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Abstract: Cable-Driven Parallel Robots (CDPR) have gained
increasing attention in human-machine-interaction, particu-
larly in haptics and rehabilitation. Despite their different ob-
jectives, both fields share fundamental requirements such as
safety, configurability and precise force control. This review
provides an overview of existing CDPR implementations de-
signed for human interaction, categorizing and analyzing sys-
tems based on their design principles and kinematic proper-
ties. Key motivations for using CDPR in these applications are
discussed, along with current limitations and promising direc-
tions. The findings indicate that CDPR offer an underrated yet
promising solution for human-machine-interaction.
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1 Introduction

Robotic systems capable of applying forces to humans are
used in various applications, including haptics and rehabili-
tation. While these two domains may seem distinct, they share
fundamental requirements, such as safety, adaptability, dy-
namic performance and precise force control. Cable-Driven
Parallel Robots (CDPRs) have emerged as a promising solu-
tion. From a theoretical perspective, CDPRs offer advantages
over traditional robotic systems. Their cable-based actuation
enables dynamic movements due to their lightweight design,
which can enhance both user safety and interaction quality.
Further, they offer high configurability and cost-effectiveness.
These characteristics make them particularly suitable for ap-
plications, such as user interfaces for Virtual Reality (VR),
telemanipulation in Robot-assisted surgery (RAS), surgical
training environments, or for assisting patients in rehabilita-
tion exercises. Despite their potential, CDPRs have so far only
been used to a limited extent for human-machine interaction,
and their advantages are often overlooked. While numerous re-
search efforts have explored their feasibility, a comprehensive
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overview of existing implementations is still needed. This re-
view aims to provide a clear perspective on the current state of
CDPRs designed for human interaction, with a focus on hap-
tic feedback and rehabilitation, identifying key motivations for
their use, common limitations, and future directions.

2 Background

CDPRs are a subset of parallel robotic systems in which end-
effectors are actuated by cables instead of rigid links. In con-
trast to rigid-limb parallel robots, CDPRs offer advantages
such as lower weight, greater adaptability, and the possibil-
ity of larger workspaces. Their applications include industrial
automation, large-scale motion platforms, exoskeleton assis-
tance, and interactive rehabilitation systems.

The analysis of CDPRs requires consideration of both
kinematics and cable force distribution. The kinematics define
the relationship between cable lengths, end-effector position,
and applied forces, ensuring controlled operation. Since ca-
bles can only transmit tensile forces, the cable force distribu-
tion is crucial. This necessitates the use of redundant actuation
and strategies to optimize the distribution of cable forces. In-
depth theoretical and practical insights into CDPR design and
control are given by A. Pott [1]. There are several approaches

Figure 1: Cable-Driven Haptic Devices (CDHD): Falcon (a) and pla-
nar design (b) for telemanipulation and virtual reality [2].

to classifying CDPRs, including by number of cables, or end-
effector degrees of freedom (DOF). In this work, a first catego-
rization is based on application, considering only CDPRs that
interact with humans, particularly Cable-Driven Haptic De-
vices (CDHDs) and CDPRs for rehabilitation purposes. CD-
HDs are designed to provide force feedback for applications
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such as VR training and teleoperation (see Figure 1), offer-
ing precise force rendering and high dynamics. In contrast,
rehabilitation CDPRs focus on assisting or training patients
with movement impairments, often integrating adaptive con-
trol strategies to ensure user safety and personalized therapy.
The identified systems are then classified by their degree of re-
dundancy [1]. The degree of redundancy rp = m — n, where
m is the number of cables and n is the number of controllable
DOFs, determines the class: Incompletely Restrained Paral-
lel Manipulator (IRPM) for rp < 0, Completely Restrained
Parallel Manipulator (CRPM) for rp = 1, and Redundantly
Restrained Parallel Manipulator (RRPM) for rp > 1. At least
m = n + 1 cables are needed for full end-effector control.

3 Methods

The objective of this study is to identify and analyze CDPRs
designed for human interaction, specifically those capable of
exerting forces in a controlled manner and in the form of force
feedback. To compile the dataset of relevant CDPR implemen-
tations, a literature search was conducted using the scientific
databases IEEE Xplore, PubMed, and Google Scholar. Only
studies focusing on CDPRs designed for human interaction
were included, while systems without direct human interaction
or those not intended to provide force feedback were excluded.

4 Results

In Table 1, 40 identified systems are listed along with their
key characteristics and applications. The findings demonstrate
broad applicability, including VR, Mixed Reality, sports appli-
cations, and telesurgical robotics, highlighting the versatility
of CDPRs. Nine systems explicitly designed for rehabilitation
and four systems intended for RAS were identified. A notable
trend is the use of multimodal feedback, including kinesthetic
and tactile feedback. Most systems cover a force feedback
range between 0 and 10 N, with only a few systems extending
up to 300 N. Despite the frequent inclusion of force sensors,
the literature regarding their implementation in hardware and
control strategies remains incomplete.

5 Discussion

CDPRs are highly suited for human-machine-interaction.
They are capable of providing precise and adjustable force
feedback, making them ideal for haptic systems. Their high
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adaptability also allows them to address the diverse needs
of rehabilitation, ranging from physical therapy to neuro-
rehabilitation. Furthermore, CDPRs are cost-effective, with
only few mechanical components, and their configurability
makes them easily customizable. However, CDPRs face sev-
eral challenges. The complexity of cable force distribution in
redundant actuator designs presents difficulties. The fact that
cables can only transmit tensile forces results in interactions
almost always occurring within the volume defined by the
cable attachment points. This, in turn, makes the realization
of suitable user interactions challenging. Additionally, the
cables themselves introduce constraints such as friction and
wear. CDPRs offer a promising, yet underrated solution for
human-interactive robotics. Future research could overcome
these limitations, positioning CDPRs as a key technology, in
particular when aiming for immersive haptic environments.
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Table 1: Overview of Cable-Driven Parallel Robots (CDPRs) designed for human interaction: Key characteristics, applications, and force
feedback capabilities. The parameter m represents the number of cables, n is the number of controllable DOF, and the category denotes
the classification based on the degree of redundancy. Sorting is done by affiliation.

Affiliation Device Ref. m n Categ. Application Force Force Other
name inN Sensor
Univ. Laval, CAN - [3] 4 3 CRPM nonspecific 0-5 yes -
Univ. Laval, CAN - [4] 3 3 IRPM VR - - rigid object contact
Univ. Laval, CAN - [5] 4 3 CRPM VR - yes -
Univ. Laval, CAN CDLI [6] 2x8 2x6 RRPM VR - - -
ETH Zirich, CHE M 3-Rowing [7] 4 3 CRPM sport - yes multimodal feedback
Simulator
Beihang Univ., CHN - [8] 4 3 CRPM VR 0-14,2 - kinesthetic and tac-
tile feedback
Beihang Univ., CHN iFeel6- [9] 8 6 RRPM VR 0-37 - -
BH1500
Beijing Inst. of Technology, CHN - [10] 6 5 CRPM RAS - yes variable workspace
Northeast Electric Power Univ., CHN - [11] 8 6 RRPM VR - yes -
Southeast Univ., CHN - [12] 8 6 RRPM VR 0-10 - kinesthetic and tac-
tile feedback
Centrale Nantes, FRA - [13] 6 4 RRPM nonspecific - - -
CEA LIST, FRA ICARE 3D [14,15] 3 3 IRPM VR - - -
Sorbonne Univ., FRA - [16] 5 3 RRPM nonspecific - - overlay of VR and
workspace
King’s College London, GBR - [17] 8 7 CRPM nonspecific - yes -
Fraunhofer IPA, DEU IPAnema 3  [18] 8 6 CRPM nonspecific - yes -
Mini
Fraunhofer IPK, DEU STRING- [19] 7 6 CRPM rehabilitation - yes also with 10 cables
MAN
Univ. of Stuttgart, DEU PlaCaRo [2] 4 2 RRPM nonspecific 0-5 no -
Univ. of Stuttgart, DEU FalCaRo [2] 8 6 RRPM RAS 0-5 no Falcon design ac-
cording to [20]
Univ. of Stuttgart, DEU - [21] 2 1 CRPM nonspecific 0-5 no -
Univ. of Stuttgart, DEU STRIVE [22] - - IRPM VR - no now Haptive GmbH
Israel Inst. of Technology, ISR - [23] 3 2 CRPM rehabilitation - no four operating modes
Univ. of Bologna, ITA WireMan [24] 3 3 IRPM Vvisual - - body-worn
impairment
Univ. of Cassino, ITA CALOWI [25] 4 4 |IRPM rehabilitation - yes -
Univ. of Padova, ITA Feriba-3 [26] 4 3 CRPM nonspecific 0-5 no air lubrication
Univ. of Padova, ITA Sophia-4 (-3) [27] 4(3) 2 RRPM rehabilitation - no -
(CRPM)
Univ. of Padova, ITA PiRoGa5 [28] 6 5 CRPM RAS - - -
Univ. of Padova, ITA NeReBot [29] 3 3 IRPM rehabilitation 0-50 - -
Univ. of Padova, ITA MariBot [30] 3 3 IRPM rehabilitation 0-50 no -
Scuola Superiore Sant'/Anna, ITA - [31] 6 5 CRPM RAS - yes -
Politecnico di Torino, ITA WiRo0-6.3 [32] 9 6 RRPM nonspecific 0-10 - -
Ritsumeikan Univ., JPN - [33] 7 6 CRPM nonspecific - - -
Tokyo Denki Univ., JPN - [34] 3 2 CRPM nonspecific 0-5 no -
Tokyo Inst. of Technology, JPN SPIDAR [35-38] 8 6+1 CRPM VR/MR - - numerous versions
Chonnam National Univ., KOR - [39] 8 6 RRPM telerobotics - yes -
Chonnam National Univ., KOR - [40] 8 6 RRPM RAS 0-10 yes -
Gwangju Inst. of Science and HapticPen [41] 3 3 IRPM nonspecific 0-4 - body-worn
Technology, KOR
Gyeongsang National Univ., KOR - [42] 4 4 |IRPM rehabilitation - - -
Pohang Univ. of Science and - [43] 4 2 RRPM VR 0-7 yes movable attachment
Technology, KOR points
Delft Univ. of Technology, NLD - [44] 6 4 RRPM nonspecific - - -
Delft Univ. of Technology, NLD - [45] 4 3 CRPM VR, sport - yes -
Delft Univ. of Technology, NLD - [46,47] 7 6 CRPM nonspecific - - -
National Univ. of Singapore, SGP Hand-CARE [48] 5 5 IRPM rehabilitation 0-15 yes linear workspace
Rehabilitation Inst. of Chicago, USA CalLT [49] 4 - - rehabilitation  0-45 - 3D position sensing
Rehabilitation Inst. of Chicago, USA MACARM [50] 8 6 RRPM rehabilitation max. - -
300
Ohio Univ., USA CSHI [51] 8(4) 6(3) RRPM nonspecific - yes -
(CRPM)
Mimic Technologies Inc., USA Mantis Duo  [52] 2x4 2x3 CRPM RAS - - for bi-manual use
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