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Abstract: Dynamic causal modelling is a promising tool to 
quantify hand movement neural control. It portrays the 
temporal path of signals across a network of distinct motor 
control areas in the brain. Optimising the input representation 
for this modelling framework—including defining the input 
signal and its entry point into the motor-control network—
could enhance its ability to explain interactions within the 
brain. A more precise characterisation of these inputs may also 
shed light on visuomotor coordination, which is linked to 
efficient brain-computer interface usage and bionic hand 
control. This study applied Bayesian selection to determine the 
optimal input model. Electroencephalography recordings were 
acquired from three participants who performed wrist 
extension and wrist flexion movements. Nine candidate input 
models were compared using the Bayesian selection's log-
evidence. The selection was evaluated by the spectral variance 
between each participant’s measured spectrograms and those 
predicted by the winning model. In all participants, the same 
input model was selected: an input signal of three gamma 
functions entering the left and right premotor cortices. This 
input model provides insights into visuomotor coordination 
and can improve the performance of a brain-computer 
interface controlling a bionic hand.  

Keywords: brain-computer interface, dynamic causal 
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1 Introduction 

Bionic prosthetic and orthotic hands could assist motor-
impaired individuals in performing daily living activities [1]. 
This technology uses sensorimotor brain-computer interfaces 
(BCI) to interpret the person’s hand-movement intention from 
recorded electroencephalography (EEG) signals [1]. Low 
spatial resolution, noise contamination, and their inherent 
spatial and temporal complexity, hamper EEG signals' 
interpretation [2], and 15–30% of users are unable to generate 
sensorimotor brain signals for BCI control [3].  

Dynamic causal modelling of induced responses (DCM-
IR) is a leading EEG analysis framework [4] that estimates the 
time-frequency response to experimental events through 
causal, cross-frequency couplings between multiple brain 
regions [5,6]. The modelling entails a set of differential 
equations (eq 1), where the hidden states g(ω,t)—functions of 
frequency (ω) and time (t)—are the neural response in the 
brain regions participating in the movement control [7].  

𝜏𝑔̇(𝜔, 𝑡) = (𝐴 + 𝑋𝐵)𝑔(𝜔, 𝑡) + 𝐶𝑢(𝑡)                (1) 

The parameters of Matrix A and Matrix B respectively 
model couplings between the regions without, and due to, 
changes in exogenous experimental conditions [8]. The second 
term in the equation is the input model. It consists of an input 
signal, u(t), and a binary vector, C, which represents the 
primary motor regions that receive the input signal [8]. In 
experiments and BCI training sessions involving visual 
neurofeedback, an accurate representation of the input model 
could explain communication between the visual cortex and 
the network of motor cortices. This could elucidate visuo-
motor co-ordination, which has been linked to BCI-
inefficiency [3]. 

  Previous EEG DCM-IR studies of hand movement 
indicated that the input regions are the supplementary motor 
cortex (SMA), the premotor cortex (PMv), or the prefrontal 
cortex (PFC); and that the signal u(t) can be represented by 
either a single input gamma function [6,9–11] or two gamma 
functions [12]. No previous study performed a selection 

______ 
*Corresponding author: Abdul-Khaaliq Mohamed, School of 
Electrical and Information Engineering, University of the 
Witwatersrand, Johannesburg, 1 Jan Smuts ave, Braamfontein 
2000, ZA. e-mail: abdul-khaaliq.mohamed@wits.ac.za 
Vered Aharonson: School of Electrical and Information 
Engineering, University of the Witwatersrand, Johannesburg, 1 
Jan Smuts ave, Braamfontein 2000, ZA and Medical School, 
University of Nicosia, 93 Agiou Nikolaou Street, Engomi 2408, CY. 
 

DE GRUYTER Current Directions in Biomedical Engineering 2025;11(1): 409-412

409
 Open Access. © 2025 The Author(s), published by De Gruyter.  This work is licensed under the Creative Commons Attribution 4.0 International License. 



process to determine the optimal entry regions and the optimal 
number of gamma functions in u(t). 

Our study employed Bayesian model selection (BMS) to 
optimise the DCM-IR input model for two experimental 
conditions: wrist extension and wrist flexion movements.  

2  Method 

Three bilateral fully-connected DCM-IR architectures, 
illustrated in Figure 1, were developed based on empirical and 
physiological wrist-control data from the literature. All 
architectures included seven cortical regions, listed in Table 1 
[6,9,11,12], and differed in their input entry model. For each 
entry model, three potential input signals, shown in Figure 2, 
were considered; resulting in a total of nine possible input 
models. The input signals were composed of one, two or three 
gamma functions—time-linked to the visual cues of the 
experiments' wrist motor tasks [12,13]. Coupling parameter 
estimation was conducted for all plausible models. A winning 
input model was thereafter computed using Bayesian model 
selection (BMS).  

The details of the instrumentation and EEG data 
acquisition were reported elsewhere [13]. A preliminary 
cohort of one male and two female participants, screened and 
shown to be BCI-efficient [14], performed wrist extension and 
wrist flexion movements. Wrist movements were controlled 
by the IsoReg dynamometer [13] that regulated force, speed 
and range deviations. Each participant performed 100 trials of 
wrist extensions and 100 wrist flexions [13]. The EEG data 
was recorded using a 128-channel Brain Products actiCHamp 
system (Brain Products GmbH, Gilching, Germany). The 
single-trial EEG data were pre-processed using Matlab 2019b 
(The Mathworks Inc, Natick, MA, USA) and EEGLAB [15] 
to estimate distinct signals from the seven brain regions 
through inverse lead-field matrix source localisation [6].  

Morlet wavelet transform [7] provided the time-frequency 
spectrograms of the measured pre-processed signals—per 
brain region, participant and trial. Spectrogram windows were 
5000–7000 ms peristimulus time, and covered a frequency 
range of  1 to 90 Hz [13]. The spectrograms were then 
averaged across all trials for each brain region and each 
movement type [16]. Spectrogram generation, parameter 
optimisation, and model selection were implemented using the 
Statistical Parametric Mapping software revision 12 
(Wellcome-Trust Centre for Neuroimaging, London, UK). 
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Figure 1: Three plausible candidate DCM input architectures based on physiology from literature. Red arrows depict the input signal 
origin and blue arrows depict region connections. Abbreviations for the brain regions (in green) are defined in Table 1. 

a)

b)

c)

Figure 2: Time plots of exogenous inputs u(t) with a) one, b) two 
and c) three gamma functions. Visual cues to prepare to move,
and to sustain the wrist movement, were displayed at t=5000, 
and t=0 ms respectively.  

Table 1: The seven regions in the dynamic causal model 
architectures and their anatomical descriptions. 

Region Abbreviation Anatomical region name 

r-M1-H; l-M1-H Right- and left-hand representation in the 
Primary motor cortex 

SMA Supplementary motor area 

r-PMv; l-PMv Right and left ventral pre-motor cortex 

r-PFC; l-PFC Right and left prefrontal cortex 
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Bayesian inversion parameter optimisation minimised the 
difference between the spectrograms predicted by the DCM-
IR—g(ω,t) in eq (1)—and the measured spectrograms, using 
the Expectation-Maximisation algorithm and a log-evidence 
objective function [8]. Fixed-effects BMS [7] computed the 
log evidence of the nine candidate models for each participant 
and selected the model with the highest log evidence. 
Random-effects BMS [7] determined the best model across the 
cohort of three participants. Model selection performance was 
evaluated using the spectral variance (R2) [6] between each 
participant’s measured spectrograms and those predicted by 
the winning model. Additionally, a visual comparison between 
the measured and predicted spectrograms was performed to 
complement the quantitative evaluation. 

3 Results 

Figure 3a shows the fixed-effects BMS log-evidence 
values of the nine models for participants 1, 2, and 3. The 
models are denoted by the entry model and input number of 
gamma functions. For example, model 1-1 uses input entry 1 
(Figure 1) and one gamma function in u(t). Model 2-3 yielded 
the highest log evidence. This input model consists of a three-
gamma-functions input entering the brain regions network 
from right and left ventral pre-motor cortex. The random-
effects BMS in Figure 3b shows the prominence of model 2-3 
for the 3-participant cohort.   

The R2 values for model 2-3 were 74.76%, 90.00% and 
83.56% for participants 1, 2 and 3 respectively. Figure 4 
depicts an example of all measured and predicted 
spectrograms of participant 1, showing the similarity of the 
spectrograms.   
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Figure 3: a) Participant-specific results of BMS using fixed effects. Model 1-1 is labelled according to using architecture 1 and using 
one gamma function for u(t). The other eight models are similarly labelled. b) Group results for BMS using random effects. 
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Figure 4: Comparison of measured and predicted 
spectrograms—for model 2-3 and for the RH of participant 1. 
Abbreviations for the brain regions are defined in Table 1. 
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4 Discussion and Conclusion 

This study proposes an input-model selection framework 
for dynamic causal modelling of visuomotor control in wrist 
extension and wrist flexion. These movements are pivotal for 
effectively controlling a bionic hand [1]. The findings 
presented are preliminary, as EEG data from only three 
participants were used to establish ground-truth spectrograms 
for the models’ predictions.  However, the consistency of the 
selected model across all three participants suggests its 
potential applicability to broader populations. This hypothesis 
will be tested and validated on a larger cohort. The selected 
input model includes three sequential gamma functions 
entering the left and right premotor cortices. This model 
provides insight into visuomotor coordination, which was 
previously linked with BCI inefficiency [3]. It thus represents 
a step towards explaining wrist-extension and wrist-flexion 
visuomotor control using a BCI.  

In our present study, evaluation of the model fit was 
limited to R2, since DCM-IR produces trial-averaged spectra 
and cannot label unseen single-trial data [6]. Moreover, the 
current sample is too small for a robust generalisation 
estimate. Classification accuracy will therefore be examined 
in a subsequent investigation, with an expanded sample, and a 
discriminative decoder that couples the optimised input model 
with BCI classification methods from our previous study [14]. 
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