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Abstract: Magnetoencephalography (MEG) using opti-
cally pumped magnetometers (OPMs) offers several advan-
tages over electroencephalography (EEG) and superconduct-
ing quantum interference device (SQUID)-based MEG, in-
cluding improved spatial resolution and versatility. In this
study, we investigate the potential of OPM-based MEG for
multi-class Brain-Computer Interface (BCI) applications.
We classify neuronal activity related to five mental tasks –
hand motor imagery (MI), feet MI, mental rotation, mental
subtraction, and word association – using data from 12 par-
ticipants. The goal is to develop a strategy to select the most
discriminative task subsets for each user. The data were pro-
cessed using the filter-bank common spatial patterns (FBCSP)
algorithm and linear discriminant analysis (LDA), with classi-
fication accuracy evaluated using block-wise cross-validation.
The results show that, in all but one participant, classification
accuracies exceeded the commonly accepted 70% threshold
for reliable BCI control, particularly with three- and some-
times with four-class combinations. Hand MI and mental ro-
tation emerged as the most distinct tasks, followed by word
association and feet MI being included in fewer optimal task
combinations. The study demonstrates that user-specific task
selection is crucial to maximize BCI performance.
The presented results are promising, but further development
is needed, including the implementation of real-time feedback
systems, addressing technical limitations, and refining clas-
sification techniques. The findings highlight the potential of
OPM-based MEG for future clinical applications, particularly
in rehabilitative settings, where its high spatial and temporal
resolution could significantly enhance BCI systems.
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1 Introduction

Magnetoencephalography (MEG) using optically pumped
magnetometers (OPM) has become an important tool for the
investigation of neural functions. Recent studies highlight the
potential of OPMs to surpass electroencephalography (EEG)
in spatial resolution, and superconducting SQUID-MEG in
maintenance cost and versatility [1]. OPMs are a promis-
ing technology to advance diagnostics and treatment in many
clinical applications like epilepsy [2] and translational neuro-
science [3].

Brain-computer interfaces (BCIs) translate neural activ-
ity into control signals of external devices, like prostheses or
robots that provide direct sensory feedback. They also enable
severely paralyzed users with locked-in syndrome (LIS) to
communicate [4]. Current BCIs applied in rehabilitation are
often based on EEG to analyze and classify voluntary neural
activity. Often, event-related (de)synchronization (ERD/ERS)
in the alpha and beta frequency bands (8Hz to 16Hz and 16Hz

to 32Hz, respectively) is used as a correlate of mental activity.
However, the volume conduction of tissue and skull between
the signal source and the electrodes impairs the spatial reso-
lution of EEG and therefore limits the number of decodable
states or degrees of freedom.

MEG allows for better localization of discrete neuronal
sources, as the magnetic fields pass through tissue with little to
no distortion [5]. The classic technique to measure MEG is us-
ing superconducting quantum interference devices (SQUIDs),
which require cryogenic cooling and are static devices with
one-size-fits-all sensor arrays. OPMs, on the other hand, do
not require cooling and can move in space during the mea-
surement [5]. This enables bespoke sensor helmets for better
sensor fits and studies on children and vulnerable populations
unable to sit still for longer periods of time.

While progress in EEG-based BCIs has recently
plateaued, OPM-based BCIs are still in the early stage of
exploration. At this point, most studies have only developed
proof-of-concept for real-time data analysis [6], tested binary
or passive paradigms [7–9]. Appropriate best practices and
methods for screening users and online processing of data are
still lacking.
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Fig. 1: A participant wearing the 3D-printed helmet within BMSR-
2.1. The hemispheres with different sensors are annotated

In this study, we classified neuronal activity based on five
different mental tasks and developed a strategy to pick the best
performing subset of those tasks for further investigation. We
recorded OPM-MEG data of 12 healthy participants perform-
ing hand motor imagery (MI), feet MI, mental rotation, mental
subtraction and word association. Using methods established
in BCIs to process and classify the recorded data, we devised
a method to screen each subject and select the most discrimi-
native conditions that should be used for a user-specific BCI.
With the development of such a strategy, we present here a
proof-of-concept towards multi-class OPM-based BCIs opti-
mized for user-specific performance.

2 Methods

2.1 Sensor System and environment

For this study, a total of 40 OPMs were used (16 v2 and 24
v3/HEDscan OPMs from FieldLine Inc., Colorado, USA). The
sensors were inserted into an 3D-printed helmet based on an
average head shape [10]. The v2 sensors were distributed on
the right hemisphere, the HEDscan sensors on the left hemi-
sphere (see Figure 1)

The experiment was conducted at the Physikalisch-
Technische Bundesanstalt (PTB) in Berlin, Germany, in the
Berlin Magnetically Shielded Room (BMSR-2.1). It has a very
high shielding factor of 108 above 6 Hz, static remnant fields
of less than 1 nT and field gradients of under 1 pT/m.

2.2 Experimental Setup and Participants

Five mental tasks were performed based on previous EEG-
based BCI studies (see also Figure 2):

Fig. 2: Examples for the presented stimuli (left to right): Hand MI,
Feet MI, Mental Rotation; Mental Subtraction, Word Association

– Hand Motor Imagery: self-paced, imagined right hand
opening and closing motions (approx. 1/s)

– Foot Motor Imagery: self-paced, imagined rotations of
the feet

– Mental Subtraction: Repeated subtraction of two num-
bers (e.g., 117-12, 105-12, 93-12, . . . )

– Mental Rotation: Rotation of a simple object before the
inner eye

– Word Association: Associating words with a given start-
ing letter

Stimuli were presented for 6 seconds at a time, during which
participants were asked to continuously and repetitively exe-
cute the respective tasks. After each trial, an inter-trial inter-
val of 6 seconds gave participants time to rest before the next
trial started. A total of 40 trials per condition were recorded in
5 blocks, between which participants could take a break and
continue with the study at their own pace.

BMSR-2.1 features a bidirectional communication system
in the room, through which participants were supervised dur-
ing the experiment. The stimuli were presented using a projec-
tor enclosed in a portable magnetic shielding [11].

In total, 12 healthy participants (4 female, 8 male) took
part in the study, 9 of which had never participated in BCI ex-
periments before (BCI-naive). All participants received an in-
troduction to the paradigm, the safety mechanisms of BMSR-
2.1 and were made aware that they can stop or interrupt the
study at any time.

2.3 Data Acquisition and Preprocessing

The 8-layer shielding of BMSR-2.1 effectively eliminates
transient magnetic field fluctuations, and thus very little data
pre-processing was required. Trials which showed artifacts ex-
ceeding 50 pT were eliminated from the data, since those trials
most likely indicate that the participant was moving and not
focused on the task. For three participants, less than 50% of
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trials in at least one condition remained after pre-processing.
These participants were excluded from further analyses, as in-
sufficient training data can lead to unreliable results.

The data were recorded with the proprietary FieldLine
recording software. MNE for python was used to load, label
and process the data.

2.4 Data Analysis

Data classification was performed using the filter-bank com-
mon spatial patterns (FBCSP, [12]) algorithm combined with
linear discriminant analysis (LDA). FBCSP and LDA are es-
tablished methods for BCI applications that allow for rapid
training and processing of the data, while maintaining inter-
pretability of the extracted features.

Since the spatial distribution of alpha and beta oscillatory
brain activity depends on the mental task, the FBCSP-based
processing is designed to effectively identify those spatial pat-
terns and extract the corresponding signals.

FBCSP was implemented using MNE’s minimum-phase
filters from 4Hz to 40Hz at a width of 4Hz each, no overlap,
and transition bandwidths of 4Hz. As a result, 9 band-passed
CSPs were trained, and for each CSP two filters were selected
based on their eigenvalues. Finally, the best six of these 18
spatial filters were selected, based on their mutual informa-
tion. The band powers of the resulting six channels in FBCSP-
space were then used as features for the next analysis step.
With the transformed data as input, the scikit-learn LDA im-
plementation was used to retrieve the final class estimation. To
determine the accuracy of our classifications, we used a five-
fold block-wise cross-validation with an 80%/20% train/test
split. The accuracies provided here always refer to the testing
accuracy unless stated otherwise.

The percent theoretical chance level for an n-class
paradigm is 100/𝑛%. However, this only holds true if infinitely
many samples are available. For a finite number of samples,
the classification errors follow a binomial cumulative distribu-
tion [13]. According to the formula provided in [13], the cor-
rect chance level thresholds at 𝑝 < 10−4 for a 3, 4 and 5-class
classification problem with 40 trials per condition, are 50%,
38.125% and 31.0%, respectively.

3 Results

The current study explores the distinction of five different
BCI-related mental tasks when measured with OPMs. The
goal is to establish a strategy to select the best user-specific
subset of tasks, yielding the highest discriminability and al-

Fig. 3: Classification accuracy for the respective best class com-
binations. Left: The best participant is shown with 5, 4, 3 and 2
class combinations above the 70% threshold. Center: The worst
participant, whose accuracy exceeds 70% only for 2 classes.
Right: Average across all 9 analyzed participants (right). The the-
oretical chance level is indicated with a grey line, the computed
chance level for 𝑝 < 0.0001 is shown in black

lowing for reliable BCI control. In the BCI community, a
threshold of 70% accuracy is often assumed to be the min-
imum to gain reliable control through operant conditioning.
Below 70% users often do not gain control and report that the
BCI acts arbitrary and unpredictable. Although the theoreti-
cal chance level (computed as 1/number of classes) is often
used to compare accuracies, we used here the correct empir-
ical chance level based on the number of available trials in
accordance with [13]. Figure 3 indicates both theoretical and
empirical chance level at 𝑝 < 0.0001. All participants per-
formed significantly above that chance level.

All except one participant exceeded a classification accu-
racy of 70% for the best combination of three classes. Three
participants performed better than that threshold in the four-
class combination, and a single participant performed even
better than that on the combination of all five classes.

Further analyses show that not all classes are equally
likely to be included in the best-performing subset. However,
the best combination of classes is specific to the participant
and could not be linked to a regular pattern. Based on the num-
ber of occurrences in the best-performing subset, the classes
Hand MI and mental rotation are most distinct, followed by
word association and feet MI. Mental rotation is included in
the fewest sub-selections.

4 Discussion

This study demonstrates the feasibility of classifying multiple
mental tasks using OPMs and presents a strategy for selecting
the most discriminative tasks for user-specific brain-computer
interface (BCI) applications. Our results show that, with ap-
propriate data preprocessing and classification techniques, it
is possible to achieve reliable classification accuracies above
the commonly accepted 70% threshold in most participants.
The optimal combination of tasks varied among individuals,
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emphasizing the importance of personalized task selection for
BCI performance. The presented results indicate that, while
reliable five-class discrimination remains challenging, user-
specific subsets of three or four classes achieved classification
accuracies above 70% in all except one participant.

For this experiment, two independent data acquisition sys-
tems (FieldLine v2 and HEDScan/v3) were combined to max-
imize the head coverage and number of available channels.
Since no synchronization between the systems took place,
narrow-band oscillations around 5 and 24 Hz, presumably
caused by the OPM-internal modulation coils of the opposite
system, were visible in the raw data. Although the artifacts are
independent of task and time, they might have led to a low-
ered signal-to-noise ratio, and thus lower accuracy. Further-
more, the mutual disturbances paired with participant move-
ment could have contributed to the artifacts visible in the data
of three participants that were excluded from the analyses. For
future studies, we recommend using a single system with syn-
chronized modulation and embedded crosstalk suppression.

The results presented here are based on offline process-
ing and classification of the recorded data. The applied fil-
tering and classification algorithms were picked intentionally,
as they can be transferred for use in an online pipeline. With
the screening strategy established in this work, improved al-
gorithms for artifact rejection and data classification, and the
addition of online feedback, the performance of our system
could likely be improved significantly.

Future studies should prioritize translating these ad-
vancements into practical, real-time applications for clinical
and rehabilitation settings. OPM-based BCIs hold significant
promise for clinical use, offering a quick and easy setup
across diverse populations. Their superior spatial resolution
compared to EEG, combined with easier maintenance than
SQUID-MEG and high temporal resolution, makes them a
compelling focus for further scientific exploration.
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