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Abstract: As the nursing shortage in Germany continues to
intensify, the necessity for user-friendly assistance systems is
becoming increasingly important. This paper describes an
approach for the automatic and regular recording of vital signs
using consumer-grade cameras. The effects of varying
environmental conditions and behavioral changes on the
accuracy of heart rate and respiration rate measurements are
analyzed. The results demonstrate accurate monitoring in
controlled settings with varying distances. However, lighting
conditions and behavior highly impact accuracy, highlighting
the need to tailor algorithms specifically for the respective
real-world application.
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1 Introduction

By the end of 2035, the number of people in need of care in
Germany is projected to reach 5.6 million solely due to
demographic aging, assuming a constant care rate, according
to calculations by the German Federal Statistical Office [1].
Assuming that the care rate will also increase, the number of
people in need of care by the end of 2035 will rise to
The of healthcare
professionals extends beyond Germany and poses a global

6.3 million. increasing  shortage
challenge. In this context, the development of intelligent
systems to support nursing staff and relieve them of routine

tasks has become increasingly essential. One approach is the
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use of autonomous, non-invasive, and contactless vital signs
monitoring solutions that do not require the attachment of
measurement devices to the body. This is particularly
advantageous for elderly individuals with sensitive skin. A
cost-effective option is an optical vital sign monitoring using
RGB cameras.

The ability to measure heart rate using consumer level
cameras was first demonstrated by Verkruysse et al. [2] using
RPPG detects
variations in ambient light reflection on the surface of the skin

remote photoplethysmography (rPPG).
caused by blood volume fluctuations during each cardiac
cycle. Research on various rPPG methods for remote patient
monitoring has expanded quickly, exploiting both
conventional signal processing techniques and deep learning-
based approaches [3]. Respiration rate can be estimated from
heart rate signal modulations [4, 5] or by analyzing chest
motion. For instance, Tan et al. [6] detect movement through
frame differencing and edge analysis, while Bartula et al. [7]
transform regions of interest (ROIs) into one-dimensional
vectors and compute the differences between consecutive
frames through cross-correlation. Other methods, such as
those by Lukac et al. [8], utilize feature tracking and optical
flow.

While automated contactless vital sign monitoring with
conventional cameras offers many benefits, its performance
remains sensitive to changes in measurement conditions. For
now, no method is superior across all applications, and most
models lack extensive testing in real-world scenarios. This
means that methods must be tailored to specific use cases.
Public datasets have helped refine methods and improve
accuracy, but gaps remain, particularly in diversity of
appearance, behavior, and environment [9].

In this work, the impact of various scenarios on the
accuracy of two algorithms is examined, one for extracting
heart rate and one for extracting respiration rate. The focus is
particularly on scenarios associated with naturalistic settings
in nursing homes or home care applications. The accuracy is
compared based on the mean absolute error (MAE) and root
mean square error (RMSE) relative to the ground truth. From
this, approaches are derived that must be considered for real-
world deployment. In the future, the camera system will be
integrated onto a care robot to facilitate automatic and regular
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non-contact vital sign monitoring. As the robot moves through
various environments, each measurement will occur under
different conditions. Therefore, it is essential to specifically
adapt the algorithms to address these challenges. Regular
monitoring of heart rate and respiration rate is crucial for early
identification of health risks and changes. For instance, an
elevated resting heart rate can serve as a predictor of
cardiovascular and overall mortality [10]. The respiration rate
has been demonstrated to be a predictor of serious adverse
events, acting as an early warning sign for conditions
including sepsis, shock, cardiac arrest, and respiratory failure
[11, 12]. This underscores the importance of accurate
monitoring.

2 Methods

2.1 Data Acquisition

In the study, eleven people between the ages of 20 years and
69 years were included, with an average age of 39 years. The
subjects were recorded in a seated position facing the camera.
Recordings were captured using an Allied Vision Mako
G223C. To achieve a frame rate of 50 fps, only a subsection
of the camera image with a resolution of 960 pixels by
1348 pixels was used. The measurement duration was
90 seconds. Simultaneously, conventional contact-based
reference measurements were taken using a NeXus-10 MKII
device. This included the acquisition of a single-channel
electrocardiogram (ECG) with a sampling rate of 256 samples
per second and the recording of a respiratory signal using a
chest belt with a sampling rate of 32 samples per second.

A total of seven scenarios were recorded. Out of the 77
measurements, 69 were ultimately included in the analysis.
The individual measurements were excluded based on the
following criteria: N = 5 for speaking in the incorrect scenario,
N = 2 for circulatory issues and N = 1 for occlusion of the face.
In the baseline measurements, the distance between the camera
and the subject was 1 meter, and the lighting in the room was
provided by ceiling lamps, with no speaking from the subject.
In addition to the baseline, recordings were made with an
increased distance of 1.5 meters, under various lighting
conditions, i.e. lateral light, frontal light and backlight, as well
as with different behavior, i.e. after exercise, and while
speaking. The speaking scenario was excluded from the
respiration rate measurements, as it can severely alter the
breathing pattern, compromising a reliable respiration rate
measurement even for reference measurements.

2.2 Heart rate extraction

The video recordings are divided into sliding windows of
20 seconds with a step size of 1 second, for each of which the
heart rate is estimated. For each frame, ROIs for rPPG
extraction are localized. First, the face and its outlines are
detectedby combining an SSD (Single Shot Detector) face
detector with a face landmark detector from OpenCV, which
extracts 68 facial landmarks [13]. Subsequently, the landmarks
are tracked over time using a MOSSE Tracker. Relative to
these landmarks, two ROIs are defined, the forehead region
and the nose region. Additionally, to improve robustness, face
detection is repeated every 3 seconds to assess the overlap
between the newly detected and the previously used face
region. If the deviation exceeds 60 %, the newly detected
facial region is used. The average red, green and blue values
for each frame and window from both ROIs are calculated.
The resulting signals for each color channel are filtered using
an FIR bandpass filter to remove low-frequency noise below
0.75 Hz (e.g., breathing noise) and high-frequency noise
above 3 Hz. the rPPG signal, the POS
transformation by Wang et al. [14] is applied. POS
transformation effectively extracts pulsatile features and has

To obtain

demonstrated high accuracy in heart rate measurements in
preliminary studies [15]. Subsequently, Welch’s method is
used to determine the heart rate within the specified frequency
range by assigning the fundamental frequency, considering all
frequencies between 0.75 Hz and 3 Hz.

For the reference measurements, the heart rate is
determined in the time domain. The same temporal windows
used for the video recordings are applied. RR intervals are
calculated using NeuroKit2 [16] R-peak detection, which is
used to calculate the heart rate according to Equation 1.

HR =2

TRR

(€Y

where HR is the heart rate and Tgp is the mean of the RR
intervals.

2.3 Respiration rate extraction

The breathing rate is determined in sliding windows of
30 seconds with a step size of 1 second. Relative to the
detected facial region, the chest region is localized. In the
latter, prominent feature points are identified and tracked over
time using Sparse Optical Flow. For each window, the mean
trajectory of all feature points representing the up and down
movement of the chest is calculated. The resulting respiratory
signal is mean adjusted and bandpass filtered with cut-off
frequencies of 0.1 Hz and 1.2 Hz. Welch’s method is applied
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to convert the time domain data into the frequency domain
data, with the fundamental frequency assigned as the
respiration rate, considering all frequencies between 0.1 Hz
and 0.6 Hz.

For the reference respiratory signal, the same temporal
windows used for the video recordings are applied. The
respiration rate is determined using a bandpass filter and
Welch’s method with the same settings and frequency ranges
as for the motion signal of the video recordings.

3 Study Results

Table 1 presents the MAE and RMSE for heart rate
measurements across the respective scenarios. The highest
accuracy is obtained in the baseline scenario and under
increased distance. A distance change of 0.5 meters has only a
minor effect on the detection of the subtle skin color
variations. Contrary to expectations, increased distance yields
slightly higher accuracy for heart rate measurement. Possible
reasons for this could include small changes in lighting
conditions due to ceiling lamps. For the larger distance, the
subject was positioned slightly differently in the room.
Another factor might simply be the amount of data collected.
Changing the lighting conditions highly impact the accuracy,
leading to increased error values, with the lowest accuracy
observed under backlight conditions. Lateral and frontal
lighting often caused overexposure, leading to saturation in
certain pixel areas, preventing the detection of color intensity
variations. In addition, lateral lighting caused shadowing on
parts of the face, obstructing the detection of strong rPPG
signals. In direct backlighting, the measured subject is poorly
illuminated, which does not allow for robust ROI tracking or
detection of the pulsatile color changes.

Table 1: Mean absolute error (MAE) and root mean square error
(RSME) in beats per minute (bpm) of the heart rate measurements
for different scenarios.

Scenario MAE RMSE
Baseline 1.9 bpm 2.9 bpm
Increased distance 1.6 bpm 2.7 bpm
Lateral light 4.4 bpm 6.8 bpm
Frontal light 2.8 bpm 4.1 bpm
Backlight 9.2 bpm 12.6 bpm
After sport 8.1 bpm 10.3 bpm
Speaking 8.1 bpm 12.0 bpm

Regarding behavior, measurements taken after exercise and
while speaking show markedly lower accuracy compared to
baseline. After exercise, the subject tends to sit less still, and
during speaking, not only the mouth moves, but for most
individuals, this is accompanied by intense head movement.
This makes not only accurate ROI tracking difficult but also
rPPG extraction due to altered light reflections caused by
movement.

In Table 2, an overview of the MAE and RMSE for
respiration rate measurements across the different recorded
scenarios is presented. The baseline scenario and increased
distance show approximately comparable error values. The
detection and tracking of chest features function well even at
a greater distance of 0.5 meters. Lateral and frontal lighting
conditions lead to slightly higher accuracy compared to the
baseline scenario, while the lowest accuracy is observed under
backlight conditions. Feature recognition relies on identifying
distinct regions that stand out from others, thus benefiting for
instance from lateral shadowing. Conversely, when the entire
chest area is poorly illuminated, feature detection and tracking
perform worse due to minimal contrast differences. The
accuracy for respiration rate is highest in the post-exercise
scenario, which can be attributed to deeper breathing that
enhances chest motion.

Table 2: Mean absolute error (MAE) and root mean square error
(RSME) in respirations per minute (rpm) of the respiration rate
measurements for different scenarios.

Scenario MAE RMSE

Baseline 1.1 rpm 1.3 rpm
Increased distance 1.2 rpm 1.5 rpm
Lateral light 0.8 rpm 1.1 rpm
Frontal light 0.8 rpm 1.1 rpm
Backlight 1.7 rpm 2.3 rpm
After sport 0.6 rpm 0.9 rpm

4 Discussion

The results of this study highlight the need for detailed
examination of the impact of naturalistic settings. While heart
rate and respiration rate can be measured with high accuracy
under ideal conditions, further algorithmic improvements are
required for reliable non-contact measurement in real-world
scenarios, particularly regarding stability against lighting and
motion variations. Lighting variations can severely affect the
visibility of features, cause unwanted specular reflections and
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further impair the underlying signals due to under- or
overexposure. Motion artifacts in videos can hinder accurate
ROI tracking and complicate the extraction of the rPPG signal
due to motion-induced changes in light reflections. This is
consistent with previous findings that identify lighting and
movement as major challenges [3, 9]. For our intended use in
care, this means that different lighting conditions must be
automatically detected and optimized by adjusting the
exposure time before each measurement begins. Backlighting
should be avoided, which users should be informed about in
advance. Additionally, an adjustable light source integrated
into the robotic system could help minimize these issues.
Speaking should be prohibited during measurement, and
violations detected to ensure measurement reliability. In
addition, the applied method used to detect the heart rate
should be enhanced by techniques that increase robustness to
strong movements.

For robust vital signs measurement, it is essential to
identify the different scenarios and react with adapted
approaches, depending on their characteristics and variations.
These functionalities must be implemented and integrated into
a process control system. Future studies should also include
more participants and longer observation periods with
individuals in need of care. Additionally, complete remote
monitoring could be extended by integrating further vital signs
such as blood pressure and SpO..

5 Conclusion

In this work, a data collection study was conducted to evaluate
an optical measurement approach for heart rate and respiration
rate in different conditions for use in care settings. The results
show that heart and respiration rate measurements are accurate
for baseline and increased distance scenarios, but further work
is needed on robustness regarding lighting and motion, with
the need to recognize and adapt to specific conditions
individually. Considering this, the presented non-contact vital
sign monitoring system offers great benefit in both inpatient
and outpatient settings. It has the potential to reduce nursing
workload and enables the detection of emergencies and care
changes, while promoting independent living.
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