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Abstract: As the nursing shortage in Germany continues to 

intensify, the necessity for user-friendly assistance systems is 

becoming increasingly important. This paper describes an 

approach for the automatic and regular recording of vital signs 

using consumer-grade cameras. The effects of varying 

environmental conditions and behavioral changes on the 

accuracy of heart rate and respiration rate measurements are 

analyzed. The results demonstrate accurate monitoring in 

controlled settings with varying distances. However, lighting 

conditions and behavior highly impact accuracy, highlighting 

the need to tailor algorithms specifically for the respective 

real-world application. 
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1 Introduction 

By the end of 2035, the number of people in need of care in 

Germany is projected to reach 5.6 million solely due to 

demographic aging, assuming a constant care rate, according 

to calculations by the German Federal Statistical Office [1]. 

Assuming that the care rate will also increase, the number of 

people in need of care by the end of 2035 will rise to 

6.3 million. The increasing shortage of healthcare 

professionals extends beyond Germany and poses a global 

challenge. In this context, the development of intelligent 

systems to support nursing staff and relieve them of routine 

tasks has become increasingly essential. One approach is the 

use of autonomous, non-invasive, and contactless vital signs 

monitoring solutions that do not require the attachment of 

measurement devices to the body. This is particularly 

advantageous for elderly individuals with sensitive skin. A 

cost-effective option is an optical vital sign monitoring using 

RGB cameras. 

The ability to measure heart rate using consumer level 

cameras was first demonstrated by Verkruysse et al. [2] using 

remote photoplethysmography (rPPG). RPPG detects 

variations in ambient light reflection on the surface of the skin 

caused by blood volume fluctuations during each cardiac 

cycle. Research on various rPPG methods for remote patient 

monitoring has expanded quickly, exploiting both 

conventional signal processing techniques and deep learning-

based approaches [3]. Respiration rate can be estimated from 

heart rate signal modulations [4, 5] or by analyzing chest 

motion. For instance, Tan et al. [6] detect movement through 

frame differencing and edge analysis, while Bartula et al. [7] 

transform regions of interest (ROIs) into one-dimensional 

vectors and compute the differences between consecutive 

frames through cross-correlation. Other methods, such as 

those by Lukac et al. [8], utilize feature tracking and optical 

flow.  

While automated contactless vital sign monitoring with 

conventional cameras offers many benefits, its performance 

remains sensitive to changes in measurement conditions. For 

now, no method is superior across all applications, and most 

models lack extensive testing in real-world scenarios. This 

means that methods must be tailored to specific use cases. 

Public datasets have helped refine methods and improve 

accuracy, but gaps remain, particularly in diversity of 

appearance, behavior, and environment [9]. 

In this work, the impact of various scenarios on the 

accuracy of two algorithms is examined, one for extracting 

heart rate and one for extracting respiration rate. The focus is 

particularly on scenarios associated with naturalistic settings 

in nursing homes or home care applications. The accuracy is 

compared based on the mean absolute error (MAE) and root 

mean square error (RMSE) relative to the ground truth. From 

this, approaches are derived that must be considered for real-

world deployment. In the future, the camera system will be 

integrated onto a care robot to facilitate automatic and regular 
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non-contact vital sign monitoring. As the robot moves through 

various environments, each measurement will occur under 

different conditions. Therefore, it is essential to specifically 

adapt the algorithms to address these challenges. Regular 

monitoring of heart rate and respiration rate is crucial for early 

identification of health risks and changes. For instance, an 

elevated resting heart rate can serve as a predictor of 

cardiovascular and overall mortality [10]. The respiration rate 

has been demonstrated to be a predictor of serious adverse 

events, acting as an early warning sign for conditions 

including sepsis, shock, cardiac arrest, and respiratory failure 

[11, 12]. This underscores the importance of accurate 

monitoring. 

2 Methods 

2.1 Data Acquisition  

In the study, eleven people between the ages of 20 years and 

69 years were included, with an average age of 39 years. The 

subjects were recorded in a seated position facing the camera. 

Recordings were captured using an Allied Vision Mako 

G223C. To achieve a frame rate of 50 fps, only a subsection 

of the camera image with a resolution of 960 pixels by 

1348 pixels was used. The measurement duration was 

90 seconds. Simultaneously, conventional contact-based 

reference measurements were taken using a NeXus-10 MKII 

device. This included the acquisition of a single-channel 

electrocardiogram (ECG) with a sampling rate of 256 samples 

per second and the recording of a respiratory signal using a 

chest belt with a sampling rate of 32 samples per second. 

A total of seven scenarios were recorded. Out of the 77 

measurements, 69 were ultimately included in the analysis. 

The individual measurements were excluded based on the 

following criteria: N = 5 for speaking in the incorrect scenario, 

N = 2 for circulatory issues and N = 1 for occlusion of the face. 

In the baseline measurements, the distance between the camera 

and the subject was 1 meter, and the lighting in the room was 

provided by ceiling lamps, with no speaking from the subject. 

In addition to the baseline, recordings were made with an 

increased distance of 1.5 meters, under various lighting 

conditions, i.e. lateral light, frontal light and backlight, as well 

as with different behavior, i.e. after exercise, and while 

speaking. The speaking scenario was excluded from the 

respiration rate measurements, as it can severely alter the 

breathing pattern, compromising a reliable respiration rate 

measurement even for reference measurements. 

2.2 Heart rate extraction  

The video recordings are divided into sliding windows of 

20 seconds with a step size of 1 second, for each of which the 

heart rate is estimated. For each frame, ROIs for rPPG 

extraction are localized. First, the face and its outlines are 

detectedby combining an SSD (Single Shot Detector) face 

detector with a face landmark detector  from OpenCV, which 

extracts 68 facial landmarks [13]. Subsequently, the landmarks 

are tracked over time using a MOSSE Tracker. Relative to 

these landmarks, two ROIs are defined, the forehead region 

and the nose region. Additionally, to improve robustness, face 

detection is repeated every 3 seconds to assess the overlap 

between the newly detected and the previously used face 

region. If the deviation exceeds 60 %, the newly detected 

facial region is used. The average red, green and blue values 

for each frame and window from both ROIs are calculated. 

The resulting signals for each color channel are filtered using 

an FIR bandpass filter to remove low-frequency noise below 

0.75 Hz (e.g., breathing noise) and high-frequency noise 

above 3 Hz. To obtain the rPPG signal, the POS 

transformation by Wang et al. [14] is applied. POS 

transformation effectively extracts pulsatile features and has 

demonstrated high accuracy in heart rate measurements in 

preliminary studies [15]. Subsequently, Welch’s method is 
used to determine the heart rate within the specified frequency 

range by assigning the fundamental frequency, considering all 

frequencies between 0.75 Hz and 3 Hz. 

For the reference measurements, the heart rate is 

determined in the time domain. The same temporal windows 

used for the video recordings are applied. RR intervals are 

calculated using NeuroKit2 [16] R-peak detection, which is 

used to calculate the heart rate according to Equation 1. 

 𝑯𝑹 = ૟૙ࢀ𝑹𝑹   (1) 

where ܴܪ is the heart rate and ܶோோ is the mean of the RR 

intervals. 

2.3 Respiration rate extraction  

The breathing rate is determined in sliding windows of 

30 seconds with a step size of 1 second. Relative to the 

detected facial region, the chest region is localized. In the 

latter, prominent feature points are identified and tracked over 

time using Sparse Optical Flow. For each window, the mean 

trajectory of all feature points representing the up and down 

movement of the chest is calculated. The resulting respiratory 

signal is mean adjusted and bandpass filtered with cut-off 

frequencies of 0.1 Hz and 1.2 Hz. Welch’s method is applied 
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to convert the time domain data into the frequency domain 

data, with the fundamental frequency assigned as the 

respiration rate, considering all frequencies between 0.1 Hz 

and 0.6 Hz. 

For the reference respiratory signal, the same temporal 

windows used for the video recordings are applied. The 

respiration rate is determined using a bandpass filter and 

Welch’s method with the same settings and frequency ranges 
as for the motion signal of the video recordings.  

3 Study Results 

Table 1 presents the MAE and RMSE for heart rate 

measurements across the respective scenarios. The highest 

accuracy is obtained in the baseline scenario and under 

increased distance. A distance change of 0.5 meters has only a 

minor effect on the detection of the subtle skin color 

variations. Contrary to expectations, increased distance yields 

slightly higher accuracy for heart rate measurement. Possible 

reasons for this could include small changes in lighting 

conditions due to ceiling lamps. For the larger distance, the 

subject was positioned slightly differently in the room. 

Another factor might simply be the amount of data collected. 

Changing the lighting conditions highly impact the accuracy, 

leading to increased error values, with the lowest accuracy 

observed under backlight conditions. Lateral and frontal 

lighting often caused overexposure, leading to saturation in 

certain pixel areas, preventing the detection of color intensity 

variations. In addition, lateral lighting caused shadowing on 

parts of the face, obstructing the detection of strong rPPG 

signals. In direct backlighting, the measured subject is poorly 

illuminated, which does not allow for robust ROI tracking or 

detection of the pulsatile color changes. 

Table 1: Mean absolute error (MAE) and root mean square error 

(RSME) in beats per minute (bpm) of the heart rate measurements 

for different scenarios. 

Scenario MAE RMSE  

Baseline 1.9 bpm 2.9 bpm 

Increased distance  1.6 bpm 2.7 bpm 

Lateral light 4.4 bpm 6.8 bpm 

Frontal light 2.8 bpm 4.1 bpm 

Backlight 9.2 bpm 12.6 bpm 

After sport 8.1 bpm 10.3 bpm 

Speaking 8.1 bpm 12.0 bpm 

Regarding behavior, measurements taken after exercise and 

while speaking show markedly lower accuracy compared to 

baseline. After exercise, the subject tends to sit less still, and 

during speaking, not only the mouth moves, but for most 

individuals, this is accompanied by intense head movement. 

This makes not only accurate ROI tracking difficult but also 

rPPG extraction due to altered light reflections caused by 

movement. 

In Table 2, an overview of the MAE and RMSE for 

respiration rate measurements across the different recorded 

scenarios is presented. The baseline scenario and increased 

distance show approximately comparable error values. The 

detection and tracking of chest features function well even at 

a greater distance of 0.5 meters. Lateral and frontal lighting 

conditions lead to slightly higher accuracy compared to the 

baseline scenario, while the lowest accuracy is observed under 

backlight conditions. Feature recognition relies on identifying 

distinct regions that stand out from others, thus benefiting for 

instance from lateral shadowing. Conversely, when the entire 

chest area is poorly illuminated, feature detection and tracking 

perform worse due to minimal contrast differences. The 

accuracy for respiration rate is highest in the post-exercise 

scenario, which can be attributed to deeper breathing that 

enhances chest motion. 

Table 2: Mean absolute error (MAE) and root mean square error 

(RSME) in respirations per minute (rpm) of the respiration rate 

measurements for different scenarios. 

Scenario MAE RMSE 

Baseline 1.1 rpm 1.3 rpm 

Increased distance  1.2 rpm 1.5 rpm 

Lateral light 0.8 rpm 1.1 rpm 

Frontal light 0.8 rpm 1.1 rpm 

Backlight 1.7 rpm 2.3 rpm 

After sport 0.6 rpm 0.9 rpm 

4 Discussion 

The results of this study highlight the need for detailed 

examination of the impact of naturalistic settings. While heart 

rate and respiration rate can be measured with high accuracy 

under ideal conditions, further algorithmic improvements are 

required for reliable non-contact measurement in real-world 

scenarios, particularly regarding stability against lighting and 

motion variations. Lighting variations can severely affect the 

visibility of features, cause unwanted specular reflections and 
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further impair the underlying signals due to under- or 

overexposure. Motion artifacts in videos can hinder accurate 

ROI tracking and complicate the extraction of the rPPG signal 

due to motion-induced changes in light reflections. This is 

consistent with previous findings that identify lighting and 

movement as major challenges [3, 9]. For our intended use in 

care, this means that different lighting conditions must be 

automatically detected and optimized by adjusting the 

exposure time before each measurement begins. Backlighting 

should be avoided, which users should be informed about in 

advance. Additionally, an adjustable light source integrated 

into the robotic system could help minimize these issues. 

Speaking should be prohibited during measurement, and 

violations detected to ensure measurement reliability. In 

addition, the applied method used to detect the heart rate 

should be enhanced by techniques that increase robustness to 

strong movements.  

For robust vital signs measurement, it is essential to 

identify the different scenarios and react with adapted 

approaches, depending on their characteristics and variations. 

These functionalities must be implemented and integrated into 

a process control system. Future studies should also include 

more participants and longer observation periods with 

individuals in need of care. Additionally, complete remote 

monitoring could be extended by integrating further vital signs 

such as blood pressure and SpO₂. 

5 Conclusion 

In this work, a data collection study was conducted to evaluate 

an optical measurement approach for heart rate and respiration 

rate in different conditions for use in care settings. The results 

show that heart and respiration rate measurements are accurate 

for baseline and increased distance scenarios, but further work 

is needed on robustness regarding lighting and motion, with 

the need to recognize and adapt to specific conditions 

individually. Considering this, the presented non-contact vital 

sign monitoring system offers great benefit in both inpatient 

and outpatient settings. It has the potential to reduce nursing 

workload and enables the detection of emergencies and care 

changes, while promoting independent living. 
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