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Abstract: Efficient detection of surgical instruments in op-
erating room (OR) settings is critical for advancing surgical
workflow management systems. While deep learning-based
object detection has achieved promising results in minimally
invasive surgery, the detection of instruments on the instru-
ment stand during open procedures remains underexplored.
This study introduces two annotated datasets simulating real-
world OR scenes, featuring instruments from different manu-
facturers. We evaluate two detection approaches: a standalone
YOLOv8x model and a custom two-stage pipeline that com-
bines a YOLOv8x with a ResNet-34 model. Both models were
trained and evaluated on the first dataset and subsequently
tested on a second dataset containing instruments from dif-
ferent manufacturers to assess cross-manufacturer generaliz-
ability. On the first dataset, the two-stage pipeline achieved
a mAP50 of 99.2%, outperforming the standalone YOLOv8x
model (98.4%) by improving detection accuracy of stacked
instruments. However, both models exhibited notable perfor-
mance drops (YOLOv8x: 75.9%, pipeline: 78.4% mAP50)
when applied to instruments from different manufacturers,
highlighting the impact of inter-manufacturer variability in in-
strument morphology. Our findings emphasize the need for
more comprehensive, multi-source datasets to enable robust
and generalizable instrument detection solutions in diverse
surgical environments.

Keywords: deep learning, convolutional neural network, sur-
gical instrument detection, surgical workflow analysis.

1 Introduction

Surgical workflow and operating room (OR) management sys-
tems are integrated systems that support surgeons and OR staff
with time-consuming manual and information-related tasks.
These systems recognize the current surgical context and col-
lect relevant information that can be displayed, processed, or
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used for automatic assistance functions. Potential capabilities
of such systems include efficient documentation and automatic
report generation, surgical phase detection, and automated sur-
gical count [1]. Therefore the integration of such systems in
surgical practice has the potential to improve OR efficiency,
reduce documentation burdens, and prevent instrument reten-
tion events [2].

An important informational aspect for the development of
these functionalities is the detection of surgical instruments in
the operating environment [3]. Camera-based detection sys-
tems integrated with deep learning offer a practical and cost-
effective solution and can be easily incorporated into existing
OR infrastructure. Research in surgical instrument detection
has focused primarily on identifying instruments from laparo-
scopic images during minimally invasive procedures [4]. De-
spite the rise in minimally invasive surgeries, most procedures
are still performed using open surgical techniques [5]. Accu-
rate detection and counting of surgical instruments on the in-
strument stand is essential for preventing the misplacement or
retention of instruments, and enabling efficient and reliable
documentation. These capabilities are particularly important
in open surgeries, where a large number of instruments are
used and handled outside the endoscopic view. Despite this rel-
evance, publicly available datasets for instrument detection on
the instrument stand in open procedures remain extremely lim-
ited. Existing datasets rarely depict realistic OR settings and
often lack images with occlusions, stacked instruments [6, 7],
or sufficient variety in instrument types and manufactures [8],
which significantly affects model robustness.

In this work, we propose a two-stage instrument detection
pipeline that addresses the introduced real-world challenges
and present a dataset that captures realistic OR scenes of the
instrument stand.

2 Materials and Methods

We evaluated two architectures for surgical instrument detec-
tion on the acquired datasets. Initially a standalone YOLOv8x
network [9], which is a state-of-the-art object detection model
was employed. In early experiments we observed that the stan-
dard Non-Maximum Suppression (NMS) post-processing step
impeded reliable detection of stacked instruments.
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Fig. 1: The proposed instrument detection pipeline. The YOLO network identifies instruments positioned on the instrument table, detect-
ing, in this example, a stack of towel clamps. The section of the image containing the detected stack is then given to the ResNet, which
determines the number of instruments inside the stack.

To address this limitation, we developed a two-stage
pipeline combining a YOLOv8x detector with a ResNet-34
model, see Figure 1. This architecture leverages domain-
specific knowledge that certain instrument classes are typi-
cally arranged in stacks and that stacking generally occurs
only between instruments of the same class. In the first stage,
the YOLOv8x model was employed to detect instrument lo-
cation within the images, classify instrument type, and deter-
mine whether the detection represented a single instrument or
a stack. In the second stage, the ResNet quantified the number
of instruments in each detected stack.

2.1 Dataset

Fig. 2: Data acquisition setup. Data Acquisition at the Charite
Hospital Center using six Canon 550D cameras capturing the
scene on the operating stand from various perspectives.

To authentically recreate OR scenes of the instrument
stand we mimic realistic instrument stand configurations in our
OR lab. To achieve that, publicly available images of instru-
ment stands were analyzed and experienced scrub nurses were
consulted regarding best practices for instrument placement.
For the instrument selection, we focused on ENT surgery and

selected a variety of instruments commonly used across mul-
tiple surgical disciplines, drawing from the vast range of ex-
isting surgical tools. To enhance scene authenticity, we also
included frequently encountered non-instrument items such as
gauze balls, dissecting swabs, and suture material.

Capturing of high-resolution still images has been per-
formed using six Canon EOS 550D cameras equipped with
35mm lenses, positioned at varying heights in a circular ar-
rangement around the instrument stand to ensure diverse per-
spectives, as shown in Figure 2. We captured two datasets of
the same instruments from different manufacturers (Table 1).
The first dataset, encompasses 26 instruments from 16 dis-
tinct classes, manufactured by Aesculap, Germany. The sec-
ond dataset features instruments manufactured by KLS Mar-
tin, Germany and Karl Storz, Germany. This second set rep-
resents a subset of the first, including 19 instruments across
12 different classes. All surgical instruments as well as gauze
balls and dissecting swabs were annotated with precisely fitted
bounding boxes.

2.2 Experiment

The experiment was designed to evaluate the generalization
capabilities of both models with respect to surgical instrument
sets from different manufacturers. Initially, both models were
trained and tested on the first dataset with an 80%/ 20% split
ratio. Subsequently, to assess their generalization ability, the
models were applied to the secondary dataset, which featured
instruments from different manufacturers. This experimental
design enabled quantitative analysis of cross-domain perfor-
mance and robustness to variations in instrument appearance.

Tab. 1: Number of images and annotated objects in our datasets.

Dataset No. Images No. Objects Manufacturer

No. 1 846 8720 Aesculap
No. 2 106 2257 KLS Martin/Karl Storz
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Fig. 3: PR-Curve of the standalone YOLOv8x model on the first
dataset. The classes with the lowest AP are the towel clamps and
the mosquito forceps.

The standalone YOLOv8x network was trained at 960
pixels input image resolution, utilizing MSCOCO pre-trained
weights. Training was conducted over 300 epochs with a batch
size of 16 and an early stopping mechanism to prevent overfit-
ting. We increased the Intersection over Union (IoU) threshold
parameter of the NMS algorithm to 0.9, achieving an favor-
able balance between detection of instruments in stacks and
suppression of duplicate detections.

To train the two-stage pipeline, the original dataset was
modified by merging bounding boxes of adjacent instruments
of the same class when they exceeded a specified IoU thresh-
old of 0.3. Subsequently, they were assigned a new class la-
bel representing a stacked instrument configuration. First, the
YOLOv8x model was trained on this modified data. For the
second stage, the ResNet training set was generated by ex-
tracting images of instrument stacks from the same modified
dataset. The ResNet-34, was trained using a cross-entropy loss
function to quantify instrument count. The classifier head was
trained for 10 epochs before fine-tuning the full network for
10 additional epochs.

3 Results and Discussion

The performance of the stand-alone YOLOv8x model, trained
and evaluated on the first dataset, is shown in Figure 3 illustrat-
ing the precision-recall curve (PR-Curve). The model demon-
strated robust performance, achieving a mAP50 (mean average
precision) of 98.4%, with the AP (average precision) for most
instrument classes exceeding 95%. These results are similar to
literature [8].

However, it was observed that two specific classes, towel
clamps and mosquito forceps, exhibited the lowest AP val-
ues among all classes, at 91.6% and 88.6% respectively. These
lower precision rates are notable as these instruments are typ-

Fig. 4: PR-Curve of the detection pipeline on the first dataset.
There is an increase in detection accuracy compare to the stan-
dalone YOLO model, particularly for typically stacked instruments
like the towel clamps and mosquito forceps.

ically found in stacks on the instrument table (cf. Figure 1), a
factor that complicates their individual detection.

Our proposed instrument detection pipeline can effec-
tively address this shortcoming. Trained and evaluated on the
first dataset, the pipeline achieved a mAP50 of 99.2%, out-
performing the standalone YOLOv8x model as shown in Fig-
ure 4. While YOLOv8x showed limitations in reliably detect-
ing stacked instruments, the integrated two-stage pipeline mit-
igated this issue. The increase in AP for stacked instruments,
3% for towel clamps and 10% for mosquito forceps, shows that
the detection pipeline successfully overcomes this challenge,
while still maintaining high AP for other instrument classes.

To evaluate detection transferability over different instru-
ment manufacturers, both models were trained on the first
dataset and tested on the second one, showing a significant
decline in performance as presented in Figures 5 and 6. The
mAP50 of the standalone YOLOv8x model dropped to 75.9%,
a considerable decrease from the mAP50 of 98.4% achieved
on the first dataset. Similarly, the performance of the two-stage
pipeline dropped to a mAP of 78.4%.

Fig. 5: Precision-Recall curve demonstrating the performance of
our detection pipeline when tested on the second dataset, which
includes medical instruments from manufacturers KLS Martin and
Karls Storz.

534



Kienle et al., Instrument Detection on Authentic Instrument Stands

Fig. 6: Precision-Recall curve demonstrating the performance of
our detection pipeline when tested on the second dataset, which
includes medical instruments from manufacturers KLS Martin and
Karls Storz.

For both models, certain instrument classes such as the
Self-Retaining Retractor, Roux Retractors, Adson-Brown For-
ceps, and Scalpel maintained detection performance with an
AP exceeding 90%. In contrast, instruments that exhibited
significant variations in shape or color between manufactur-
ers posed greater challenges for the detection models. The
anatomical and surgical forceps were particularly affected. As
depicted in Figure 7(A), the anatomical forceps from manufac-
turer Aesculap features a metallic pin at the middle of the for-
ceps. This pin served as a robust feature for the models to dis-
tinguish between anatomical and surgical forceps. However,
the anatomical forceps from manufacturer KLS Martin lacks
this pin, leading to poor detection accuracy. Similarly, the mor-
phology and color of the bipolar forceps differed significantly,
as shown in Figure 7(B), resulting in the models inability to
recognize them accurately.

Fig. 7: Instruments across manufacturers. (A) Comparison of the
Anatomical and Surgical Forceps from manufacturer Aesculap
(left) and KLS Martin (right). (B) Bipolar forceps from Aesculap
(left) and Karl Storz (right).

4 Conclusion

In this study, we introduce a novel dataset for surgical instru-
ment detection on instrument stands, comprising images from
realistic OR environments with instruments from multiple
manufacturers. We evaluated both a state-of-the-art YOLO ob-
ject detection model and a novel two-stage detection pipeline
designed specifically to improve the detection of stacked sur-
gical instruments. An experimental analysis was conducted
to assess the generalization capabilities of both models when
detecting instruments from different manufacturers. Results
demonstrated that even minor variations in morphology or
color between manufacturers significantly impacted detection
accuracy. These findings underscore the necessity of a compre-
hensive dataset encompassing instruments from diverse man-
ufacturers to develop robust surgical instrument detection sys-
tems.
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