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Abstract: Dynamic causal modelling is a promising tool to
quantify hand movement neural control. It portrays the
temporal path of signals across a network of distinct motor
control areas in the brain. Optimising the input representation
for this modelling framework—including defining the input
signal and its entry point into the motor-control network—
could enhance its ability to explain interactions within the
brain. A more precise characterisation of these inputs may also
shed light on visuomotor coordination, which is linked to
efficient brain-computer interface usage and bionic hand
control. This study applied Bayesian selection to determine the
optimal input model. Electroencephalography recordings were
acquired from three participants who performed wrist
extension and wrist flexion movements. Nine candidate input
models were compared using the Bayesian selection's log-
evidence. The selection was evaluated by the spectral variance
between each participant’s measured spectrograms and those
predicted by the winning model. In all participants, the same
input model was selected: an input signal of three gamma
functions entering the left and right premotor cortices. This
input model provides insights into visuomotor coordination
and can improve the performance of a brain-computer
interface controlling a bionic hand.
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1 Introduction

Bionic prosthetic and orthotic hands could assist motor-
impaired individuals in performing daily living activities [1].
This technology uses sensorimotor brain-computer interfaces
(BCI) to interpret the person’s hand-movement intention from
recorded electroencephalography (EEG) signals [1].
spatial resolution, noise contamination, and their inherent
spatial and temporal complexity, hamper EEG signals'
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interpretation [2], and 15-30% of users are unable to generate
sensorimotor brain signals for BCI control [3].

Dynamic causal modelling of induced responses (DCM-
IR) is a leading EEG analysis framework [4] that estimates the
time-frequency response to experimental events through
causal, cross-frequency couplings between multiple brain
regions [5,6]. The modelling entails a set of differential
equations (eq 1), where the hidden states g(w,f)—functions of
frequency (@) and time (f)—are the neural response in the
brain regions participating in the movement control [7].

7g(w,t) = (A+XB)g(w,t) + Cu(t) 1)

The parameters of Matrix A and Matrix B respectively
model couplings between the regions without, and due to,
changes in exogenous experimental conditions [8]. The second
term in the equation is the input model. It consists of an input
signal, u(#), and a binary vector, C, which represents the
primary motor regions that receive the input signal [8]. In
experiments and BCI training sessions involving visual
neurofeedback, an accurate representation of the input model
could explain communication between the visual cortex and
the network of motor cortices. This could elucidate visuo-
motor co-ordination, which has been linked to BCI-
inefficiency [3].

Previous EEG DCM-IR studies of hand movement
indicated that the input regions are the supplementary motor
cortex (SMA), the premotor cortex (PMv), or the prefrontal
cortex (PFC); and that the signal u(f) can be represented by
either a single input gamma function [6,9—11] or two gamma
functions [12]. No previous study performed a selection
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process to determine the optimal entry regions and the optimal
number of gamma functions in u(?).

Our study employed Bayesian model selection (BMS) to
optimise the DCM-IR input model for two experimental
conditions: wrist extension and wrist flexion movements.

2 Method

Three bilateral fully-connected DCM-IR architectures,
illustrated in Figure 1, were developed based on empirical and
physiological wrist-control data from the literature. All
architectures included seven cortical regions, listed in Table 1
[6,9,11,12], and differed in their input entry model. For each
entry model, three potential input signals, shown in Figure 2,
were considered; resulting in a total of nine possible input
models. The input signals were composed of one, two or three
gamma functions—time-linked to the visual cues of the
experiments' wrist motor tasks [12,13]. Coupling parameter
estimation was conducted for all plausible models. A winning
input model was thereafter computed using Bayesian model
selection (BMS).

The details of the
acquisition were reported elsewhere [13]. A preliminary
cohort of one male and two female participants, screened and
shown to be BCl-efficient [ 14], performed wrist extension and

instrumentation and EEG data

wrist flexion movements. Wrist movements were controlled
by the IsoReg dynamometer [13] that regulated force, speed
and range deviations. Each participant performed 100 trials of
wrist extensions and 100 wrist flexions [13]. The EEG data
was recorded using a 128-channel Brain Products actiCHamp
system (Brain Products GmbH, Gilching, Germany). The
single-trial EEG data were pre-processed using Matlab 2019b
(The Mathworks Inc, Natick, MA, USA) and EEGLAB [15]
to estimate distinct signals from the seven brain regions
through inverse lead-field matrix source localisation [6].

Input signal

I nput architecture 1
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Figure 2: Time plots of exogenous inputs u(t) with a) one, b) two
and c) three gamma functions. Visual cues to prepare to move,
and to sustain the wrist movement, were displayed at t=5000,
and t=0 ms respectively.

Table 1: The seven regions in the dynamic causal model
architectures and their anatomical descriptions.

Region Abbreviation Anatomical region name

r-M1-H; I-M1-H Right- and left-hand representation in the
Primary motor cortex

SMA Supplementary motor area

r-PMv; I-PMv Right and left ventral pre-motor cortex

r-PFC; I-PFC Right and left prefrontal cortex

Morlet wavelet transform [7] provided the time-frequency
spectrograms of the measured pre-processed signals—per
brain region, participant and trial. Spectrogram windows were
5000-7000 ms peristimulus time, and covered a frequency
range of 1 to 90 Hz [13]. The spectrograms were then
averaged across all trials for each brain region and each
movement type [16]. Spectrogram generation, parameter
optimisation, and model selection were implemented using the
Statistical Mapping 12
(Wellcome-Trust Centre for Neuroimaging, London, UK).

Parametric software revision

I nput architecture 3

Figure 1: Three plausible candidate DCM input architectures based on physiology from literature. Red arrows depict the input signal
origin and blue arrows depict region connections. Abbreviations for the brain regions (in green) are defined in Table 1.
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Figure 4: Comparison of measured and predicted
spectrograms—for model 2-3 and for the RH of participant 1.
Abbreviations for the brain regions are defined in Table 1.
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Figure 3: a) Participant-specific results of BMS using fixed effects. Model 1-1 is labelled according to using architecture 1 and using
one gamma function for u(t). The other eight models are similarly labelled. b) Group results for BMS using random effects.
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4 Discussion and Conclusion

This study proposes an input-model selection framework
for dynamic causal modelling of visuomotor control in wrist
extension and wrist flexion. These movements are pivotal for
effectively controlling a bionic hand [1]. The findings
presented are preliminary, as EEG data from only three
participants were used to establish ground-truth spectrograms
for the models’ predictions. However, the consistency of the
selected model across all three participants suggests its
potential applicability to broader populations. This hypothesis
will be tested and validated on a larger cohort. The selected
input model includes three sequential gamma functions
entering the left and right premotor cortices. This model
provides insight into visuomotor coordination, which was
previously linked with BCI inefficiency [3]. It thus represents
a step towards explaining wrist-extension and wrist-flexion
visuomotor control using a BCI.

In our present study, evaluation of the model fit was
limited to R?, since DCM-IR produces trial-averaged spectra
and cannot label unseen single-trial data [6]. Moreover, the
current sample is too small for a robust generalisation
estimate. Classification accuracy will therefore be examined
in a subsequent investigation, with an expanded sample, and a
discriminative decoder that couples the optimised input model
with BCI classification methods from our previous study [14].
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