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Abstract: Fall detection is essential for elderly and disabled 

individuals, as undetected falls can be life-threatening. 

Traditional methods use acceleration sensors and neural 

networks, but body-worn sensors can be intrusive. This 

study explores neuromorphic cameras for fall detection 

with minimal data processing and lightweight neural 

networks. Denoising techniques were applied to event data, 

followed by statistical analysis to estimate position, 

velocity, and acceleration. This method produced patterns 

similar to accelerometers. Neural network architectures 

were evaluated, from simple one-dimensional 

convolutional networks to hybrid models combining 

convolutional layers with Long-Short-Term-Memory units. 

Training data were generated by converting video-based 

fall datasets (le2i, MCFD) into event data using the v2e-

toolbox. Data augmentation resulted in 2,610 samples 

(1,314 falls, 1,296 daily activities). The best model, a three-

layer 1D convolution combined with a two-layer LSTM 

(hidden size 64, 125k trainable parameters), achieved 97% 

accuracy. Live inference on streamed videos and a 

DVXplorer event camera was possible without noticeable 

delay. Our approach matches state-of-the-art acceleration 

sensor methods while offering a non-intrusive, real-time 

monitoring solution, potentially improving response times 

and user comfort.  
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1 Introduction 

Acceleration sensors have been used for fall detection for a 

long time and are able to produce highly accurate results, if 

processed by a capable neural network. These sensors are 

usually worn on the body of the subject, making them invasive 

and particularly problematic if the system relies on the person 

to remember wearing them every day. Especially in assisted 

living environments, where patients are highly vulnerable to 

falls and may also experience cognitive impairments.  

One approach to solve this problem is to use non-invasive 

techniques like cameras paired with video processing or other 

contactless sensors like infrared sensors, radar or a 

combination of those. The camera based approaches make use 

of normal RGB-cameras [1] or more advanced cameras like 

time-of-flight 3D cameras [2]. What most of them have in 

common is the use of multi-dimensional convolutional and 

recurrent neural networks which are significantly larger and 

more complex than the neural networks used to detect falls in 

one-dimensional time-based accelerometer-data.  

Another novel camera technology, neuromorphic vision, 

offers new ways to approach the problem of fall detection. 

Neuromorphic cameras do not capture frames like a standard 

camera but report changes in illumination for every individual 

pixel. This way, data are only transmitted when events occur 

in the frame, also giving them the name event-cameras. 

In this work, event cameras were used to extract the 

movement and acceleration of a body, before a simple neural 

network was used to detect fall events in this data 

2 Methods 

To measure the acceleration of a person or body moving 

through the view of a neuromorphic camera, the object has to 

be detected first. Due to the nature of neuromorphic cameras, 

events only occur on the pixels in the frame, where movement 

happens. This can be leveraged to enable very lightweight 

object detection. The events that are transmitted by the event 

camera are pooled in time slices, a common technique for 

handling the asynchronous events of neuromorphic cameras. 

Every ten milliseconds, the last batch of events is transmitted 

and processed. The mean value of the x- and y-coordinates of 

all activated events and the immediate area around them in 

each time slice is monitored, while also using the nearest 10 

time slices to recognize if the ROI is moving in a plausible 

manner. This way, the movement of an object is tracked in the 

spatiotemporal domain.  
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The centre point of this ROI was tracked and through 

differentiation, the velocity and the acceleration of the body 

was calculated. Before the differentiation, a moving average 

filter is applied to smooth out the noise caused by non-uniform 

distribution of the events. The general data processing is 

visualized in figure 1. 

 

Because the relative amount of noise in the calculated 

acceleration increases when the number of activated events 

decreases, an activation function has been introduced which 

takes on values between 0 and 1, depending on the number of 

activated events relative to the total number of possible events: 

 

𝛔 =
𝟏

𝟏+𝒆
−(𝒆∙

𝒏
𝜺
−𝒆𝟐)

    (1) 

Where n represents the number of activated events in a time 

slice and ε represents a constant based on the frame size of the 

neuromorphic camera. ε can be tuned according to the size of 

the room and the expected number of events caused by a 

human moving through this room. By using this activation 

function, actual human activity gets highlighted, while 

inactivity in the frame gets represented less. An example of 

this activation function over a 30 second video is seen in figure 

2. 

 

2.1 Dataset  

Due to the limited availability of event-based fall-detection 

datasets, the v2e-toolbox [3] has been used to convert the 

video-based datasets le2i [4] and Multiple cameras fall dataset 

(MCFD) [5] into event-based data. V2e converts low-

framerate videos into low-latency event-based data by first 

interpolating frames into the original video and then 

generating events for each pixel, also introducing noise, 

usually found in event-cameras.  

The le2i dataset consists of videos containing fall events 

and videos containing no fall events and a corresponding csv-

file for every video, containing frame numbers for the start and 

end of each fall event. Using these frame numbers and the v2e-

toolbox, the videos are split and converted into four-second-

long aedat4-event-files containing either a fall event or a non-

fall-event, in this case named as an activity of daily living 

(ADL). The MCFD dataset provided similar labelling of the 

fall events and non-fall events. 

Data augmentation was achieved by adding different 

levels of noise and different filters to the event-data, utilizing 

event polarity filters and background noise activity filters. This 

way a dataset of 2,610 samples, consisting of 1,314 falls and 

1,296 ADL, has been created. 

2.2 Training 

Different neural network architectures were tested to achieve 

the necessary accuracy while being reasonably sized and able 

to be run on minimal hardware.  

Common architectures for training on time series data are 

one-dimensional convolutional neural networks which are 

able to learn local patterns in time series data and recurrent 

neural networks which introduce a form of memory into neural 

networks by utilizing recurring connections between layers.  A 

special kind of recurrent neural networks are LSTM (Long 

Short Term Memory)-Networks which are better at learning 

long-term dependencies compared to traditional RNNs. 

Convolutional neural networks and LSTM-networks can also 

be combined to improve performance for time series 

classification. The CNN might learn local patterns in the data 

while the LSTM learns the long term dependencies of these 

patterns. 

The data was split into training (60%), validation (20%), 

and test (20%) sets to ensure balanced model evaluation. A 

batch size of 32 was used for all architectures, and training was 

conducted over 200 epochs on an Nvidia RTX 3080 Ti GPU. 

Each network employed a ReLU activation function with an 

AdamW optimizer, and a learning rate scheduler dynamically 

adjusted the rate from an initial 10−4 to a minimum 10−9 when 

validation loss plateaued. 

Figure 2: Activation over time in a video sample. 

Figure 1: Visualization of data flow. 
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2.3 Testing 

To test the network in lifelike conditions, an uncut event-video 

sample from the dataset has been chosen, which was not 

included in the training data. The file in aedat4-format is read 

in real-time and fed to the neural network. Figure 3 shows the 

visualization of the event stream where every coloured pixel 

represents an event. When a fall is detected, a fall event is 

triggered and the acceleration of the body is displayed as in 

figure 4, showing rapid acceleration and deceleration. 

Furthermore, a DVXplorer camera was set up in a working 

environment for testing and data acquisition. Multiple samples 

with a length of 2 minutes were acquired which consisted of a 

person performing activities of daily living like working on a 

desk, walking, sitting down and standing up. While false 

negatives after inference were rare, false positives due to 

sudden movement of the person were present. The constant ε 

(see eq. 1) was tuned according to the new environment for 

optimal results. 

3 Results and discussion 

The extraction of a bodies acceleration by utilizing the event 

based nature of neuromorphic cameras shows the potential to 

enable a new method for contactless fall detection and in this 

state is comparable to state of the art techniques based on 

accelerometer readings, where accuracies between 97 % and 

99.5 % were achieved. [6] The proposed method reaches an 

accuracy of 97 % and through more complex calculation of the 

estimated position of the person, these results can be improved 

as the largest factor of noise and faulty readings remains in the 

non-uniform distribution of events over the position of the 

body, which causes the average calculated position to 

fluctuate, mostly in the y-direction. 

The tracking of an object using nothing but the x- and 

y-coordinates of activated events nonetheless proves to be 

effective for estimating the movement of a single object in the  

frame of a neuromorphic camera. To handle multiple bodies, 

detection of ROI and the object itself can be achieved by 

utilizing machine learning models for object detection, which 

would come at the expense of higher computational cost. 

Considering this, the proposed method is a valid alternative. 

Table 1 shows the architectures that were used to classify the 

custom neuromorphic fall dataset into fall and no-fall events, 

their number of trainable parameters and the achieved 

accuracy. At a number of 125,000 trainable parameters and an 

accuracy of 97 %, the network consisting of a one-dimensional 

convolutional network followed by an LSTM was the most 

successful. Real-time inference on live event data is made 

possible by an inference time of less than 50 milliseconds, 

enabling constant supervision of a patient with limited 

hardware resources and power consumption. 

 

Table 1: Comparison of tested models 

 

 

Figure 5 shows the validation loss over 200 epochs on the 

CNN + LSTM model, where the effect of the learning rate 

scheduler is seen on the decreasing fluctuations. The simple 

one-dimensional CNN and the LSTM + CNN model perform 

worse on the same data with the training also being unstable 

due to the network only learning local patterns due to missing 

understanding of long term dependencies, causing overfitting 

after a sufficient amount of epochs.  

Architecture Trainable 
parameters 

Achieved accuracy 

1D-CNN 175 k 93 % 

LSTM + CNN 88.3 k 94 % 

CNN + LSTM 125 k 97 % 

Figure 4: Estimated acceleration of fall. 

Figure 3: Fall event visualized. 
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In addition to these results the use of neuromorphic cameras 

for camera based fall detection also offers the advantage of 

increased privacy, due to the face of the person, as well as the 

surroundings and living space not being visible.  

Figure 6 Shows an event from a video acquired in the 

testing enviromnent, mentioned in 2.3, where the subject 

simulates a fall, followed by a lack of movement. 

Most activities of daily living were correctly classified as non-

fall events and smaller objects like a set of keys falling to the 

ground were not picked up as relevant objects. Classification 

difficulties arose when a person made abrupt movements, such 

as running and coming to a sudden stop. 

4 Conclusion 

In this work a novel approach for tracking humans and 

estimating their acceleration with neuromorphic cameras has 

been proposed and proven to be effective in controlled 

environments. The goal of this study, being minimizing the 

computational costs and therefore the necessary energy 

consumption of a fall detection system by reducing the 

classification model to a one dimensional convolutional neural 

network paired with a recurrent LSTM network, has been 

achieved and real-time inference on less powerful hardware 

has been achieved compared to more complex three-

dimensional convolutional neural networks, which usually 

require more powerful hardware or simply take too much time 

for inference.   

To improve results, more work can be done to accurately 

calculate the position of the body in the frame and therefore 

increase accuracy of the estimated acceleration and the dataset 

will be expanded with real world samples, taken in a working 

environment, 
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Figure 5: Validation loss over 200 epochs on CNN+LSTM model 

Figure 6: Fall event in testing environment 
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