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Abstract: Early diagnosis of neurodevelopmental disorders
in infants relies on accurate analysis of spontaneous move-
ments. Achieving this requires fast and precise pose estimation
methods tailored to infant-specific anatomy and motion. This
study evaluates several pretrained YOLOv11-pose models for
pose estimation in depth video recordings of preterm neonates
and infants using the open source babyPose data set database.
The fastest model (YOLOvV11n-pose) has a inference time of
0.007 seconds. Considering a previously proposed data split
without subject-wise separation between training and testing
data, the most accurate model (YOLOv11m-pose) has a me-
dian root mean squared distance (RMSD) of 2.15. The median
Dice Similarity Coefficient (DSC) and Recall (R) of the joints
are 0.85 and 0.86, while the median DSC and R of the joint
connections are 0.90 and 0.91. Considering a subject-wise sep-
aration of training and testing data, the results noticeably de-
grade, e.g. to a median DSC and R of the joints of 0.79 and
0.81, while the median DSC and R of the joint connections are
0.75 and 0.79. The present work demonstrates a fast and, co-
pared to the literature, accurate approach to depth-based pose
estimation in preterm neonates and infants paving the way for
automated movement analysis as a clinical tool for early de-
tection of developmental impairments. Particularly in semi-
automated settings where subject-specific annotations can be
provided, the results are convining. Regarding the abilities to
generalize, more work is required to improve the results.
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1 Introduction

The analysis of spontaneous movement patterns in preterm
neonates and infants plays a crucial role in identifying acute
neurological conditions [1]. Certain movement abnormali-
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ties, such as seizure-like events, excessive restlessness due to
withdrawal or asymmetric movements suggestive of perinatal
stroke, may indicate underlying acute pathology [2, 3]. In con-
trast, the assessment of General Movements (GMs) [4] in the
preterm and early postterm period provides a validated early
biomarker for later neurodevelopmental outcomes, including
cerebral palsy. Abnormal or absent GMs are strongly associ-
ated with adverse motor development, making their evaluation
critical for early prognosis. Therefore, a comprehensive move-
ment analysis, encompassing both acute movement abnormal-
ities and predictive GM assessment, is essential for both clin-
ical decision-making and the development of advanced diag-
nostic tools. Early identification of movement abnormalities
enables the timely initiation of motor and neurodevelopmental
therapy, potentially improving functional outcomes in affected
infants.

Recent advances in deep learning (DL) detection or pose
estimation have had a significant impact on the field of medi-
cal research, particularly in the domain of motion analysis [5,
6, 7]. YOLOV11-Pose is a feed-forward model that integrates
real-time object detection with pose estimation to facilitate
automated tracking of limb movements. Thereby, YOLOv11-
pose is offering both speed and precision [8]. These features
make it particularly well suited for neonatal monitoring, where
both speed and precision are essential.

Yin et al. [9] demonstrate the effectiveness of a YOLO
based DL model on 2D and 3D pose estimation of infants.
The authors also show promising results on GMs classifica-
tion especially for 3D pose estimations. There are also studies
that succesfully implement DL models [10, 11, 12] and feature
based machine learning approaches [13] for real-time pose es-
timation of infants with depth videos.

To the best of our knowledge, pose estimation using a
YOLO model on infant depth images has not been done
before. This contribution explores the implementation of
YOLOvV11-pose for neonatal pose estimation of depth videos.
Thereto, fine tuned YOLOv11-pose networks have the poten-
tial to improve movement analysis and support early diagnosis
and treatment strategies for preterm infants.
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2 Materials and Methods
2.1 Yolov11-Pose

YOLOv11-Pose is an advanced DL model designed for real-
time human pose estimation. It extends the YOLOvI11 archi-
tecture by incorporating a dedicated keypoint detection head,
enabling the precise localization of anatomical landmarks [8].

The YOLOv11-pose architecture is composed of three
fundamental components. First, the backbone serves as the pri-
mary feature extractor, utilizing convolutional neural networks
to transform raw image data into multi-scale feature maps. The
second component is the neck, which functions as an inter-
mediate processing stage. This component employs special-
ized layers to aggregate and enhance feature representations
across different scales. The third component, designated as the
"head," fulfills the function of predicting object locations and
classifications. This is achieved by leveraging the refined fea-
ture maps generated by the neck component to formulate the
final outputs for object localization and classification.

The model predicts normalized bounding boxes along
with keypoints for each detected object, allowing simultaneous
object detection and pose estimation. In addition, the model
predicts visibility scores whether keypoints are visible or not.

There are different YOLOv11-pose models with respect
to size, prediction time and accuracy. YOLOv1I1n-Pose is
the smallest and fastest version, while YOLOv11s-Pose and
YOLOvVI11m-Pose are each one slower but more accurate.

To fine-tune and test the YOLOvV11-Pose models, we use
the open source babyPose data set [14]. The data set was
developed to investigate the relationship between short- and
long-term preterm birth complications and to explore models
for non-contact monitoring of infant movements. The dataset
contains 5 minute depth videos of 16 preterm infants with au-
tonomous breathing hospitalized in the neonatal intensive care
unit (NICU) of the G. Salesi Hospital (Ancona, Italy). This
makes a total of 16.000 frames with a size of 640 x 480. Ad-
ditionally, there is a version of the data set that is not free
available and is employed in related works by the babyPose
author. It contains 27.000 frames. The frames were captured
by RGB depth camera (Orbbec® camera, Troy, Michigan,
U.S.A.) placed over the open crib. The keypoints that repre-
sent the 14 pose coordinates are annotated by clinical partners
of the authors [11] and stored in a *.xIsx file . The visual qual-
ity of the frames varies, making the babyPose dataset more
variable and adapted to a real application. Fig. 1 shows two
examples.
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2.2 Preprocessing

In order to allow pose estimation with YOLOvV11-pose, images
and labels need to be transformed in a proper way and saved
in a specified path structure. It is imperative that the images’
width and height are equal. Thereto, the upper and lower parts
of the images are extended by 640 x 80 zero matrices, so that
the new image size is 640 x 640. Subsequently, the labels of
babyPose are transformed and standardized into a YOLOv11
specified format. In addition, synthetic bounding box coordi-
nates were added to the labels, as YOLOv11-Pose is based
on object detection and therefore requires bounding boxes for
proper operation. These coordinates were derived by calculat-
ing the minimum and maximum keypoint positions in each
spatial direction (top, bottom, left, right), enclosing all visible
joints. In order to guarantee that all pixels belonging to the in-
fants are contained within the synthetic bounding boxes, it is
necessary to extend them by 60 pixels. We are allowed to do so
because the pose estimation of the YOLOvVI11 is not severely
influenced by more precise bounding boxes.

To reduce the time and memory requirements of the train-
ing process, it was necessary to resize all frames to 128 x 128.
Joints and joint connections with a radius of 6 pixels were ex-
tracted as a mask as in previous works [11, 10, 12, 13] by
dilating the pose localizations. Example images of joints and
joint connections are presented by Fig. 1.

k

(b) Example image of the joint
connection mask.
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(a) Example image of the joint
mask.

Fig. 1: Example images of the joint and joint connection masks.
The white points denote the joint location while the white lines
denotes the joint connections. The colored area indicates the 6-
pixel radius.

2.3 Metrics

A variety of metrics can be used to assess the effectiveness of
pose estimation, allowing for a comprehensive evaluation of
the results. The Root Mean Square Distance (RMSD) is a com-
mon metric for evaluating spatial accuracy in pose estimation.
It calculates the mean Euclidean distance between predicted
and annotated keypoints. The metric provides an intuitive in-
dication of the average localization error and is particularly
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suitable for applications where precise point positions are crit-
ical. The following equation defines the RMSD

N
RMSD = ]{,; - 1)
N describes the number of pixels in the depth images,
while y; and y; describe vectors that contain the x- and y-
coordinate of the i-th pixel.
Two other metrics which are used in previous works are
the Dice Similarity Coefficient (DSC) and the Recall (R). Both

are defined as follows:

2.TP

DSC= s Thr PPN 2)
TP
R=ThP1FN 3)

In this context, True Positive (TP) denote the true joint
or joint connection, while False Positive (FP) denotes back-
ground pixels, respectively, that have been classified as joints.
False Negative (FN) represents pixels belonging to a joint or
joint connection connection erroneously designated as back-
ground. This means that we compute the DSC and R of the
joints (DSC}, R;) and joint connections (DSC'¢, Rjc).

We also analyze the speed of the DL models by calculat-
ing the mean inference of the estimation.

2.4 Training

To train the YOLOv11-pose network, we used the Ultralytics
framework [15], built on PyTorch. The learning rate is 0.002
and we used the ADAM optimizer. The batch size was 64 and
the number of epochs was set to 300. Default data augmenta-
tion methods provided by Ultralytics were applied, including
random flipping, translation, and scaling. For more efficient
training, we used an NVIDIA GeForce RTX 3070 with an 8
GB GDDR6 VRAM.

For training and testing, we used the proposed split by the
authors of babyPose data set, the babyPose split. The babyPose
split does not pursue a separation of infants between training
and test set, but is also used by related studies, which are men-
tioned in section 4. To quantify the ability of our models to
generalize, we additionally implemented a leave-one-subject-
out cross validation scheme (LOSOCV) where the model is
trained each time on all infants but one and tested on this re-
maining subject.

3 Results

The pose estimation results and the mean inference time on
the test data of babyPose data set are presented in Tab. 1. Tab.
2 shows the results of the joints j and the joint connections jc.

Tab. 1: Pose estimation median [mean] results of the different
Yolov11-pose models. The RMSD is given in pixels and the infer-
ence time in seconds.

Model ‘ RMSDyabypose  RMSDrosocv  Inference Time
YOLOv11n 2.55[11.86] 12.81 [16.82] 0.007
YOLOvi1s 2.32[11.64] 11.16 [17.89] 0.008
YOLOviim 2.15[11.48] 9.46 [20.06] 0.008

Tab. 2: Pose estimation median [mean] results of the joint and
joint connections of different Yolov11-pose models.The DSC and
R are unitless quantities. The upper half uses the babyPose split
and the lower part uses the LOSOCVS.

Model ‘ DSCJ' DSC]' Rj Rj

YOLOvi1n |0.84[0.83] 0,89[0.80] 0.85[0.84] 0.90 [0.78]
YOLOvi1s |0.85[0.83] 0.89[0.81] 0.85[0.84] 0.90 [0.78]
YOLOvi1m | 0.85[0.83] 0.90[0.81] 0.86[0.85] 0.91[0.78]
YOLOvi1n |0.71[0.68] 0,70[0.67] 0.73[0.69] 0.68 [0.65]
YOLOvi1s |0.77[0.71] 0.71[0.64] 0.74[0.72] 0.77 [0.65]
YOLOvi1m | 0.79[0.75] 0.75[0.72] 0.81[0.78] 0.79 [0.68]

4 Discussion and Conclusion

As evidenced in Tab. 1 the smallest network is also the fastest
one. Nevertheless, all three models show a fast estimation of
more than 110fps and can be interpreted as real-time applica-
tions.

Results using babyPose split: It is evident that the me-
dian RMSD in Tab. 1 is lower than the mean RMSD of all
models. This finding suggests the presence of significant out-
liers, which merit further investigation and analysis. The DSC
and R in Tab. 2 shows a similar effect. However, it is less dis-
tinct for the joints than for the joint connections.

Tab. 3 compares the results of the present study with those
of related studies. It shows that YOLOv11-pose outperform
every other model by the RMSD. One possible explanation for
this improved performance is the difference in training proto-
cols. Specifically, the present study employed data augmenta-
tion techniques, which were not used in the compared studies,
as well as a larger batch size and an extended training dura-
tion of 300 epochs (versus 100). These factors may have con-
tributed to improved model performance, although potential
overfitting cannot be ruled out and should be explored in fu-
ture investigations. The Feature Based method and the Baby-
PoseNet are both less complex models. Therefore, they are not
vulnerable to overfitting. Another significant difference is the
fine tuning of pretrained weights. This impact should also be
analyzed.
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Comparing the DSC and R between the present work and
the related ones, Tab. 3 shows that the YOLOv11 models out-
perform the results of the joint connection but BabyPoseNet
shows slightly better results for the joint. By comparing the
results with the models using more frames than the presented
work we notice the same but the DSC and R of YOLOv11
models are sightly less than the best results of the DeA model.

Results using LOSOVC: As in Tab. 1 and Tab. 2, the
mean and median error of the metrics used is, as expected,
greater with a LOSOVC than with the babyPose split. Never-
theless, the performance of YOLOv11m is comparable to the
performance of the related work despite LOSOCV. In terms
of RMSD, YOLOvI1m-pose is even better than the related
works.

Summary: In summary, the YOLOv11-pose models are
well suited for estimating neonatal and infant poses in depth
video recordings and perform at least as well as models re-
ported in related studies. Furthermore, the functionality of
YOLOVI11-pose can be extended by incorporating additional
objects for detection such as, e.g., respiratory devices, feed-
ing tubes or intravenous catheters. This enhancement may help
prevent misclassification or displacement of these medical de-
vices during pose estimation.

Tab. 3: Comparison of median pose estimation and joint connec-
tion results between the present work and related studies. The
upper part uses the small data set (16000 frames) and middle
part uses the bigger data set (27000 frames). Both parts uses
babyPose split and the lower part shows the models validated with
LOSOVC.

Model DSC; DSCj. | R; Rj. | RMSD
YOLOv11n 0.84 0.89 0.85 090 | 255
YOLOv11s 0.85 0.89 0.85 090 | 232
YOLOvi1m 0.85 0.90 0.86 0.91 2.15
BabyPoseNet [12] 0.89 0.89 0.87 0.86 | 11.27
Feature Based [13] - - - - 11.20
DeA [10] 0.90 0.90 - 0.90 | 10.79
EDANet [11] 0.79 0.81 0.69 0.70 -
TwinEDA [11] 0.89 0.88 0.86 0.83 -
TwinEDAVO [11] 0.80 0.83 0.72 0.73 -
TwinEDAv1 [11] 0.88 0.87 0.85 0.81 -
YOLOv11n 0.71 0.70 0.73 0.68 | 16.82
YOLOv11s 0.77 0.71 0.74 0.77 | 11.16
YOLOvi1m 0.79 0.75 0.81 0.79 | 9.46
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