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Abstract: Fall detection is essential for elderly and disabled
individuals, as undetected falls can be life-threatening.
Traditional methods use acceleration sensors and neural
networks, but body-worn sensors can be intrusive. This
study explores neuromorphic cameras for fall detection
with minimal data processing and lightweight neural
networks. Denoising techniques were applied to event data,
followed by statistical analysis to estimate position,
velocity, and acceleration. This method produced patterns
similar to accelerometers. Neural network architectures
were  evaluated, from simple one-dimensional
convolutional networks to hybrid models combining
convolutional layers with Long-Short-Term-Memory units.
Training data were generated by converting video-based
fall datasets (le2i, MCFD) into event data using the v2e-
toolbox. Data augmentation resulted in 2,610 samples
(1,314 falls, 1,296 daily activities). The best model, a three-
layer 1D convolution combined with a two-layer LSTM
(hidden size 64, 125k trainable parameters), achieved 97%
accuracy. Live inference on streamed videos and a
DVXplorer event camera was possible without noticeable
delay. Our approach matches state-of-the-art acceleration
sensor methods while offering a non-intrusive, real-time
monitoring solution, potentially improving response times
and user comfort.
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1 Introduction

Acceleration sensors have been used for fall detection for a
long time and are able to produce highly accurate results, if
processed by a capable neural network. These sensors are
usually worn on the body of the subject, making them invasive
and particularly problematic if the system relies on the person
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to remember wearing them every day. Especially in assisted
living environments, where patients are highly vulnerable to
falls and may also experience cognitive impairments.

One approach to solve this problem is to use non-invasive
techniques like cameras paired with video processing or other
contactless sensors like infrared sensors, radar or a
combination of those. The camera based approaches make use
of normal RGB-cameras [1] or more advanced cameras like
time-of-flight 3D cameras [2]. What most of them have in
common is the use of multi-dimensional convolutional and
recurrent neural networks which are significantly larger and
more complex than the neural networks used to detect falls in
one-dimensional time-based accelerometer-data.

Another novel camera technology, neuromorphic vision,
offers new ways to approach the problem of fall detection.
Neuromorphic cameras do not capture frames like a standard
camera but report changes in illumination for every individual
pixel. This way, data are only transmitted when events occur
in the frame, also giving them the name event-cameras.

In this work, event cameras were used to extract the
movement and acceleration of a body, before a simple neural
network was used to detect fall events in this data

2 Methods

To measure the acceleration of a person or body moving
through the view of a neuromorphic camera, the object has to
be detected first. Due to the nature of neuromorphic cameras,
events only occur on the pixels in the frame, where movement
happens. This can be leveraged to enable very lightweight
object detection. The events that are transmitted by the event
camera are pooled in time slices, a common technique for
handling the asynchronous events of neuromorphic cameras.
Every ten milliseconds, the last batch of events is transmitted
and processed. The mean value of the x- and y-coordinates of
all activated events and the immediate area around them in
each time slice is monitored, while also using the nearest 10
time slices to recognize if the ROI is moving in a plausible
manner. This way, the movement of an object is tracked in the
spatiotemporal domain.
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Activation

The centre point of this ROl was tracked and through
differentiation, the velocity and the acceleration of the body
was calculated. Before the differentiation, a moving average
filter is applied to smooth out the noise caused by non-uniform
distribution of the events. The general data processing is
visualized in figure 1.
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Figure 1: Visualization of data flow.
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Because the relative amount of noise in the calculated
acceleration increases when the number of activated events
decreases, an activation function has been introduced which
takes on values between 0 and 1, depending on the number of
activated events relative to the total number of possible events:

1

_(e.g_ez)

6= 1)

1+e
Where n represents the number of activated events in a time
slice and ¢ represents a constant based on the frame size of the
neuromorphic camera. ¢ can be tuned according to the size of
the room and the expected number of events caused by a
human moving through this room. By using this activation
function, actual human activity gets highlighted, while
inactivity in the frame gets represented less. An example of
this activation function over a 30 second video is seen in figure
2.
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Figure 2: Activation over time in a video sample.
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2.1 Dataset

Due to the limited availability of event-based fall-detection
datasets, the v2e-toolbox [3] has been used to convert the

video-based datasets le2i [4] and Multiple cameras fall dataset
(MCFD) [5] into event-based data. V2e converts low-
framerate videos into low-latency event-based data by first
interpolating frames into the original video and then
generating events for each pixel, also introducing noise,
usually found in event-cameras.

The le2i dataset consists of videos containing fall events
and videos containing no fall events and a corresponding csv-
file for every video, containing frame numbers for the start and
end of each fall event. Using these frame numbers and the v2e-
toolbox, the videos are split and converted into four-second-
long aedat4-event-files containing either a fall event or a non-
fall-event, in this case named as an activity of daily living
(ADL). The MCFD dataset provided similar labelling of the
fall events and non-fall events.

Data augmentation was achieved by adding different
levels of noise and different filters to the event-data, utilizing
event polarity filters and background noise activity filters. This
way a dataset of 2,610 samples, consisting of 1,314 falls and
1,296 ADL, has been created.

2.2 Training

Different neural network architectures were tested to achieve
the necessary accuracy while being reasonably sized and able
to be run on minimal hardware.

Common architectures for training on time series data are
one-dimensional convolutional neural networks which are
able to learn local patterns in time series data and recurrent
neural networks which introduce a form of memory into neural
networks by utilizing recurring connections between layers. A
special kind of recurrent neural networks are LSTM (Long
Short Term Memory)-Networks which are better at learning
long-term dependencies compared to traditional RNNSs.
Convolutional neural networks and LSTM-networks can also
be combined to improve performance for time series
classification. The CNN might learn local patterns in the data
while the LSTM learns the long term dependencies of these
patterns.

The data was split into training (60%), validation (20%),
and test (20%) sets to ensure balanced model evaluation. A
batch size of 32 was used for all architectures, and training was
conducted over 200 epochs on an Nvidia RTX 3080 Ti GPU.
Each network employed a ReL.U activation function with an
AdamW optimizer, and a learning rate scheduler dynamically
adjusted the rate from an initial 10~ to a minimum 10~° when
validation loss plateaued.
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2.3 Testing

To test the network in lifelike conditions, an uncut event-video
sample from the dataset has been chosen, which was not
included in the training data. The file in aedat4-format is read
in real-time and fed to the neural network. Figure 3 shows the
visualization of the event stream where every coloured pixel
represents an event. When a fall is detected, a fall event is
triggered and the acceleration of the body is displayed as in
figure 4, showing rapid acceleration and deceleration.
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Figure 3: Fall event visualized.
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Figure 4: Estimated acceleration of fall.

Furthermore, a DV Xplorer camera was set up in a working
environment for testing and data acquisition. Multiple samples
with a length of 2 minutes were acquired which consisted of a
person performing activities of daily living like working on a
desk, walking, sitting down and standing up. While false
negatives after inference were rare, false positives due to
sudden movement of the person were present. The constant &
(see eg. 1) was tuned according to the new environment for
optimal results.

3 Results and discussion

The extraction of a bodies acceleration by utilizing the event
based nature of neuromorphic cameras shows the potential to
enable a new method for contactless fall detection and in this
state is comparable to state of the art techniques based on

accelerometer readings, where accuracies between 97 % and
99.5 % were achieved. [6] The proposed method reaches an
accuracy of 97 % and through more complex calculation of the
estimated position of the person, these results can be improved
as the largest factor of noise and faulty readings remains in the
non-uniform distribution of events over the position of the
body, which causes the average calculated position to
fluctuate, mostly in the y-direction.

The tracking of an object using nothing but the x- and
y-coordinates of activated events nonetheless proves to be
effective for estimating the movement of a single object in the
frame of a neuromorphic camera. To handle multiple bodies,
detection of ROI and the object itself can be achieved by
utilizing machine learning models for object detection, which
would come at the expense of higher computational cost.
Considering this, the proposed method is a valid alternative.
Table 1 shows the architectures that were used to classify the
custom neuromorphic fall dataset into fall and no-fall events,
their number of trainable parameters and the achieved
accuracy. At a number of 125,000 trainable parameters and an
accuracy of 97 %, the network consisting of a one-dimensional
convolutional network followed by an LSTM was the most
successful. Real-time inference on live event data is made
possible by an inference time of less than 50 milliseconds,
enabling constant supervision of a patient with limited
hardware resources and power consumption.

Table 1: Comparison of tested models

Architecture Trainable Achieved accuracy
parameters

1D-CNN 175k 93 %

LSTM + CNN 88.3 k 94 %

CNN + LSTM 125k 97 %

Figure 5 shows the validation loss over 200 epochs on the
CNN + LSTM model, where the effect of the learning rate
scheduler is seen on the decreasing fluctuations. The simple
one-dimensional CNN and the LSTM + CNN model perform
worse on the same data with the training also being unstable
due to the network only learning local patterns due to missing
understanding of long term dependencies, causing overfitting
after a sufficient amount of epochs.
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Figure 5: Validation loss over 200 epochs on CNN+LSTM model

In addition to these results the use of neuromorphic cameras
for camera based fall detection also offers the advantage of
increased privacy, due to the face of the person, as well as the
surroundings and living space not being visible.

Figure 6 Shows an event from a video acquired in the
testing enviromnent, mentioned in 2.3, where the subject
simulates a fall, followed by a lack of movement.
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Figure 6: Fall event in testing environment

Most activities of daily living were correctly classified as non-
fall events and smaller objects like a set of keys falling to the
ground were not picked up as relevant objects. Classification
difficulties arose when a person made abrupt movements, such
as running and coming to a sudden stop.

4 Conclusion

In this work a novel approach for tracking humans and
estimating their acceleration with neuromorphic cameras has
been proposed and proven to be effective in controlled
environments. The goal of this study, being minimizing the
computational costs and therefore the necessary energy
consumption of a fall detection system by reducing the

classification model to a one dimensional convolutional neural
network paired with a recurrent LSTM network, has been
achieved and real-time inference on less powerful hardware
has been achieved compared to more complex three-
dimensional convolutional neural networks, which usually
require more powerful hardware or simply take too much time
for inference.

To improve results, more work can be done to accurately
calculate the position of the body in the frame and therefore
increase accuracy of the estimated acceleration and the dataset
will be expanded with real world samples, taken in a working
environment,

Author Statement

Research funding: The author state no funding involved.
Conflict of interest: Authors state no conflict of interest.
Ethical approval: The research related to human use complies
with all the relevant national regulations, institutional policies
and was performed in accordance with the tenets of the
Helsinki Declaration, and has been approved by the authors’
institutional review board or equivalent committee.

References

De Miguel K, Brunete A, Hernando M, Gambao E. Home
Camera-Based Fall Detection System for the Elderly.
Sensors. 2017; 17(12):2864.
https://doi.org/10.3390/s17122864

Xu'Y, Chen J, Yang Q, Guo Q. Human posture recognition
and fall detection using kinect V2 camera. In: 2019 Chinese
Control Conference (CCC). IEEE, pp 8488—-8493

Hu Y, Shihi-Chii L, Delbruck T. v2e: From Video Frames to
Realistic DVS Events 2021 IEEE/CVF Conference on
Computer Vision and Pattern Recognition Workshops
(CVPRW) arXiv:2006.07722 .

Charfi I, Miterand , Dubois J, Atri M, Tourki R. Definition and
performance evaluation of a robust SVM based fall detection
solution, 8th International Conference on Signal
ImageTechnology and Internet Based Systems, SITIS 2012r,
pp. 218-224, 2012, doi:10.1109/SIT1S.2012.155.

Auvinet E, Rougier C, Meunier J, St-Arnaud A, Rousseau J.
Multiple cameras fall data set, 2011.

Singh A, Rehman S, Yongchareon S, Chong P. Sensor
Technologies for Fall Detection Systems: A Review. IEEE
Sensors Journal, vol. 20, no. 13, pp. 6889-6919, 1 July1,
2020, doi: 10.1109/JSEN.2020.2976554.

(1]

[2]

(3]

[4]

(3]
(6]

480



