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Abstract: We present an intuitive, real-time control system
for a 6-axis robotic arm, designed to support assistive applica-
tions in biomedical contexts. Using four MARG-based inertial
sensors placed on the arm and hand, human motion is cap-
tured and mapped to robot kinematics via quaternion-based
sensor fusion and a two-step calibration process. The resulting
end-effector pose is scaled to match the robot’s workspace,
while EMG signals enable control of a robotic gripper through
thumb-index gripping gestures.
The system enables direct, gesture-based control without ex-
tensive training, making it accessible for users with limited
mobility but preserved upper limb function. Evaluation results
confirm stable, low-latency operation during pick-and-place
tasks, with users intuitively compensating for minor sensor
inaccuracies through visual feedback. This approach demon-
strates strong potential for assistive robotics in home or care
environments, particularly where conventional control meth-
ods are unsuitable.
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1 Introduction

Independence in daily life is crucial for people with mobil-
ity impairments, such as those resulting from spinal cord in-
juries or neurological conditions. Even with preserved up-
per limb function, tasks involving reach, dexterity, or envi-
ronmental interaction can be difficult, especially in home or
care settings without constant assistance [11]. Advances in
computation, sensor integration, and additive manufacturing
have boosted the development of intuitive human–robot in-
terfaces [6]. Conventional control methods like joysticks or
buttons require training [8] and often lack precision for fine
tasks. MARG-based inertial sensing offers a natural alterna-
tive by mapping human arm motion to robot control. Earlier
work either used three IMUs without capturing shoulder mo-
tion [5, 9], or four IMUs with complex inverse kinematics
for non-anthropomorphic arms [1]. In this paper, we present
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a novel, easy-to-implement end-to-end method for intuitive
robot control, optimized for pick-and-place tasks. Our ap-
proach leverages computationally efficient quaternion-based
orientation estimation, combined with a two-step calibration
process mapping sensor data to endeffector pose. Through ap-
propriate scaling, we fully utilize the robot’s workspace while
considering its physical constraints. Notably, our approach
explicitly incorporates shoulder movements, thereby enhanc-
ing the naturalness and precision of the robotic control in-
terface. Our method uses the following coordinate systems:
Earth coordinates (𝐸) (ENU convention), intermediate robot
frame (𝑖𝑟𝑓 ), sensor coordinates (𝑆𝑖), and corresponding body-
segment frames (𝐵𝑖) (figures 3 and 4).
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Fig. 1: Sensor
Placement.

Fig. 2: Denso VS-087 with attached
WSG Gripper.

2 System Components

Motion data are captured using four Shimmer3 MARG sen-
sors, placed at standardized anatomical positions to minimize
soft-tissue artifacts, following Höglund et al. [3]. As shown
in Figure 1, the sensors are mounted cranial-dorsally on the
shoulder 𝑆1, and dorsally at the distal ends of the upper arm
𝑆2, forearm 𝑆3, and dorsally at the hand center 𝑆4. In ad-
dition, EMG signals from the Musculus interosseus dorsalis
I are recorded to enable gripper control via muscle activity.
After calibration, all sensors align with the coordinate system
defined in Figure 3, using a consistent axis color scheme (𝑋
red, 𝑌 green, 𝑍 blue). The robotic platform is a 6-axis Denso
VS-087 arm with a WSG-50-110 gripper, offering a reach of
1230.5 mm. Note that the end-effector coordinate frame is de-
fined at the tip of the gripper, following safety conventions
used in our lab.
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3 Quaternion-based Sensor
Fusion and Robot Control

3.1 Sensor Fusion and Calibration

To estimate segment orientations from inertial data, we apply
a 9-DOF sensor fusion algorithm based on the Madgwick filter
[12], chosen for its simplicity, speed, and reliable performance
in dynamic environments. This algorithm fuses magnetometer,
accelerometer, and gyroscope data, yielding real-time orienta-
tion estimates for each sensor, expressed as quaternions 𝑆𝑖

𝐸 𝑞.
Throughout this work, we use the notation 𝐴

𝐵𝑞 to denote the
orientation of frame 𝐴 relative to frame 𝐵, represented as a
quaternion.
To ensure accurate and intuitive robot control, two calibration
steps are performed: (1) determining the relative orientation
between the intermediate robot and Earth frames 𝐸𝑖𝑟𝑓 𝑞, and (2)
computing the relative alignment between each sensor and its
corresponding body segment 𝐵𝑖

𝑆𝑖
𝑞, accounting for soft-tissue

artifacts and sensor misplacement. Each segment orientation
in the intermediate robot frame is then computed as:

𝐵𝑖

𝑖𝑟𝑓 𝑞 =
𝐸
𝑖𝑟𝑓 𝑞 ⊗

𝑆𝑖

𝐸 𝑞 ⊗
𝐵𝑖

𝑆𝑖
𝑞 (1)

3.1.1 Earth-to-Robot Calibration

The initial robot-to-earth orientation is derived from the shoul-
der orientation determined immediately prior to the start of
motion capture. The default shoulder orientation in the inter-
mediate robot frame is defined as 𝐵1

𝑖𝑟𝑓 𝑞 =
[︁
1
2

1
2

1
2

1
2

]︁
,

aligning the person’s shoulder along the robot’s negative 𝑌 -
axis, with the positive 𝑋-axis pointing forward . Thus, hand
movements in front of the user yield positive 𝑋-values (fig-
ure 4). As both Earth and robot frames share the same vertical
(𝑍) axis, only a rotation around this axis, i.e. a yaw alignment,
is required. Assuming identical yaw orientations (𝜓) for the
shoulder sensor and segment in the intermediate robot frame
(𝐵1

𝑖𝑟𝑓 𝑞𝜓 = 𝑆1

𝑖𝑟𝑓 𝑞𝜓), the orientation is computed as:

𝜓𝐸,𝑖𝑟𝑓 = 𝜓
(︁
𝐵1

𝑖𝑟𝑓 𝑞 ⊗
𝑆1

𝐸 𝑞*
)︁

(2)

𝐸
𝑖𝑟𝑓 𝑞 =

[︁
cos

(︁
𝜓𝐸,𝑖𝑟𝑓

2

)︁
0 0 sin

(︁
𝜓𝐸,𝑖𝑟𝑓

2

)︁]︁
(3)

where 𝜓(𝑞) denotes the yaw angle extracted from quaternion
q.
The shoulder sensor orientation 𝑆1

𝐸 𝑞 is averaged over five sec-
onds of MARG data processed by the Madgwick algorithm.

3.1.2 Sensor-to-Segment Calibration

Sensor-to-segment calibration is performed using two prede-
fined static postures (Figure 3), each held for approximately
five seconds, in which the relative body segment orientations
are known (Table 1). Inspired by [14], we compute the intrin-
sic average orientation of each sensor-segment pair by averag-
ing yaw and pitch angles across all postures, disregarding roll
due to anatomical variability. The resulting sensor-to-segment
quaternions 𝑆𝑖

𝐵𝑖
𝑞 provide robust segment orientation estima-

tions for robot control.

Fig. 3: Calibration postures A and B
[2].
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Fig. 4: Frame
representations.

Algorithm 1 Sensor-to-segment calibration for calibration
posture j (based on [4]).

1: Input: Sensor orientations: 𝑆1
𝑖𝑟𝑓 𝑞𝑗 ,

𝑆2
𝑖𝑟𝑓 𝑞𝑗 ,

𝑆3
𝑖𝑟𝑓 𝑞𝑗 ,

𝑆4
𝑖𝑟𝑓 𝑞𝑗 ,

2: Body segment orientations: 𝐵1
𝑖𝑟𝑓 𝑞𝑗 ,

𝐵2
𝐵1
𝑞𝑗 ,

𝐵3
𝐵2
𝑞𝑗 ,

𝐵4
𝐵3
𝑞𝑗

3: for 𝑖 = 2 to 4 do
4: 𝐵𝑖

𝑖𝑟𝑓 𝑞𝑗 ←
𝐵𝑖−1

𝑖𝑟𝑓 𝑞𝑗 ⊗ 𝐵𝑖
𝐵𝑖−1

𝑞𝑗
5: end for
6: for 𝑖 = 1 to 4 do
7: 𝐵𝑖

𝑆𝑖
𝑞𝑗 ← 𝑆𝑖

𝑖𝑟𝑓 𝑞
*
𝑗 ⊗

𝐵𝑖
𝑖𝑟𝑓 𝑞𝑗

8: 𝐵𝑖
𝑆𝑖
𝑞𝑗 ← 𝑞𝑗(𝜓(

𝐵𝑖
𝑆𝑖
𝑞𝑗), 𝜃(

𝐵𝑖
𝑆𝑖
𝑞𝑗), 0) ◁ Yaw-Pitch only

9: end for
10: return 𝐵1

𝑆1
𝑞𝑗 ,

𝐵2
𝑆2
𝑞𝑗 ,

𝐵3
𝑆3
𝑞𝑗 ,

𝐵4
𝑆4
𝑞𝑗 ◁ Segment-to-sensor orientations

3.2 Segment Orientation Mapping to
Intermediate Robot Frame

Segment orientations are mapped to the intermediate robot’s
coordinate frame using equation 1. Each segment is repre-
sented as a normalized vector with a total length of one aligned
along the negative 𝑋-axis. Starting from the shoulder base
𝑝0, segment endpoints are computed sequentially, where each
endpoint serves as the origin for the next segment. Vectors are
rotated using the corresponding segment-to-irf quaternions,
and final positions are determined as described in Algorithm
2.
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Tab. 1: Relative segment quaternions for sensor-to-segment cali-
bration.

Posture 𝑖𝑟𝑓
𝐵1

𝑞 𝐵1
𝐵2
𝑞 𝐵2

𝐵3
𝑞 𝐵3

𝐵4
𝑞

A
[︀
1
2
, 1
2
, 1
2
, 1
2

]︀ [︀
1
2
, 1
2
, 1
2
, 1
2

]︀
[1, 0, 0, 0] [1, 0, 0, 0]

B
[︀
1
2
, 1
2
, 1
2
, 1
2

]︀ [︁
1√
2
, 1√

2
, 0, 0

]︁
[1, 0, 0, 0] [1, 0, 0, 0]

Algorithm 2 Conversion of Segment Orientation to Segment
Positions.
1: Input: Body segment orientations: 𝐵1

𝑖𝑟𝑓 𝑞,
𝐵2
𝑖𝑟𝑓 𝑞,

𝐵3
𝑖𝑟𝑓 𝑞,

𝐵4
𝑖𝑟𝑓 𝑞

Normalized segment lengths: 𝑙𝐵1 , 𝑙𝐵2 , 𝑙𝐵3 , 𝑙𝐵4

2: 𝑝𝑒𝑛𝑑,𝐵0
← 𝑝0 =

[︁
0 0 0

]︁
3: for 𝑖 = 1 to 4 do
4: 𝑝𝑒𝑛𝑑,𝐵𝑖

← 𝑝𝑒𝑛𝑑,𝐵𝑖−1
+ 𝑟𝑜𝑡𝑣𝑒𝑐

(︁
𝐵𝑖
𝑖𝑟𝑓 𝑞,

[︁
−𝑙𝐵𝑖

0 0
]︁)︁

5: end for
6: return 𝑝𝑒𝑛𝑑,𝐵1

, 𝑝𝑒𝑛𝑑,𝐵2
, 𝑝𝑒𝑛𝑑,𝐵3

, 𝑝𝑒𝑛𝑑,𝐵4
◁ Segment positions

3.3 End-Effector Pose Adaptation

The estimated end-effector pose is passed to the robot con-
troller, which computes the corresponding joint angles via
inverse kinematics. To match the hand orientation with the
robot’s coordinate frame, the final segment quaternion 𝐵4

𝑖𝑟𝑓 𝑞 is
rotated by -90° around the pitch axis.
To fit within the robot’s constrained workspace, the position
𝑝𝑒𝑛𝑑,𝐵4

is scaled by a factor 𝑟2 and shifted by fixed offsets 𝑑𝑥
and 𝑧2:

𝑃𝑖𝑟𝑓 = 𝑃𝑒𝑛𝑑,𝐵4
· 𝑟2 +

[︁
𝑑𝑥 0 𝑧2

]︁
(4)

We define two operating modes to constrain reachable regions
and prevent collisions: (1) full range mode, allowing all po-
sitions in front of the shoulder (see Figure 5), and (2) below
shoulder mode, which restricts movement to areas in front of
and below the shoulder (see Figure 6). Depending on the ap-
plication, a suitable mode can be selected, resulting in varying
absolute movement changes of the robot for the same human
arm movement.

3.4 Pose Validation and Filtering

Each estimated pose is first validated to ensure feasibility:
the 𝑋-position must be positive, the 𝑍-position above a mini-
mum threshold 𝑧𝑑𝑖𝑓𝑓 , and the target must lie within the robot’s
reachable workspace.
To suppress jitter and involuntary fluctuations, e.g. due to mus-
cle activation, pose updates are filtered using a delta-based
method. Only if both Euclidean (position) and Riemannian
(orientation) deviations from the previous pose exceed prede-
fined thresholds, a new command is issued. This prevents un-
intended micro-movements and ensures smooth, stable robot
motion.

Fig. 5: Full range [2]. Fig. 6: Below shoulder [2].

Fig. 7: Mirrored pick-and-place task.

3.5 EMG-Based Gripper Control

The gripper is controlled via EMG signals from the Musculus
interosseus dorsalis I, which is responsible for thumb–index
finger pinching. The raw signal is preprocessed using enve-
lope detection and MVC normalization [7], enabling a consis-
tent activation threshold across users.
A grasping action is triggered when the normalized EMG sig-
nal exceeds a threshold of 0.2 (relative to MVC) for at least
0.5 seconds. This trigger alternates the gripper between open
and closed states. To avoid unintended activations, a hystere-
sis is applied: the signal must drop below the threshold for
another 0.5 seconds before a new action can be triggered. This
mechanism helps suppress short artifacts and ensures reliable,
intentional control.

4 Evaluation

System performance was evaluated with respect to orienta-
tion accuracy, positional error and control latency. For ground-
truth comparison, MARG sensor data were recorded simulta-
neously with a Vicon motion capture system during three mo-
tion types: slow and fast controlled movement, punctuated by
short pauses at designated positions, and random movement.
Resulting RMSE values and Euclidean distance errors along
the kinematic chain are summarized in Table 2, showing in-
creasing deviations with motion speed and distance from the
base segment.
We also analyzed the impact of robot speed on latency and user
experience. Due to mechanical limitations, execution time de-
pends on joint acceleration constraints, axis limits, and speed
settings. To determine the minimum speed required for intu-
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itive robot control, we compared human and robot motion tra-
jectories at various speed levels (see Table 3). When the robot
was fast enough to mirror human motion fluidly, users could
visually compensate for minor sensor inaccuracies, enabling
reliable pick-and-place execution (see Figure 7).

Tab. 2: RMSE errors 𝑒 between and mean Euclidean distances 𝑑
between the Vicon and Shimmer orientations and points.

cal slow cal fast random

𝑒(∘)

𝑆1𝑞 2.88 2.78 3.72
𝑆2𝑞 5.29 5.81 10.00
𝑆3𝑞 2.88 2.83 4.53
𝑆4𝑞 5.19 6.08 5.16

𝑑(𝑚𝑚)

𝑃𝑒𝑛𝑑,𝐵1
7.25 9.69 15.02

𝑃𝑒𝑛𝑑,𝐵2
21.07 28.85 60.93

𝑃𝑒𝑛𝑑,𝐵3
28.35 31.08 62.15

𝑃𝑒𝑛𝑑,𝐵4
33.45 37.29 65.75

𝑑𝑚𝑎𝑥(𝑚𝑚) 𝑃𝑒𝑛𝑑,𝐵4
103.22 88.96 162.16

Tab. 3: Fréchet distance [13] and normalized DTW [10] for differ-
ent robot speeds.

Robot speed 100 % 50 % 30 % 10 %
Fréchet-Distance (mm) 15.547 16.7 17.036 40.333
normalized DTW (mm) 2.5595 4.878 7.265 18.537

5 Conclusion and Future Work

We presented an intuitive control interface for a 6-axis robotic
arm, combining fused inertial sensing with EMG-based grip-
per actuation. The system enables natural, real-time control
through arm gestures and thumb–index muscle activation, ef-
fectively supporting pick-and-place tasks within a human in-
the-loop design. This allows for intuitive compensation of sen-
sor noise through visual feedback, reducing the need for pre-
cise calibration. Unlike conventional interfaces, the system re-
quires no extensive training, as users can control the robot
through familiar, natural arm movements.
Evaluation results confirm sufficient spatial and temporal ac-
curacy for practical use, as long as latency remains in toler-
able range. The system shows strong potential as an assis-
tive technology in biomedicine and rehabilitation. For indi-
viduals with limited mobility but preserved arm function, the
telepresence robot system could enhance autonomy in daily
life—particularly in home or care settings where continuous
assistance is not available.
Future work will focus on optimizing latency, enhancing ro-
bustness under dynamic motion through trajectory path con-
trol, integrating camera-based feedback with predictive AI
methods and validating the system in clinical or assistive envi-
ronments to assess interindividual variability.
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