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Abstract: Automatic recognition of surgical phases plays
a critical role in enabling intelligent, context-aware support
systems during operative procedures. The inherent variabil-
ity of surgical techniques and intraoperative conditions makes
precise surgical phase recognition (SPR) a challenging task.
This study explores ensemble learning as a strategy to im-
prove phase recognition performance using a learnable fusion
approach. A selection of state-of-the-art deep learning mod-
els was trained and tuned to capture complementary aspects
of the task. This resulted in 14 base models with varied back-
bones and parameter settings. To aggregate the output proba-
bilities of the base models, a lightweight fully connected net-
work, referred to as StackingNet, was designed as a meta-
model capable of learning to generate final predictions from
their outputs. This approach outperformed the best individ-
ual base model within the respective ensemble in 14 out of
15 ensemble configurations, achieving a maximum F1-score
improvement of 3.3 %. These results demonstrate that learn-
able ensemble fusion can significantly enhance accuracy of
surgical phase recognition, highlighting its potential in the de-
velopment of intelligent surgical assistance systems.

Keywords: Surgical Phase Recognition, Ensemble Learning,
Deep Learning.

1 Introduction

The integration of artificial intelligence (Al) into surgical en-
vironments is reshaping the landscape of intraoperative assist-
ing systems. Among various Al-driven applications, surgical
phase recognition (SPR) has emerged as a critical component
for enabling real-time guidance, automating procedural doc-
umentation, and enhancing overall workflow efficiency, ulti-
mately leading to improved patient safety [1-3].

Deep learning has enabled significant progress in SPR,
supported by benchmark datasets such as Cholec80 [3], which
contains 80 laparoscopic cholecystectomy videos, each seg-
mented into seven annotated phases. Standard approaches
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typically involve the use of convolutional neural networks
(CNNs), such as ResNet [4], to extract spatial features from
surgical video frames, followed by temporal models to cap-
ture phase transitions over time [3, 5, 6]. Architectures such
as Recurrent Neural Networks (RNNs) [7, 8], Temporal Con-
volutional Networks (TCNs) [9], and Transformers [5] have
all contributed to advances in this area. Despite these develop-
ments, SPR systems still face limitations. Small, imbalanced
datasets and variability in surgical technique and environments
hinder generalizability [10].

To adress these challenges, multi-view approaches have
been explored that integrate complementary visual modalities
such as laparoscopic and in-room camera data [11]. Beyond
multimodal setups, ensemble learning has gained traction in
various medical image analysis tasks, including cancer classi-
fication [12] and surgical tool detection [13, 14], where com-
bining diverse models further improves accuracy and general-
izability. However, these approaches rely on statistical fusion
techniques, such as averaging, to aggregate base model outputs
into final predictions. These methods fail to capture complex,
non-linear relationships — a limitation that becomes evident,
for example, in tasks with high transitional ambiguity, where
visual features may appear unclear near phase boundaries.
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Fig. 1: Schematic overview of the proposed method, illustrating
the StackingNet architecture as a learnable meta-model for fusing
base model outputs into final predictions.
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While ensemble learning has been successfully applied in
other areas of medical image analysis, its potential in SPR re-
mains largely unexplored. This work addresses that gap by
proposing an ensemble framework tailored for SPR. A fully
connected artificial neural network is introduced as a learn-
able meta-model to fuse the outputs of multiple deep learning
models across different ensemble combinations. The goal is to
evaluate whether such a learnable fusion strategy can enhance
SPR performance beyond what individual models can achieve.

2 Materials and Methods

A schematic overview of the proposed method is shown in Fig-
ure 1. This study is based on the Cholec80 dataset [3], a widely
adopted benchmark for SPR. The videos were downsampled
to 1fps, and all frames were resized to 250 x 250 pixels. Ad-
ditionally, standard data augmentation techniques were ap-
plied, including cropping, horizontal flipping, and color jitter-
ing. The dataset was split into 32 training videos, 8 validation
videos, and 40 test videos. Training was performed on a work-
station equipped with an Intel® Core™ i9-12900K processor
and an NVIDIA GeForce RTX 3080 Ti GPU running Ubuntu
20.04.01. Model development was carried out using PyTorch,
and hyperparameter tuning was managed using Weights & Bi-
ases [15]. Performance was evaluated using F1-score without
applying tolerance windows around phase boundaries.

2.1 Base Models and Ensemble Design

The ensemble was built using four state-of-the-art tempo-
ral deep learning architectures for SPR: a Temporal Convo-
Iutional Network (TeCNO [9]), a Transformer-based model
(Trans-SVNet [5]), and two LSTM-based models (MTRC-
Net [7] and TMRNet [8]). Where publicly available pre-trained
models were not compatible with the 32:8:40 data split, mod-
els were retrained from scratch. In all cases, the epoch achiev-
ing the highest validation accuracy was selected for evalua-
tion. To ensure statistical robustness, each model was trained
in three independent runs, and the mean performance was re-
ported. To enhance ensemble diversity, additional model vari-
ants were created by modifying architectural parameters such
as the number of TCN layers, feature maps and the choice
of feature extractor backbone — specifically ResNet50 [4] and
ResNeSt50 [16]. This resulted in a pool of 14 distinct base
models, summarized in Table 1.

To systematically assess the impact of ensemble learning
on SPR, multiple configurations were defined to target specific
research questions regarding model diversity. These configura-
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tions are listed below, with the corresponding model identifiers
and architectures detailed in Table 1.

Architecture-based (A1-A4): Ensembles composed of
model variants sharing the same architecture.

Al: 1-4 (Trans-SVNet),

A2: 5-10 (TeCNO),

A3: 11-12 (TMRNet),

A4: 13-14 (MTRCNet).

Backbone-based (B1-B2): Ensembles grouped by fea-
ture extractor backbone.

B1: 1, 2,5-7, 11, 13 (ResNet50),

B2: 3, 4, 8-10, 12, 14 (ResNeSt50).

Performance-based (C1-C4): Ensembles of top-ranked
models based on F1-score.

C1: 2, 6, 12, 14 (best from each architecture),

C2: 2,6, 11, 13 (best ResNet50 models),

C3: 3,9, 12, 14 (best ResNeSt50 models),

C4:2,3,6,9, 11-14 (best models from each architecture
and each backbone).

Architectural diversity (D1-D4): Homogeneous (D2)
vs. heterogeneous ensembles (D1, D3, D4).

D1: 1-10 (Trans-SVNet + TeCNO),

D2: 11-14 (TMRNet + MTRCNet),

D3: 1-4, 11-12 (Trans-SVNet + TMRNet)

D4: 5-10, 13-14 (TeCNO + MTRCNet).

Full ensemble (E): 1-14 (all base models).

For each ensemble configuration, the best-performing base
model in the respective ensemble served as a reference, and
the improvement achieved by the ensemble was quantified rel-
ative to this baseline.

2.2 Meta-model StackingNet

Based on previous work by Yildiz et al. [17], Su et al. [18],
and Cao et al. [19], a fully connected (FC) neural network was
implemented as the meta-model in this study. The architec-
ture, referred to as StackingNet, consists of an input layer, two
hidden layers and an output layer for classification of seven
classes, which is shown in Figure 1.

The input layer maps the ensemble feature vector to the
first hidden layer. Each hidden layer applies a linear trans-
formation, followed by a non-linear activation and dropout to
reduce overfitting. The hidden layers use a fixed number of
neurons, defined by the hidden units parameter, with config-
urable dropout rates. The output layer produces class scores,
which are passed through a softmax function to yield probabil-
ity distributions over seven classes. Hyperparameters were op-
timized for each ensemble based on commonly reported value
ranges in the literature.
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3 Results

The individual base models achieved F1-scores ranging from
79.40 % to 83.59 %. Table 1 presents the performance of all
14 models, along with their respective architectural configura-
tions. The highest individual F1-score was achieved by TMR-
Net with a ResNeSt50 backbone.

Tab. 1: Individual performance of each base model along with
their respective architectural configurations.

Nr. Model Backbone Layer Maps F1-score

1 8 32 80.914+7.24
2 ResNet50 9 64  83.06+7.33

TransSVNet

3 ResNeSt50 8 32 82.83+7.70
4 9 64 82.78+7.79
5 8 32 79.40+£7.34
6 ResNet50 9 64 82.37+7.05
7 10 64 81.264+6.70
g TeCNO 8 32 79.40+9.47
9 ResNeSt50 9 64 82.3147.71
10 10 64 82.214+7.62
11 ResNet50 - - 82.254+6.37
12 TMRNet ResNeSt50 - - 83.59+5.61
13 ResNet50 - - 78.174+8.35
14 MTRCNet oo Nestso - - 79.2347.55

For each of the 15 ensembles (A-E), a dedicated hyperpa-
rameter sweep was conducted to identify the optimal configu-
ration. For every ensemble, the run with the highest validation
accuracy was selected. The corresponding optimal hyperpa-
rameters are summarized in Table 2. Using these optimized
settings, the ensembles were subsequently trained.
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Fig. 2: F1-score improvement of each ensemble using Stack-
ingNet as meta-model.

The evaluation of the ensembles is presented in Fig-
ure 2 as Fl-score improvements in % compared to the best-
performing base model within the respective ensemble. All
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ensembles demonstrated an improvement in Fl-score, with
the exception of combination C3, which showed a decrease
of 0.85 %. The highest gains were observed in combinations
C4 and E with 3.18 % and 3.3 % respectively.

4 Discussion and Outlook

The evaluation of ensemble configurations reveals key insights
into the influence of architectural diversity and model selection
on overall performance. Nearly all ensembles achieved perfor-
mance gains over their strongest base model, with the most no-
table improvements observed in configurations that combined
models across different architectures and backbones.

Architecture-based ensembles (A1-A4) generally bene-
fited from stacking, although smaller ensembles such as A3
and A4, each composed of only two models, showed more
modest improvements. In the backbone-based group, B1 with
ResNet50 achieved substantially higher gains than B2 with
ResNeSt50. This suggests that not only the architecture itself
but also the synergy between backbone and task-specific de-
sign influences ensemble effectiveness. In the performance-
based group (C1-C4), notable improvements were observed
in configurations combining top-performing models from all
architectures and backbones. In contrast, C3 showed a slight
performance drop despite including strong individual models,
suggesting that diversity in model behavior is as critical as in-
dividual performance. The architectural diversity group (D1-
D4) supports this: heterogeneous ensembles (D1, D3, D4) out-
performed the homogeneous configuration D2, highlighting
the advantage of mixing architectures.

Hyperparameter optimization revealed that optimal Stack-
ingNet settings varied considerably across ensembles — espe-
cially in learning rate, batch size, and dropout rates. Larger en-
sembles often required stronger regularization and more train-
ing epochs, pointing to a greater risk of overfitting. The varia-
tion in activation functions and optimizers further reflects how
ensemble composition influenced the learning dynamics of the
meta-model.

These findings suggest that ensemble performance de-
pends not only on base model quality, but also on combination
strategies, diversity, and meta-model tuning. Balancing strong
models with architectural variety and including a broader set
of base models proved beneficial, even when some models per-
formed weaker individually. This implies that the meta-model
leverages each model’s unique contribution, and that larger en-
sembles can improve robustness and generalizability. Future
work could explore more advanced meta-model and broader
evaluations across datasets and clinical contexts.
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Tab. 2: Optimal hyperparameters identified for the different ensembles using StackingNet.

Hyperparameter Ensemble

yperp A1 A2 A3 A4 BI B2 C1 C2 C3 Cc4 DI D2 D3 D4 E
aCCyq 92.69 92.51 98.75 90.71 93.44 96.56 98.11 95.29 97.49 98.04 92.86 98.58 98.14 93.20 97.97
Batch size 512 256 128 512 128 64 256 8 256 1024 16 512 16 64 64
Learning rate 2.5e-5 2.5e-5 1e-4 7.5e-5 25e-5 7.5e-6 5e-6 5e-5 5e-6 7.5e-6 2.5e-4 7.5e-5 5e-6 1e-5 7.5e-3
Epochs 36 12 23 10 8 7 91 100 96 74 72 8 6 10 2
Dropout 1 0.6 0.2 0.1 0.9 0.7 0.3 0.8 07 0 0.9 0.7 02 07 09 05
Dropout 2 0.3 07 09 0.1 0 0.6 0.7 08 0.2 0.8 0 06 08 05 0
Hidden units 256 256 512 256 128 256 256 256 64 256 64 512 128 512 256
Optimizer adam adam adam adam adam rmsprop adam sgd rmsprop adam sgd adam adam adam sgd
Activation function relu tanh relu tanh tanh tanh relu tanh  tanh tanh tanh tanh tanh relu tanh
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