2.1 Data Augmentation
To address class imbalance and enhance generalization, we ap-

ply a set of data augmentation techniques to the training set.
These augmentations introduce appearance variability while
preserving semantic content. Spatial transformations include
random short side scaling (resizing the shorter side to 256-320
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Fig. 2: Background masking pipeline.

pixels), horizontal flipping (p=0.5), and random rotations (up
to 15°) to simulate viewpoint variation. A final random resized
crop adjusts the scale and aspect ratio to emulate different
framing conditions. During development, attention heatmaps
revealed that the model often focused on background textures
instead of surgical tools likely due to tools being partially vis-
ible and background occupying most of the frame. To coun-
teract this, we introduce a targeted augmentation step aimed
at suppressing background salience. Each frame is converted
from RGB to HSV color space, where two color thresholds
(targeting red and pink hues typical of surgical backgrounds)
are applied to generate a binary mask. Gaussian blur is se-
lectively applied to masked background regions, preserving
sharpness in likely tool containing areas. This enhances the
visual prominence of the tools and guides the model’s atten-
tion toward more informative regions. Figure 2 illustrates the
complete augmentation pipeline.

2.2.2 Balanced Batch Sampling

We also implemented a custom balanced batch sampler. This
approach ensures that each mini-batch contains a more uni-
form representation of all classes, rather than relying on the
natural distribution of the dataset. Specifically, the sampler
precomputes the set of indices corresponding to each class us-
ing existing annotations. During training, it selects an equal
number of samples from each class to construct a batch, with
the number of samples per class determined by the batch size
and the total number of classes. If the batch size is not per-
fectly divisible, the remaining slots are filled with randomly
sampled instances from the entire dataset to maintain batch
consistency. This method improves the frequency at which the
model encounters underrepresented classes, helping it to learn
more balanced feature representations and reducing the bias
toward majority classes.

2.2.3 Focal Loss

For training we used the Focal Loss function, which is de-
signed to focus more on misclassified examples while re-
ducing the loss contribution from well-classified samples.
This is particularly useful in imbalanced datasets, where the
model may otherwise become overly confident on the major-
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ity classes, ignoring the minority classes. Focal Loss modifies
the standard binary cross-entropy loss by introducing a modu-
lating factor that downweights easy examples.

2.3 Model Architecture

The backbone of our approach is the TimeSformer model,
which was originally introduced and pre-trained by re-
searchers at Facebook for video classification tasks. The origi-
nal version of TimeSformer was designed for single-label clas-
sification. Initially, the This model pre-trained on the Kinetics-
600 (K600) dataset, a large-scale video benchmark that com-
prises over 500,000 video clips across 600 human action
classes. Pre-training on such a vast dataset enables the model
to learn robust general-domain features and representations
including common visual patterns and object characteristics
from sequences of images. To adapt it to our use case, we
modified the model to support multi-label, multi-class classi-
fication.

TimeSformer is built upon the Vision Transformer (ViT)
architecture [5], and it processes video inputs in the form of
multiple image frames. In our setup, we input a sequence of
8 frames, each of spatial resolution 224 x 224. These frames
are first divided into non-overlapping patches, which are then
flattened into a sequence of tokens. Each token corresponds to
a specific spatial location within a frame and is embedded us-
ing a learnable linear projection. Additionally, positional em-
beddings are added to retain spatial information across the se-
quence.

Among the several attention mechanisms proposed in the
original TimeSformer paper, we adopt the Divided Space-
Time Attention variant, where attention is applied sequen-
tially—first across temporal dimensions and then across spa-
tial dimensions. This separation enhances computational effi-
ciency while still allowing the model to capture spatiotempo-
ral dynamics effectively. The model employs 12 self-attention
heads and consists of a stack of transformer encoder blocks.

To adapt the architecture for our multi-label classification
task, we removed the original final classification layer and re-
placed it with a custom classification head. Specifically, the
768-dimensional feature vector output from the transformer
is passed through a fully connected layer that reduces the
dimensionality to 512, followed by a ReLU activation and
dropout. Finally, another fully connected layer maps the 512-
dimensional vector to a 7-dimensional output, corresponding
to our 7 target classes:

2.4 Implementation Details

All components of the training pipeline, including data aug-
mentation and model adaptation, were implemented using the
PyTorch and Torchvision libraries. Fine-tuning of the TimeS-
former model was conducted over a total of 5 epochs, starting
with an initial learning rate of 1 x 1075 on four Nvidia GTX
1080 Ti GPUs. Initially, all layers of the TimeSformer back-
bone were frozen, with only the newly added fully connected
classification head being trainable. This setup was maintained
for the first two epochs. Gradually, layers of the backbone
were unfrozen in subsequent epochs. This strategy—common
to transfer learning—helps to preserve useful pre-trained rep-
resentations while avoiding large updates to sensitive early
layers before the classification head has stabilized.

2.5 Evaluation Metrics

To evaluate the performance of our multi-label classification
model, we report several key metrics: overall accuracy, macro-
averaged precision, recall, and mean average precision (mAP).
Macro-averaging treats all classes equally. In addition to these
global metrics, we compute per-class Average Precision (AP).
The mAP is obtained by averaging the AP scores across all
classes, offering a comprehensive indicator of performance
across the label space.

3 Results & Discussion

The final model achieved a macro-averaged precision of
98.9% and a recall of 97.5%. These scores indicate that the
model is highly effective at identifying relevant labels (high
precision), while also maintaining a strong ability to retrieve
most of the true positive instances across all classes (high re-
call). Among all tool classes, the highest AP was observed for
the Hook class, suggesting that this class is consistently and
confidently identified by the model. Notably, minority classes
such as Scissors and Specimen-Bag also performed well, with
AP scores of 96.5% and 96.2% respectively. These results
highlight the effectiveness of our data augmentation strategy
and the use of balanced sampling, which helped mitigate the
challenges of class imbalance.

Table 1 presents a comparative evaluation of our model
against other baseline architectures. Transformer-based mod-
els that incorporate spatial and spatio-temporal attention
mechanisms outperform traditional convolutional networks in
some classes. Moreover, improvements in minority class per-
formance further support the contribution of our augmentation
pipeline and the integration of spatial features, demonstrating
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that the model benefits not only from temporal context but also
from spatial structure and balanced data exposure.

MTRC Jalal
Tool Net [6] Nwoye[7] etal.[8] ViT[3] Our Model
Grasper 84.7 99.7 91.0 91.6 94.4
Bipolar 90.1 95.6 97.3 99.7 96.8
Hook 95.6 99.8 99.8 97.3 97.3
Scissors 86.7 86.9 90.3 92.4 96.5
Clipper 89.8 97.5 97.4 95.8 96.7
Irrigator 88.2 74.7 95.6 96.3 96.1
Specimen-Bag 88.9 96.1 98.3 97.7 96.2
Mean (mAP) 89.1 92.9 95.6 95.8 96.3

Tab. 1: Tool performance comparison (mAP values)

To further interpret the model’s predictions, we visual-
ized attention heatmaps for all tool classes. As shown in Fig-
ure 3, the attention consistently follows the movement of the
tool across the 8-frame input sequence, indicating effective
spatio-temporal modeling. This visualization provides insight
into how the model distributes its focus over time and space,
and supports the effectiveness of our augmentation and train-
ing strategies in guiding attention toward the relevant tool re-
gions.
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Fig. 3: Visualization of attention heatmaps.

4 Conclusion

Building on our previous research with vision transformers for
laparoscopic surgical tool classification, this work explores the
extension of such models into the spatio-temporal domain. We
investigated the use of a spatio-temporal vision transformer
architecture to capture both spatial and temporal features criti-
cal for accurate tool recognition in surgical videos. To address
class imbalance, we incorporated several strategies, including
targeted data augmentation, balanced batch sampling, and the
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use of focal loss. Our model achieved a mean Average Pre-
cision (mAP) of 96.3%, outperforming both conventional ap-
proaches and spatial-only vision transformer baselines. future
work will explore the potential use of this model for unsuper-
vised localization of surgical tools, which could further en-
hance its utility in real-time surgical assistance systems.
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