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Abstract: Individuals with motor impairments often face
challenges in interacting with digital devices. Video-based
pose detection has emerged as a promising approach for cre-
ating accessible human-machine interfaces (HMIs). However,
due to the diverse and highly individualized movement capa-
bilities among this population, generic pose recognition sys-
tems are often inadequate. This study investigates the feasibil-
ity of a personalized hand-pose recognition system for indi-
viduals with motor impairments using minimal training data.
We implemented a video-based pose classification model us-
ing a webcam and the MediaPipe Hands framework to extract
keypoints from hand poses. Each participant, regardless of
their level of impairment, selected four individual hand poses
according to their capabilities, which were then used to train a
neural network. The trained models were evaluated in a real-
time test application where participants controlled an animated
figure using their hand poses.

Results from 14 participants demonstrated that most were able
to achieve effective control, even in cases of severe motor lim-
itations. Individuals with restricted finger mobility success-
fully adapted by utilizing wrist and elbow movements. How-
ever, participants with spasticity experienced higher misclas-
sification rates due to difficulties in maintaining stable poses.
Overall, our findings highlight the importance of individual-
ized pose recognition systems for assistive technology. Future
work should explore additional adaptations, such as head or
eye-based controls, to further improve accessibility for users
with severe motor impairments.

Keywords: motor disability, individualized hand pose con-
trol, few shot learning

1 Introduction

Individuals with physical disabilities often face significant
challenges in daily life, including difficulties in communica-
tion and in controlling computers or assistive devices. Recent
ai-based advancements in assistive technology, especially in
video-based pose and gesture detection, offer new possibilities
for assistive tools. Digital motion exercises consistently show
evidence of physical improvements in motor control [1]. How-
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ever, due to the highly individual and often restricted move-
ment capabilities among this population [2, 3] generic solu-
tions are often not applicable to each individual patient. This
highlights the need for individually adaptable human-machine
interfaces (HMIs).

Pose detection for individuals with disabilities has re-
ceived much attention in this context: Some studies have ex-
plored the use of human pose estimation to improve safety and
effectiveness of human-robot interactions within rehabilitation
settings. For instance, joint angle measurements during upper-
limb exercises can be used for responsive robotic platforms
[4]. Other systems translate hand gestures into text or speech,
facilitating communication for individuals with impairments.
These systems employ various devices like: data gloves, video
cameras, surface electromyography and other modalities [5].

Video cameras are powerful contactless and affordable
sensors for capturing human motion. Their widespread avail-
ability and ease of integration make them ideal for develop-
ing accessible HMIs. Webcams have been used for hand ges-
ture recognition systems to enable individuals with disabilities
to control machines and complete tasks based on their hand
movements and detected poses [6].

In a previous work, we have investigated one-shot learn-
ing on webcam images to interpret head-poses of healthy vol-
unteers for a personalized computer input device [7]. In the
present study, we evaluate the methodology on a group of
people with disabilities for individualized control using hand
poses. As the physical capabilities among the group differed
considerably, each person was asked to demonstrate four dif-
ferent hand poses according to their personal abilities. The
hand poses were captured using a video camera and used to
train a pose classification network. Finally, the trained model
was evaluated in a real-time test application.

The contributions of this work are (1) a feasibility study
of individualized hand-pose recognition for accessibility with
minimal training effort and (2) highlighting the variability in
suitable hand poses chosen by participants, reinforcing the
need of personalized gesture recognition rather than relying
on generic solutions for assistive technology.
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Fig. 1: Flow chart of the pose detection model

2 Methods

Data processing and model

Our objective was to capture individualized hand poses using
a webcam which are then classified by a neural network for
an HMI input. The workflow is illustrated in Fig. 1. Images
are captured using a webcam and then processed by a pose
recognition algorithm, similar as presented in [7]. First, hand
pose keypoints are obtained through a keypoint extraction net-
work. In this work, we deployed the pre-trained MediaPipe
Hands model [8] by Google Al as a fast alternative to the pre-
viously used OpenPose model. The model computes a total of
21 three-dimensional keypoints for each detected hand.

The keypoint coordinates are then used as the input to a
second neural network, which is individually trained to clas-
sify the presented poses. This second model is trained with a
small amount of data specifically for the individual poses of
each participant. Considering the strictly limited number of
training data, we chose a minimal model design consisting of
a single fully connected layer with softmax activation. In this
work, we used the four principal directions (left, right, up, and
down) as the model output classes.

Study design

The study involved people with motor impairments and work-
ing in a local day-care workshop. All participants were offered
to take part in the study on a voluntary basis. A total of 14 per-
sons took part in the study. The participants had a wide range
of impairments, from minor motor impairments to paralysis
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and spasticity. Most of the participants had no fine motor skills
in their hands.

Before the start of the study, the participants were in-
formed in detail about the procedure. All participants were
able to understand the task and procedure of the study and
their consent was obtained. All types of personal data, includ-
ing photos and video recordings were deliberately avoided
throughout the study; instead only the keypoint coordinates
were recorded anonymously.

The implementation of the study was divided into three
phases. In phase 1, the individual training dataset of each par-
ticipant’s poses was recorded. This dataset was then used to
train the model in phase 2.

In phase 3, the quality of the pose prediction was evalu-
ated in close collaboration with the participant using a real-
time test application. In this application an animated figure
could be moved on the screen of a notebook in four directions:
up, down, left, and right. Before the participants recorded their
own datasets, the control principle was demonstrated by the
study leader to achieve an intuitive understanding of the ani-
mated character following the hand pose direction.

The participants were then asked to chose four individual
hand poses and were completely free to chose positions match-
ing their capabilities. Either the left or the right hand could be
used. After recording the dataset and training the model, a re-
peated demonstration of the four poses was used to evaluate
the success of the pose recognition model using the real-time
application. The success in controlling the animated figure was
rated subjectively by the study leader during the evaluation
phase 3 on a 10-step scale from 0 (no effective control) to 1
(full intentional control).
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3 Results

The participants presented their four hand poses to the cam-
era. As no pictures were taken, Tab. 1 displays re-enactments
of the participants’ chosen poses. As the majority of partici-
pants were unable to fully control their fingers, the poses often
mainly differed by wrist rotation (e.g. participant 10). For sub-
jects with pronounced spasticity the four poses were difficult
to distinguish visually (e.g. participant 5). Some participants,
on the other hand, were able to move their fingers more clearly
and thus to form more distinctive poses (e.g. participant 2).
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Fig. 2: Confusion matrix of the test data of all participants

The actual number of images acquired per pose varied, as
the attention of the volunteers influenced the number of feasi-

ble recordings. Depending on this, between 6 and 11 record-
ings were taken per pose. In total, there were between 3 and 6

training recordings plus 1 to 3 validation and test set record-
ings per pose.
This comparatively high proportion of the validation data

was chosen deliberately, as the pose recognition model based
on few-shot learning should work reliably even with a small

number of examples per pose. The dataset splits were strictly
disjoint, ensuring that no sample used for training was reused

in the validation or test sets. Importantly, test data were held
back and not exposed to the model during training or valida-
tion.

Fig. 2 shows the aggregated confusion matrix of the test
set across all models and subjects. Some misclassifications oc-
cur as values off the diagonal. In addition to misclassification,

it is also possible to analyze which hand poses are difficult to
separate due to their similarity and are therefore more error-

prone for the pose recognition model. Summed over all partic-
ipants, the confusion matrix shows that 86.2% of the test set

data was correctly classified by the pose recognition model.
Most of the misclassifications in Fig. 2 occurred for partici-
pants 5, 6, and 14. For these participants, almost all test record-

ings were incorrectly classified. This agreed well with the suc-
cess rating of the intentional control of the animated character

in the real-time test application, which is shown in Fig. 3.
A key observation here is that participants with severe
limitations in finger motor skills were nevertheless able to

achieve significant separability of the keypoints for the differ-
ent hand poses by rotating other joints, particularly the wrist

and elbow joints (e.g. participant 10). In contrast, participants
with spasticity showed great difficulties in controlling the ani-
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mated figure (e.g. participants 5 and 14).

Tab. 1: Re-enactment of the individually chosen poses
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Fig. 3: Success rating for control of the animated figure in the
real-time test application: 10-step scale from 0 (no effective con-
trol) to 1 (full intentional control)

4 Discussion

This feasibility study showed that the majority of our partic-
ipants were able to control the animated figure satisfactorily
despite their severe disabilities. When the fine motor control
of the fingers was not given, the volunteers found individ-
ual hand poses to achieve the given task. Notedly, all per-
sons enjoyed taking part and to experience themselves as self-
effective through the gameified interaction.

However, it became also apparent that those participants
with spasticity could hardly achieve a stable resting positions,
which made the individual pose estimation more prone to er-
ror. This made it difficult for the human observers as well as
for the classification network to clearly detect which of the
four poses the participant was presenting during the real-time
evaluation.

5 Conclusions

The study conducted showed that an individually trained pose
recognition model based on few-shot learning can be a prac-
tical solution for hand control for people with severe motor
impairments. Despite their limitations, most of the participants
were able to use specific hand poses to successfully control the
test application. It is particularly noteworthy that even people
with severely limited finger mobility were able to achieve dis-
tinguishable pose control through targeted adjustments, such
as the use of wrist or elbow movements.

However, the results also revealed challenges. In particu-
lar, participants with spasticity had difficulty maintaining sta-
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ble poses, leading to a higher misclassification rate. This un-
derlines the need for further research into alternative control
methods, such as head or eye control, in order to provide these
user groups with an effective interaction option. Overall,our
study shows promising insights into the individualization of
pose recognition models for people with motor impairments
and potential for future developments. Further studies with ex-
tended training methods and additional control options are re-
quired to further optimize usability and recognition accuracy.

Author Statement

This work has been realized based on a cooperation between
Hannover University of Applied Sciences and Arts and a
workshop for persons with disablities at Annastift Leben und
Lernen gGmbH, Hannover. Conflict of interest: Authors state
no conflict of interest. Informed consent: Informed consent has
been obtained from all individuals included in this study. Ethi-
cal approval: The research related to human use complies with
all the relevant national regulations, institutional policies and
was performed in accordance with the tenets of the Helsinki
Declaration.

References

[1] J Corey, JM Tsai, A Mhadeshwar, S Srinivasan, and A Bhat.
Digital motor intervention effects on motor performance of in-
dividuals with developmental disabilities: a systematic review.
Journal of Intellectual Disability Research, 68(11):1221-1252,
2024.

Arnold J Capute, Bruce K Shapiro, and Frederick B Palmer.
Spectrum of developmental disabilities: continuum of motor
dysfunction. Orthopedic Clinics of North America, 12(1):3-22,
1981.

Casey J. Zampella, Leah A. L. Wang, Margaret Haley,

Anne G. Hutchinson, and Ashley B. de Marchena. Motor skill
differences in autism spectrum disorder: a clinically focused
review. Current Psychiatry Reports, 23, 2021.

Oscar G. Hernandez, Vicente Morell, José L. Ramon, and
Carlos A. Jara. Human pose detection for robotic-assisted and
rehabilitation environments. Applied Sciences, 11(9), 2021.
Lin Guo, Zongxing Lu, and Ligang Yao. Human-machine inter-
action sensing technology based on hand gesture recognition:
A review. |EEE Transactions on Human-Machine Systems,
51(4):300-309, 2021.

Rishi Sharma. Hand gesture recognition systems: As assistive
technology to control machines. Master’s thesis, California
State University, Northridge, June 2023.

Hanno Homann, Cedric Rohbani, and Jens Christian Will.
One-shot learning hmi for people with disabilities. Current
Directions in Biomedical Engineering, 10(4):319-323, 2024.
Fan Zhang, Valentin Bazarevsky, Andrey Vakunov, Andrei
Tkachenka, George Sung, Chuo-Ling Chang, and Matthias
Grundmann. Mediapipe hands: On-device real-time hand
tracking. arXiv preprint arXiv:2006.10214, 2020.

[2]

[3]

[4]

(5]

(6]

[7]

8]



