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Abstract: In this paper, we propose a proof of concept for
using 6D IMUs to assess the correctness of sit-to-stand (STS)
motion, a critical task in post-stroke rehabilitation. There-
fore, healthy individuals were instructed to mimic post-stroke
movement patterns, providing a relevant model for post-stroke
behavior. We demonstrate that using simple kinematic models
for all articulated joints is a feasible approach to calculating
joint angles and extracting relevant features. Using rule-based
and learning-based classification models, we are able to dis-
tinguish between multiple error types in the STS motion, with
average classification accuracies of 89.78% and 94.03%, re-
spectively. In contrast to many state-of-the-art methods that
only provide a binary classification of correct versus incorrect
execution, our approach enables the differentiation between
various error types. Additionally, it overcomes the limitations
of complex, location-dependent camera systems and suscep-
tibility to magnetic disturbances. This highlights the feasibil-
ity of this approach for evaluating STS motion, with potential
applications in providing automated feedback for post-stroke
rehabilitation and supporting the recovery of activities of daily
living.
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1 Introduction

Stroke affects more than 15 million people annually [1] and
often leads to significant motion impairments. The first twelve
months are crucial for rehabilitation, as neuroplasticity is most
active during this period, making it an ideal time for inten-
sive therapy [2]. Repetitive task-specific exercises during this
phase can improve mobilization and motor skills, reducing
functional limitations and the need for long-term care [3]. A
key goal of stroke rehabilitation is to restore activities of daily
living, with sitting-to-stand (STS) movements being a crucial
exercise to regain balance and mobility [4].
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During physiotherapy sessions, physiotherapists provide
essential feedback on the execution of specific motion tasks,
helping patients refine their movements and improve overall
motor function. However, limited access to supervised physio-
therapy due to shortages of trained personnel, combined with
non-compliance, i. e. not doing the prescribed exercises be-
tween supervised physiotherapy sessions, further hinders re-
covery. As early as 2001, Campbell et al. [5] found that the
issue of non-compliance is primarily driven by patients’ ra-
tional decision-making, as they fear performing the exercises
incorrectly, but effective solutions are still missing.

To address these challenges, automatic feedback systems
could support rehabilitation by complementing supervised
therapy and encouraging adherence between supervised ses-
sions. Such systems would ensure that patients engage cor-
rectly in prescribed exercises, optimizing recovery outcomes.
Effective automated feedback requires automated assessment
of movement correctness, achievable through motion tracking
technologies.

Existing approaches for the automated assessment of STS
movement correctness often use camera-based systems [6, 7],
which have limitations such as privacy concerns, location de-
pendence, and a strong dependence on maintaining the cor-
rect perspective. Alternatively, 9D inertial measurement units
(IMUs) are frequently used [8, 9], though they are suscepti-
ble to disturbances in the magnetic field, such as those caused
by ferromagnetic materials or electronic devices, which can
negatively impact attitude estimation. Most importantly, most
systems only provide binary classification [6-8], indicating
whether an error occurred without specifying the nature of the
error, making them unsuitable for providing detailed feedback.

To address these challenges, we propose and evaluate ap-
proaches for error classification in post-stroke STS execution.
Using data from healthy individuals mimicking common post-
stroke errors, we provide a proof of concept demonstrating
that distinguishing between these errors is feasible with both
learning-based and rule-based methods when relying solely
on 6D IMUs and simple kinematic models for all articulated
joints. By leveraging 6D IMUs, our approach bridges the gap
between imprecise consumer devices and costly high-end sys-
tems [10]. Finally, we compare our proposed method to state-
of-the-art approaches, highlighting its effectiveness and poten-
tial for further development.
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2 Used dataset

This study involved only healthy participants who were in-
structed to mimic common post-stroke errors during sit-to-
stand movements under the guidance of a physiotherapist spe-
cialized in post-stroke rehabilitation and based on [11]. The
typical errors are: (1) Asymmetrical movement, where indi-
viduals leaned toward one side, mimicking hemiparesis; (2)
Lack of control, where participants simulated an uncontrolled
descent, mimicking the tendency of post-stroke patients to fall
back into the chair due to insufficient motor control; and (3)
Uneven weight distribution, where impaired balance led to un-
even weight on both feet, sometimes requiring a corrective step
for stability. For correct execution, participants were instructed
to first shift their buttocks to the chair’s edge, then lean forward
to position their center of gravity over their feet before stand-
ing up without using momentum. This process resulted in six
motion tasks (correct, plegia left/right, incorrect step left/right,
and failure), but since left and right errors were treated equally,
the data was ultimately categorized into four classes: correct,
plegia, step, and failure.

A total of 11 participants completed the study, each per-
forming every motion task five times, yielding 330 trials (6
tasks x 5 repetitions x 11 participants). Motion tracking was
conducted using eight Xsens Awinda IMUs, sampling at 100
Hz, with only acceleration and angular velocity data being
used. To account for sensor drift, a 20-second calibration mea-
surement was taken before each participant’s session with the
IMUs at rest. The placement of the 8 sensors used followed
the standard Xsens lower limb configuration and is illustrated
in Fig. la.
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Fig. 1: a) Sensor placement used for this study following standard
Xsens lower limb configuration involving eight IMUs. b) Joint axis
assumptions applied for joint angle calculation. Violet rotation
arrows indicate a rotation in the sagittal plane, while the green
rotation arrow indicates a rotation in the frontal plane.
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3 Data processing

The data processing aims to extract the changes in joint angles
(JA) of the underlying motion. The pipeline began with the
removal of turn-on bias, followed by gravity compensation us-
ing acceleration data. Next, attitude estimation for each sensor
was performed using the versatile quaternion-based filter [12].
Since only 6D IMUs were used, absolute heading informa-
tion was unavailable. Therefore, relative joint orientation was
estimated under the assumption of 1 DoF joints with known
sensor-to-segment orientation.

To determine joint axes between two adjacent IMUs, we
employed the Olsson method [13] and computed the relative
quaternion between adjacent segments. Heading offset correc-
tion was performed using the QMT library! and kinematic
constraints for 1 DoF joint. The heading correction was ap-
plied following the kinematic chain from the foot to the pelvis
sensor. While the hip joint is typically modeled with two or
three DoFs, leg rotation is not essential in STS. Thus, we ap-
proximated the hip as a 2 DoF joint, which was further decom-
posed into two independent 1 DoF JAs—one in the sagittal and
one in the frontal plane (see Fig. 1b). Finally, we decomposed
the relative orientation quaternion between adjacent IMUs into
Euler angles using the ZY X convention. Given the assumption
of 1 DoF joints, this directly represented the change in JAs
during the movement.

4 Classification methods

To provide accurate feedback on exercise performance, sys-
tems must effectively classify movements, distinguishing not
only between correct and incorrect execution but also between
different types of errors. This classification task can be ap-
proached using both learning-based and rule-based methods,
each offering unique advantages.

Learning-based approaches, especially Machine Learn-
ing, use data-driven models to recognize patterns in performed
movements. These models rely on training with labeled data
and typically require large datasets to generalize effectively
to unseen instances. However, they often lack interpretability,
which can be particularly helpful, especially in medical appli-
cations.

In contrast, rule-based approaches, like Expert Decision
Trees, use predefined rules derived from expert knowledge to
make decisions. These models are transparent, easy to inter-
pret, and ideal for scenarios with limited data, ensuring con-
sistent and explainable outcomes. Yet, they can be rigid and
struggle with nuanced variations.

1 https://qmt.readthedocs.io/en/stable/
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4.1 Learning-based

A Random Forest classifier was chosen as they are known
to perform well on limited data for multiclass classification.
Based on [14], we extracted seven fundamental statistical fea-
tures, and following [15], we extracted 13 dynamic features
from the previously calculated JAs, using them as inputs for
the Random Forest classifier.

We employed a nested 5-fold cross-validation strategy to
ensure robust model evaluation and prevent data leakage. In
each of the five outer folds, data from two participants were
reserved as an unseen test set. The remaining data from nine
participants underwent an inner 5-fold GroupKFold for hyper-
parameter tuning via grid search. Within each inner fold, data
from two participants served as the validation set during train-
ing. The hyperparameter search space and the final selected
hyperparameters for the Random Forest classifier are detailed
in Table 1.

Tab. 1: Hyperparameter search space and optimized values for
the Random Forest classifier used for STS error classification.

Rule-based Learning-based 100
Correct A 0.0 0.0 9.1 - 80
o Fail 0.0

- 60

Step 0.0 9.1 KIRY 9.1 43 09 EREA 8.9
Plegic 0.0 9.1 14 05 4sEERl 40
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Fig. 2: Confusion matrices showing the mean classification results
of STS movement and common error types for the rule-based
(left) and learning-based (right) approach.

angle of less than 45°. Additionally, no asymmetry as defined
in equation 1, occurs in either the hip or the knee JA.

The class of failed movement is characterized by a re-
stricted knee movement, with a limited ROM (see equation 2)
of less than 40° [16]. In contrast, a full range of motion for
the knee would be approximately 90°. The class of bending

movements, mimicking the plegie, is characterized by a con-
sistent asymmetry of the torso in the frontal plane [17], a char-

Hyperparameter Search Space Optimized Value
n_estimators [100, 150, 200, 300] 150

max_depth [None, 10, 20, 30] 20
min_samples_split [2,5,10] 5
min_samples_leaf [1,2,4] 2
max_features lauto’, sqrt’, log2']  ’sqrt’
bootstrap [True, False] True

acteristic pattern seen in plegic movements, where one side is
affected and moves with less flexibility. A movement is con-
sidered asymmetric if the absolute difference between left and
right hip angles remains above a threshold of 15° for at least
50% of the movement duration. The last class, a corrective

4.2 Rule-based

As this approach represents an expert decision tree, the rules
have been defined based on expert knowledge without know-
ing the underlying data distribution. Therefore, we defined the
following rules for general asymmetry and the range of motion
(ROM):

Asymmetry ; = max (|JA£ —JAﬁ|) S15°, V5 (1)
€T
e Sy s S ;
ROM; := r}leaqgc(JAl) Igéljr_}(JAl ), V4, Se{L,R} (2)

where S represents the side with L for the left side and R for
the right side, j denotes the joint being analyzed and ¢ is a
timestep within the time period T of a complete trial. A cor-
rect STS movement is characterized by synchronized flexion
and extension of the hip and knee joints. However, in cases
where deviations occur, certain compensatory strategies can
be considered tolerable [11]. Specifically, if the knee joint an-
gle exceeds 75°, the hip joint must compensate by maintaining
an angle of less than 30°. Conversely, if the hip joint angle ex-
ceeds 90°, the knee joint must compensate by maintaining an

step, is characterized by an asymmetry bigger than 10° of the
knee angles between one and 2.5 seconds of the motion trial.
In addition, the knee angle of one knee must decrease after
reaching full extension.

5 Results

With the rule-based approach, we were able to achieve a
mean classification accuracy of 89.78% across all participants,
whereas with the learning-based method, we were able to
achieve a mean classification accuracy of 94.03% on the five
folds of unseen test data. This shows that, although our ap-
proach not only distinguishes between correct and incorrect
execution, but also between different error types, these results
are comparable to state-of-the-art results (see Table 2). The av-
erage confusion matrix of the rule-based approach across all
participants is shown in Fig 2 (left) and the average confusion
matrix across all test sets of the nested 5-fold cross validation
of unseen test data for the random forest classifier is shown in
Fig 2 (right). It can be seen that both the rule-based and the
learning-based approach recognize the failed execution in all
cases. This is expected as this movement differs significantly
from all other movements.
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Tab. 2: Comparison of the proposed rule-based (Res.l) and
learning-based (Res.ll) approach with state-of-the-art STS classifi-
cation approaches.

[6] [8] [9] Res.| Res.ll
Stationary/ Stationary Wearable Wearable Wearable Wearable
Wearable
Sensors Camera 9D IMUs 9D IMUs 6D IMUs 6D IMUs

& EMG
Error 0 0 2 3 3
Types
Approach Al-based Al-based Al-based Rule- Al-based
based
Accuracy 91.25% 98.80% 88.65% 89.78%  94.03%

In order to further improve the classification of the other
classes, the defined rules could be completed by additional
rules, for example, by using not only the calculated JAs but
also the raw IMU data. If, for example, the acceleration of a
foot-mounted sensor exceeds a certain threshold in the later
phase, it could suggest a step and, therefore, improve the clas-
sification of this error class. Additionally, a linear relationship
between the knee and hip JA could be implemented to better
account for the tolerable compensatory strategy.

6 Conclusion

Our results demonstrate that both rule-based and learning-
based methods are suitable for the task of assessing sit-to-stand
(STS) motion based on extracted features from joint angles.
Using 6D IMUs and simple kinematic models for all articu-
lated joints keeps the setup simple and location-independent,
as no complex camera system is needed and magnetic distur-
bances have no influence on the underlying data. This sim-
plicity ensures that the approach can be easily integrated into
rehabilitation assistance systems. Although this is still a proof
of concept, we achieved results comparable to state-of-the-art
methods while offering the benefit of distinguishing between
different error types instead of just binary classifying correct
and incorrect execution. This highlights the feasibility of the
proposed approach and shows the potential to be used to pro-
vide helpful feedback on the STS execution, for example, in
post-stroke rehabilitation. By enabling more patients to receive
personalized, real-time feedback, this approach could support
better recovery outcomes and help combat the issue of non-
compliance in rehabilitation programs. Future work focused
on improving classification accuracy and enabling online in-
ference could provide automated feedback for STS move-
ments, thereby assisting individuals in regaining the ability to
perform activities of daily living.
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